Home | History | Annotate | Download | only in alloc
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "Dalvik.h"
     18 #include "alloc/CardTable.h"
     19 #include "alloc/HeapBitmap.h"
     20 #include "alloc/HeapBitmapInlines.h"
     21 #include "alloc/HeapInternal.h"
     22 #include "alloc/HeapSource.h"
     23 #include "alloc/MarkSweep.h"
     24 #include "alloc/Visit.h"
     25 #include <limits.h>     // for ULONG_MAX
     26 #include <sys/mman.h>   // for madvise(), mmap()
     27 #include <errno.h>
     28 
     29 typedef unsigned long Word;
     30 const size_t kWordSize = sizeof(Word);
     31 
     32 /*
     33  * Returns true if the given object is marked.
     34  */
     35 static bool isMarked(const Object *obj, const GcMarkContext *ctx)
     36 {
     37     return dvmHeapBitmapIsObjectBitSet(ctx->bitmap, obj);
     38 }
     39 
     40 /*
     41  * Initializes the stack top and advises the mark stack pages as needed.
     42  */
     43 static bool createMarkStack(GcMarkStack *stack)
     44 {
     45     assert(stack != NULL);
     46     size_t length = dvmHeapSourceGetIdealFootprint() * sizeof(Object*) /
     47         (sizeof(Object) + HEAP_SOURCE_CHUNK_OVERHEAD);
     48     madvise(stack->base, length, MADV_NORMAL);
     49     stack->top = stack->base;
     50     return true;
     51 }
     52 
     53 /*
     54  * Assigns NULL to the stack top and advises the mark stack pages as
     55  * not needed.
     56  */
     57 static void destroyMarkStack(GcMarkStack *stack)
     58 {
     59     assert(stack != NULL);
     60     madvise(stack->base, stack->length, MADV_DONTNEED);
     61     stack->top = NULL;
     62 }
     63 
     64 /*
     65  * Pops an object from the mark stack.
     66  */
     67 static void markStackPush(GcMarkStack *stack, const Object *obj)
     68 {
     69     assert(stack != NULL);
     70     assert(stack->base <= stack->top);
     71     assert(stack->limit > stack->top);
     72     assert(obj != NULL);
     73     *stack->top = obj;
     74     ++stack->top;
     75 }
     76 
     77 /*
     78  * Pushes an object on the mark stack.
     79  */
     80 static const Object *markStackPop(GcMarkStack *stack)
     81 {
     82     assert(stack != NULL);
     83     assert(stack->base < stack->top);
     84     assert(stack->limit > stack->top);
     85     --stack->top;
     86     return *stack->top;
     87 }
     88 
     89 bool dvmHeapBeginMarkStep(bool isPartial)
     90 {
     91     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
     92 
     93     if (!createMarkStack(&ctx->stack)) {
     94         return false;
     95     }
     96     ctx->finger = NULL;
     97     ctx->immuneLimit = (char*)dvmHeapSourceGetImmuneLimit(isPartial);
     98     return true;
     99 }
    100 
    101 static long setAndReturnMarkBit(GcMarkContext *ctx, const void *obj)
    102 {
    103     return dvmHeapBitmapSetAndReturnObjectBit(ctx->bitmap, obj);
    104 }
    105 
    106 static void markObjectNonNull(const Object *obj, GcMarkContext *ctx,
    107                               bool checkFinger)
    108 {
    109     assert(ctx != NULL);
    110     assert(obj != NULL);
    111     assert(dvmIsValidObject(obj));
    112     if (obj < (Object *)ctx->immuneLimit) {
    113         assert(isMarked(obj, ctx));
    114         return;
    115     }
    116     if (!setAndReturnMarkBit(ctx, obj)) {
    117         /* This object was not previously marked.
    118          */
    119         if (checkFinger && (void *)obj < ctx->finger) {
    120             /* This object will need to go on the mark stack.
    121              */
    122             markStackPush(&ctx->stack, obj);
    123         }
    124     }
    125 }
    126 
    127 /* Used to mark objects when recursing.  Recursion is done by moving
    128  * the finger across the bitmaps in address order and marking child
    129  * objects.  Any newly-marked objects whose addresses are lower than
    130  * the finger won't be visited by the bitmap scan, so those objects
    131  * need to be added to the mark stack.
    132  */
    133 static void markObject(const Object *obj, GcMarkContext *ctx)
    134 {
    135     if (obj != NULL) {
    136         markObjectNonNull(obj, ctx, true);
    137     }
    138 }
    139 
    140 /*
    141  * Callback applied to root references during the initial root
    142  * marking.  Marks white objects but does not push them on the mark
    143  * stack.
    144  */
    145 static void rootMarkObjectVisitor(void *addr, u4 thread, RootType type,
    146                                   void *arg)
    147 {
    148     assert(addr != NULL);
    149     assert(arg != NULL);
    150     Object *obj = *(Object **)addr;
    151     GcMarkContext *ctx = (GcMarkContext *)arg;
    152     if (obj != NULL) {
    153         markObjectNonNull(obj, ctx, false);
    154     }
    155 }
    156 
    157 /* Mark the set of root objects.
    158  *
    159  * Things we need to scan:
    160  * - System classes defined by root classloader
    161  * - For each thread:
    162  *   - Interpreted stack, from top to "curFrame"
    163  *     - Dalvik registers (args + local vars)
    164  *   - JNI local references
    165  *   - Automatic VM local references (TrackedAlloc)
    166  *   - Associated Thread/VMThread object
    167  *   - ThreadGroups (could track & start with these instead of working
    168  *     upward from Threads)
    169  *   - Exception currently being thrown, if present
    170  * - JNI global references
    171  * - Interned string table
    172  * - Primitive classes
    173  * - Special objects
    174  *   - gDvm.outOfMemoryObj
    175  * - Objects in debugger object registry
    176  *
    177  * Don't need:
    178  * - Native stack (for in-progress stuff in the VM)
    179  *   - The TrackedAlloc stuff watches all native VM references.
    180  */
    181 void dvmHeapMarkRootSet()
    182 {
    183     GcHeap *gcHeap = gDvm.gcHeap;
    184     dvmMarkImmuneObjects(gcHeap->markContext.immuneLimit);
    185     dvmVisitRoots(rootMarkObjectVisitor, &gcHeap->markContext);
    186 }
    187 
    188 /*
    189  * Callback applied to root references during root remarking.  Marks
    190  * white objects and pushes them on the mark stack.
    191  */
    192 static void rootReMarkObjectVisitor(void *addr, u4 thread, RootType type,
    193                                     void *arg)
    194 {
    195     assert(addr != NULL);
    196     assert(arg != NULL);
    197     Object *obj = *(Object **)addr;
    198     GcMarkContext *ctx = (GcMarkContext *)arg;
    199     if (obj != NULL) {
    200         markObjectNonNull(obj, ctx, true);
    201     }
    202 }
    203 
    204 /*
    205  * Grays all references in the roots.
    206  */
    207 void dvmHeapReMarkRootSet()
    208 {
    209     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    210     assert(ctx->finger == (void *)ULONG_MAX);
    211     dvmVisitRoots(rootReMarkObjectVisitor, ctx);
    212 }
    213 
    214 /*
    215  * Scans instance fields.
    216  */
    217 static void scanFields(const Object *obj, GcMarkContext *ctx)
    218 {
    219     assert(obj != NULL);
    220     assert(obj->clazz != NULL);
    221     assert(ctx != NULL);
    222     if (obj->clazz->refOffsets != CLASS_WALK_SUPER) {
    223         unsigned int refOffsets = obj->clazz->refOffsets;
    224         while (refOffsets != 0) {
    225             size_t rshift = CLZ(refOffsets);
    226             size_t offset = CLASS_OFFSET_FROM_CLZ(rshift);
    227             Object *ref = dvmGetFieldObject(obj, offset);
    228             markObject(ref, ctx);
    229             refOffsets &= ~(CLASS_HIGH_BIT >> rshift);
    230         }
    231     } else {
    232         for (ClassObject *clazz = obj->clazz;
    233              clazz != NULL;
    234              clazz = clazz->super) {
    235             InstField *field = clazz->ifields;
    236             for (int i = 0; i < clazz->ifieldRefCount; ++i, ++field) {
    237                 void *addr = BYTE_OFFSET(obj, field->byteOffset);
    238                 Object *ref = ((JValue *)addr)->l;
    239                 markObject(ref, ctx);
    240             }
    241         }
    242     }
    243 }
    244 
    245 /*
    246  * Scans the static fields of a class object.
    247  */
    248 static void scanStaticFields(const ClassObject *clazz, GcMarkContext *ctx)
    249 {
    250     assert(clazz != NULL);
    251     assert(ctx != NULL);
    252     for (int i = 0; i < clazz->sfieldCount; ++i) {
    253         char ch = clazz->sfields[i].signature[0];
    254         if (ch == '[' || ch == 'L') {
    255             Object *obj = clazz->sfields[i].value.l;
    256             markObject(obj, ctx);
    257         }
    258     }
    259 }
    260 
    261 /*
    262  * Visit the interfaces of a class object.
    263  */
    264 static void scanInterfaces(const ClassObject *clazz, GcMarkContext *ctx)
    265 {
    266     assert(clazz != NULL);
    267     assert(ctx != NULL);
    268     for (int i = 0; i < clazz->interfaceCount; ++i) {
    269         markObject((const Object *)clazz->interfaces[i], ctx);
    270     }
    271 }
    272 
    273 /*
    274  * Scans the header, static field references, and interface
    275  * pointers of a class object.
    276  */
    277 static void scanClassObject(const Object *obj, GcMarkContext *ctx)
    278 {
    279     assert(obj != NULL);
    280     assert(dvmIsClassObject(obj));
    281     assert(ctx != NULL);
    282     markObject((const Object *)obj->clazz, ctx);
    283     const ClassObject *asClass = (const ClassObject *)obj;
    284     if (IS_CLASS_FLAG_SET(asClass, CLASS_ISARRAY)) {
    285         markObject((const Object *)asClass->elementClass, ctx);
    286     }
    287     /* Do super and the interfaces contain Objects and not dex idx values? */
    288     if (asClass->status > CLASS_IDX) {
    289         markObject((const Object *)asClass->super, ctx);
    290     }
    291     markObject((const Object *)asClass->classLoader, ctx);
    292     scanFields(obj, ctx);
    293     scanStaticFields(asClass, ctx);
    294     if (asClass->status > CLASS_IDX) {
    295         scanInterfaces(asClass, ctx);
    296     }
    297 }
    298 
    299 /*
    300  * Scans the header of all array objects.  If the array object is
    301  * specialized to a reference type, scans the array data as well.
    302  */
    303 static void scanArrayObject(const Object *obj, GcMarkContext *ctx)
    304 {
    305     assert(obj != NULL);
    306     assert(obj->clazz != NULL);
    307     assert(ctx != NULL);
    308     markObject((const Object *)obj->clazz, ctx);
    309     if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISOBJECTARRAY)) {
    310         const ArrayObject *array = (const ArrayObject *)obj;
    311         const Object **contents = (const Object **)(void *)array->contents;
    312         for (size_t i = 0; i < array->length; ++i) {
    313             markObject(contents[i], ctx);
    314         }
    315     }
    316 }
    317 
    318 /*
    319  * Returns class flags relating to Reference subclasses.
    320  */
    321 static int referenceClassFlags(const Object *obj)
    322 {
    323     int flags = CLASS_ISREFERENCE |
    324                 CLASS_ISWEAKREFERENCE |
    325                 CLASS_ISFINALIZERREFERENCE |
    326                 CLASS_ISPHANTOMREFERENCE;
    327     return GET_CLASS_FLAG_GROUP(obj->clazz, flags);
    328 }
    329 
    330 /*
    331  * Returns true if the object derives from SoftReference.
    332  */
    333 static bool isSoftReference(const Object *obj)
    334 {
    335     return referenceClassFlags(obj) == CLASS_ISREFERENCE;
    336 }
    337 
    338 /*
    339  * Returns true if the object derives from WeakReference.
    340  */
    341 static bool isWeakReference(const Object *obj)
    342 {
    343     return referenceClassFlags(obj) & CLASS_ISWEAKREFERENCE;
    344 }
    345 
    346 /*
    347  * Returns true if the object derives from FinalizerReference.
    348  */
    349 static bool isFinalizerReference(const Object *obj)
    350 {
    351     return referenceClassFlags(obj) & CLASS_ISFINALIZERREFERENCE;
    352 }
    353 
    354 /*
    355  * Returns true if the object derives from PhantomReference.
    356  */
    357 static bool isPhantomReference(const Object *obj)
    358 {
    359     return referenceClassFlags(obj) & CLASS_ISPHANTOMREFERENCE;
    360 }
    361 
    362 /*
    363  * Adds a reference to the tail of a circular queue of references.
    364  */
    365 static void enqueuePendingReference(Object *ref, Object **list)
    366 {
    367     assert(ref != NULL);
    368     assert(list != NULL);
    369     size_t offset = gDvm.offJavaLangRefReference_pendingNext;
    370     if (*list == NULL) {
    371         dvmSetFieldObject(ref, offset, ref);
    372         *list = ref;
    373     } else {
    374         Object *head = dvmGetFieldObject(*list, offset);
    375         dvmSetFieldObject(ref, offset, head);
    376         dvmSetFieldObject(*list, offset, ref);
    377     }
    378 }
    379 
    380 /*
    381  * Removes the reference at the head of a circular queue of
    382  * references.
    383  */
    384 static Object *dequeuePendingReference(Object **list)
    385 {
    386     assert(list != NULL);
    387     assert(*list != NULL);
    388     size_t offset = gDvm.offJavaLangRefReference_pendingNext;
    389     Object *head = dvmGetFieldObject(*list, offset);
    390     Object *ref;
    391     if (*list == head) {
    392         ref = *list;
    393         *list = NULL;
    394     } else {
    395         Object *next = dvmGetFieldObject(head, offset);
    396         dvmSetFieldObject(*list, offset, next);
    397         ref = head;
    398     }
    399     dvmSetFieldObject(ref, offset, NULL);
    400     return ref;
    401 }
    402 
    403 /*
    404  * Process the "referent" field in a java.lang.ref.Reference.  If the
    405  * referent has not yet been marked, put it on the appropriate list in
    406  * the gcHeap for later processing.
    407  */
    408 static void delayReferenceReferent(Object *obj, GcMarkContext *ctx)
    409 {
    410     assert(obj != NULL);
    411     assert(obj->clazz != NULL);
    412     assert(IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE));
    413     assert(ctx != NULL);
    414     GcHeap *gcHeap = gDvm.gcHeap;
    415     size_t pendingNextOffset = gDvm.offJavaLangRefReference_pendingNext;
    416     size_t referentOffset = gDvm.offJavaLangRefReference_referent;
    417     Object *pending = dvmGetFieldObject(obj, pendingNextOffset);
    418     Object *referent = dvmGetFieldObject(obj, referentOffset);
    419     if (pending == NULL && referent != NULL && !isMarked(referent, ctx)) {
    420         Object **list = NULL;
    421         if (isSoftReference(obj)) {
    422             list = &gcHeap->softReferences;
    423         } else if (isWeakReference(obj)) {
    424             list = &gcHeap->weakReferences;
    425         } else if (isFinalizerReference(obj)) {
    426             list = &gcHeap->finalizerReferences;
    427         } else if (isPhantomReference(obj)) {
    428             list = &gcHeap->phantomReferences;
    429         }
    430         assert(list != NULL);
    431         enqueuePendingReference(obj, list);
    432     }
    433 }
    434 
    435 /*
    436  * Scans the header and field references of a data object.
    437  */
    438 static void scanDataObject(const Object *obj, GcMarkContext *ctx)
    439 {
    440     assert(obj != NULL);
    441     assert(obj->clazz != NULL);
    442     assert(ctx != NULL);
    443     markObject((const Object *)obj->clazz, ctx);
    444     scanFields(obj, ctx);
    445     if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE)) {
    446         delayReferenceReferent((Object *)obj, ctx);
    447     }
    448 }
    449 
    450 /*
    451  * Scans an object reference.  Determines the type of the reference
    452  * and dispatches to a specialized scanning routine.
    453  */
    454 static void scanObject(const Object *obj, GcMarkContext *ctx)
    455 {
    456     assert(obj != NULL);
    457     assert(obj->clazz != NULL);
    458     if (obj->clazz == gDvm.classJavaLangClass) {
    459         scanClassObject(obj, ctx);
    460     } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
    461         scanArrayObject(obj, ctx);
    462     } else {
    463         scanDataObject(obj, ctx);
    464     }
    465 }
    466 
    467 /*
    468  * Scan anything that's on the mark stack.  We can't use the bitmaps
    469  * anymore, so use a finger that points past the end of them.
    470  */
    471 static void processMarkStack(GcMarkContext *ctx)
    472 {
    473     assert(ctx != NULL);
    474     assert(ctx->finger == (void *)ULONG_MAX);
    475     assert(ctx->stack.top >= ctx->stack.base);
    476     GcMarkStack *stack = &ctx->stack;
    477     while (stack->top > stack->base) {
    478         const Object *obj = markStackPop(stack);
    479         scanObject(obj, ctx);
    480     }
    481 }
    482 
    483 static size_t objectSize(const Object *obj)
    484 {
    485     assert(dvmIsValidObject(obj));
    486     assert(dvmIsValidObject((Object *)obj->clazz));
    487     if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
    488         return dvmArrayObjectSize((ArrayObject *)obj);
    489     } else if (obj->clazz == gDvm.classJavaLangClass) {
    490         return dvmClassObjectSize((ClassObject *)obj);
    491     } else {
    492         return obj->clazz->objectSize;
    493     }
    494 }
    495 
    496 /*
    497  * Scans forward to the header of the next marked object between start
    498  * and limit.  Returns NULL if no marked objects are in that region.
    499  */
    500 static Object *nextGrayObject(const u1 *base, const u1 *limit,
    501                               const HeapBitmap *markBits)
    502 {
    503     const u1 *ptr;
    504 
    505     assert(base < limit);
    506     assert(limit - base <= GC_CARD_SIZE);
    507     for (ptr = base; ptr < limit; ptr += HB_OBJECT_ALIGNMENT) {
    508         if (dvmHeapBitmapIsObjectBitSet(markBits, ptr))
    509             return (Object *)ptr;
    510     }
    511     return NULL;
    512 }
    513 
    514 /*
    515  * Scans range of dirty cards between start and end.  A range of dirty
    516  * cards is composed consecutively dirty cards or dirty cards spanned
    517  * by a gray object.  Returns the address of a clean card if the scan
    518  * reached a clean card or NULL if the scan reached the end.
    519  */
    520 const u1 *scanDirtyCards(const u1 *start, const u1 *end,
    521                          GcMarkContext *ctx)
    522 {
    523     const HeapBitmap *markBits = ctx->bitmap;
    524     const u1 *card = start, *prevAddr = NULL;
    525     while (card < end) {
    526         if (*card != GC_CARD_DIRTY) {
    527             return card;
    528         }
    529         const u1 *ptr = prevAddr ? prevAddr : (u1*)dvmAddrFromCard(card);
    530         const u1 *limit = ptr + GC_CARD_SIZE;
    531         while (ptr < limit) {
    532             Object *obj = nextGrayObject(ptr, limit, markBits);
    533             if (obj == NULL) {
    534                 break;
    535             }
    536             scanObject(obj, ctx);
    537             ptr = (u1*)obj + ALIGN_UP(objectSize(obj), HB_OBJECT_ALIGNMENT);
    538         }
    539         if (ptr < limit) {
    540             /* Ended within the current card, advance to the next card. */
    541             ++card;
    542             prevAddr = NULL;
    543         } else {
    544             /* Ended past the current card, skip ahead. */
    545             card = dvmCardFromAddr(ptr);
    546             prevAddr = ptr;
    547         }
    548     }
    549     return NULL;
    550 }
    551 
    552 /*
    553  * Blackens gray objects found on dirty cards.
    554  */
    555 static void scanGrayObjects(GcMarkContext *ctx)
    556 {
    557     GcHeap *h = gDvm.gcHeap;
    558     const u1 *base, *limit, *ptr, *dirty;
    559 
    560     base = &h->cardTableBase[0];
    561     // The limit is the card one after the last accessible card.
    562     limit = dvmCardFromAddr((u1 *)dvmHeapSourceGetLimit() - GC_CARD_SIZE) + 1;
    563     assert(limit <= &base[h->cardTableOffset + h->cardTableLength]);
    564 
    565     ptr = base;
    566     for (;;) {
    567         dirty = (const u1 *)memchr(ptr, GC_CARD_DIRTY, limit - ptr);
    568         if (dirty == NULL) {
    569             break;
    570         }
    571         assert((dirty > ptr) && (dirty < limit));
    572         ptr = scanDirtyCards(dirty, limit, ctx);
    573         if (ptr == NULL) {
    574             break;
    575         }
    576         assert((ptr > dirty) && (ptr < limit));
    577     }
    578 }
    579 
    580 /*
    581  * Callback for scanning each object in the bitmap.  The finger is set
    582  * to the address corresponding to the lowest address in the next word
    583  * of bits in the bitmap.
    584  */
    585 static void scanBitmapCallback(Object *obj, void *finger, void *arg)
    586 {
    587     GcMarkContext *ctx = (GcMarkContext *)arg;
    588     ctx->finger = (void *)finger;
    589     scanObject(obj, ctx);
    590 }
    591 
    592 /* Given bitmaps with the root set marked, find and mark all
    593  * reachable objects.  When this returns, the entire set of
    594  * live objects will be marked and the mark stack will be empty.
    595  */
    596 void dvmHeapScanMarkedObjects(void)
    597 {
    598     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    599 
    600     assert(ctx->finger == NULL);
    601 
    602     /* The bitmaps currently have bits set for the root set.
    603      * Walk across the bitmaps and scan each object.
    604      */
    605     dvmHeapBitmapScanWalk(ctx->bitmap, scanBitmapCallback, ctx);
    606 
    607     ctx->finger = (void *)ULONG_MAX;
    608 
    609     /* We've walked the mark bitmaps.  Scan anything that's
    610      * left on the mark stack.
    611      */
    612     processMarkStack(ctx);
    613 }
    614 
    615 void dvmHeapReScanMarkedObjects()
    616 {
    617     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    618 
    619     /*
    620      * The finger must have been set to the maximum value to ensure
    621      * that gray objects will be pushed onto the mark stack.
    622      */
    623     assert(ctx->finger == (void *)ULONG_MAX);
    624     scanGrayObjects(ctx);
    625     processMarkStack(ctx);
    626 }
    627 
    628 /*
    629  * Clear the referent field.
    630  */
    631 static void clearReference(Object *reference)
    632 {
    633     size_t offset = gDvm.offJavaLangRefReference_referent;
    634     dvmSetFieldObject(reference, offset, NULL);
    635 }
    636 
    637 /*
    638  * Returns true if the reference was registered with a reference queue
    639  * and has not yet been enqueued.
    640  */
    641 static bool isEnqueuable(const Object *reference)
    642 {
    643     assert(reference != NULL);
    644     Object *queue = dvmGetFieldObject(reference,
    645             gDvm.offJavaLangRefReference_queue);
    646     Object *queueNext = dvmGetFieldObject(reference,
    647             gDvm.offJavaLangRefReference_queueNext);
    648     return queue != NULL && queueNext == NULL;
    649 }
    650 
    651 /*
    652  * Schedules a reference to be appended to its reference queue.
    653  */
    654 static void enqueueReference(Object *ref)
    655 {
    656     assert(ref != NULL);
    657     assert(dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queue) != NULL);
    658     assert(dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queueNext) == NULL);
    659     enqueuePendingReference(ref, &gDvm.gcHeap->clearedReferences);
    660 }
    661 
    662 /*
    663  * Walks the reference list marking any references subject to the
    664  * reference clearing policy.  References with a black referent are
    665  * removed from the list.  References with white referents biased
    666  * toward saving are blackened and also removed from the list.
    667  */
    668 static void preserveSomeSoftReferences(Object **list)
    669 {
    670     assert(list != NULL);
    671     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    672     size_t referentOffset = gDvm.offJavaLangRefReference_referent;
    673     Object *clear = NULL;
    674     size_t counter = 0;
    675     while (*list != NULL) {
    676         Object *ref = dequeuePendingReference(list);
    677         Object *referent = dvmGetFieldObject(ref, referentOffset);
    678         if (referent == NULL) {
    679             /* Referent was cleared by the user during marking. */
    680             continue;
    681         }
    682         bool marked = isMarked(referent, ctx);
    683         if (!marked && ((++counter) & 1)) {
    684             /* Referent is white and biased toward saving, mark it. */
    685             markObject(referent, ctx);
    686             marked = true;
    687         }
    688         if (!marked) {
    689             /* Referent is white, queue it for clearing. */
    690             enqueuePendingReference(ref, &clear);
    691         }
    692     }
    693     *list = clear;
    694     /*
    695      * Restart the mark with the newly black references added to the
    696      * root set.
    697      */
    698     processMarkStack(ctx);
    699 }
    700 
    701 /*
    702  * Unlink the reference list clearing references objects with white
    703  * referents.  Cleared references registered to a reference queue are
    704  * scheduled for appending by the heap worker thread.
    705  */
    706 static void clearWhiteReferences(Object **list)
    707 {
    708     assert(list != NULL);
    709     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    710     size_t referentOffset = gDvm.offJavaLangRefReference_referent;
    711     while (*list != NULL) {
    712         Object *ref = dequeuePendingReference(list);
    713         Object *referent = dvmGetFieldObject(ref, referentOffset);
    714         if (referent != NULL && !isMarked(referent, ctx)) {
    715             /* Referent is white, clear it. */
    716             clearReference(ref);
    717             if (isEnqueuable(ref)) {
    718                 enqueueReference(ref);
    719             }
    720         }
    721     }
    722     assert(*list == NULL);
    723 }
    724 
    725 /*
    726  * Enqueues finalizer references with white referents.  White
    727  * referents are blackened, moved to the zombie field, and the
    728  * referent field is cleared.
    729  */
    730 static void enqueueFinalizerReferences(Object **list)
    731 {
    732     assert(list != NULL);
    733     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    734     size_t referentOffset = gDvm.offJavaLangRefReference_referent;
    735     size_t zombieOffset = gDvm.offJavaLangRefFinalizerReference_zombie;
    736     bool hasEnqueued = false;
    737     while (*list != NULL) {
    738         Object *ref = dequeuePendingReference(list);
    739         Object *referent = dvmGetFieldObject(ref, referentOffset);
    740         if (referent != NULL && !isMarked(referent, ctx)) {
    741             markObject(referent, ctx);
    742             /* If the referent is non-null the reference must queuable. */
    743             assert(isEnqueuable(ref));
    744             dvmSetFieldObject(ref, zombieOffset, referent);
    745             clearReference(ref);
    746             enqueueReference(ref);
    747             hasEnqueued = true;
    748         }
    749     }
    750     if (hasEnqueued) {
    751         processMarkStack(ctx);
    752     }
    753     assert(*list == NULL);
    754 }
    755 
    756 /*
    757  * This object is an instance of a class that overrides finalize().  Mark
    758  * it as finalizable.
    759  *
    760  * This is called when Object.<init> completes normally.  It's also
    761  * called for clones of finalizable objects.
    762  */
    763 void dvmSetFinalizable(Object *obj)
    764 {
    765     assert(obj != NULL);
    766     Thread *self = dvmThreadSelf();
    767     assert(self != NULL);
    768     Method *meth = gDvm.methJavaLangRefFinalizerReferenceAdd;
    769     assert(meth != NULL);
    770     JValue unusedResult;
    771     dvmCallMethod(self, meth, NULL, &unusedResult, obj);
    772 }
    773 
    774 /*
    775  * Process reference class instances and schedule finalizations.
    776  */
    777 void dvmHeapProcessReferences(Object **softReferences, bool clearSoftRefs,
    778                               Object **weakReferences,
    779                               Object **finalizerReferences,
    780                               Object **phantomReferences)
    781 {
    782     assert(softReferences != NULL);
    783     assert(weakReferences != NULL);
    784     assert(finalizerReferences != NULL);
    785     assert(phantomReferences != NULL);
    786     /*
    787      * Unless we are in the zygote or required to clear soft
    788      * references with white references, preserve some white
    789      * referents.
    790      */
    791     if (!gDvm.zygote && !clearSoftRefs) {
    792         preserveSomeSoftReferences(softReferences);
    793     }
    794     /*
    795      * Clear all remaining soft and weak references with white
    796      * referents.
    797      */
    798     clearWhiteReferences(softReferences);
    799     clearWhiteReferences(weakReferences);
    800     /*
    801      * Preserve all white objects with finalize methods and schedule
    802      * them for finalization.
    803      */
    804     enqueueFinalizerReferences(finalizerReferences);
    805     /*
    806      * Clear all f-reachable soft and weak references with white
    807      * referents.
    808      */
    809     clearWhiteReferences(softReferences);
    810     clearWhiteReferences(weakReferences);
    811     /*
    812      * Clear all phantom references with white referents.
    813      */
    814     clearWhiteReferences(phantomReferences);
    815     /*
    816      * At this point all reference lists should be empty.
    817      */
    818     assert(*softReferences == NULL);
    819     assert(*weakReferences == NULL);
    820     assert(*finalizerReferences == NULL);
    821     assert(*phantomReferences == NULL);
    822 }
    823 
    824 /*
    825  * Pushes a list of cleared references out to the managed heap.
    826  */
    827 void dvmEnqueueClearedReferences(Object **cleared)
    828 {
    829     assert(cleared != NULL);
    830     if (*cleared != NULL) {
    831         Thread *self = dvmThreadSelf();
    832         assert(self != NULL);
    833         Method *meth = gDvm.methJavaLangRefReferenceQueueAdd;
    834         assert(meth != NULL);
    835         JValue unused;
    836         Object *reference = *cleared;
    837         dvmCallMethod(self, meth, NULL, &unused, reference);
    838         *cleared = NULL;
    839     }
    840 }
    841 
    842 void dvmHeapFinishMarkStep()
    843 {
    844     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    845 
    846     /* The mark bits are now not needed.
    847      */
    848     dvmHeapSourceZeroMarkBitmap();
    849 
    850     /* Clean up everything else associated with the marking process.
    851      */
    852     destroyMarkStack(&ctx->stack);
    853 
    854     ctx->finger = NULL;
    855 }
    856 
    857 struct SweepContext {
    858     size_t numObjects;
    859     size_t numBytes;
    860     bool isConcurrent;
    861 };
    862 
    863 static void sweepBitmapCallback(size_t numPtrs, void **ptrs, void *arg)
    864 {
    865     assert(arg != NULL);
    866     SweepContext *ctx = (SweepContext *)arg;
    867     if (ctx->isConcurrent) {
    868         dvmLockHeap();
    869     }
    870     ctx->numBytes += dvmHeapSourceFreeList(numPtrs, ptrs);
    871     ctx->numObjects += numPtrs;
    872     if (ctx->isConcurrent) {
    873         dvmUnlockHeap();
    874     }
    875 }
    876 
    877 /*
    878  * Returns true if the given object is unmarked.  This assumes that
    879  * the bitmaps have not yet been swapped.
    880  */
    881 static int isUnmarkedObject(void *obj)
    882 {
    883     return !isMarked((Object *)obj, &gDvm.gcHeap->markContext);
    884 }
    885 
    886 static void sweepWeakJniGlobals()
    887 {
    888     IndirectRefTable* table = &gDvm.jniWeakGlobalRefTable;
    889     GcMarkContext* ctx = &gDvm.gcHeap->markContext;
    890     typedef IndirectRefTable::iterator It; // TODO: C++0x auto
    891     for (It it = table->begin(), end = table->end(); it != end; ++it) {
    892         Object** entry = *it;
    893         if (!isMarked(*entry, ctx)) {
    894             *entry = kClearedJniWeakGlobal;
    895         }
    896     }
    897 }
    898 
    899 /*
    900  * Process all the internal system structures that behave like
    901  * weakly-held objects.
    902  */
    903 void dvmHeapSweepSystemWeaks()
    904 {
    905     dvmGcDetachDeadInternedStrings(isUnmarkedObject);
    906     dvmSweepMonitorList(&gDvm.monitorList, isUnmarkedObject);
    907     sweepWeakJniGlobals();
    908 }
    909 
    910 /*
    911  * Walk through the list of objects that haven't been marked and free
    912  * them.  Assumes the bitmaps have been swapped.
    913  */
    914 void dvmHeapSweepUnmarkedObjects(bool isPartial, bool isConcurrent,
    915                                  size_t *numObjects, size_t *numBytes)
    916 {
    917     uintptr_t base[HEAP_SOURCE_MAX_HEAP_COUNT];
    918     uintptr_t max[HEAP_SOURCE_MAX_HEAP_COUNT];
    919     SweepContext ctx;
    920     HeapBitmap *prevLive, *prevMark;
    921     size_t numHeaps, numSweepHeaps;
    922 
    923     numHeaps = dvmHeapSourceGetNumHeaps();
    924     dvmHeapSourceGetRegions(base, max, numHeaps);
    925     if (isPartial) {
    926         assert((uintptr_t)gDvm.gcHeap->markContext.immuneLimit == base[0]);
    927         numSweepHeaps = 1;
    928     } else {
    929         numSweepHeaps = numHeaps;
    930     }
    931     ctx.numObjects = ctx.numBytes = 0;
    932     ctx.isConcurrent = isConcurrent;
    933     prevLive = dvmHeapSourceGetMarkBits();
    934     prevMark = dvmHeapSourceGetLiveBits();
    935     for (size_t i = 0; i < numSweepHeaps; ++i) {
    936         dvmHeapBitmapSweepWalk(prevLive, prevMark, base[i], max[i],
    937                                sweepBitmapCallback, &ctx);
    938     }
    939     *numObjects = ctx.numObjects;
    940     *numBytes = ctx.numBytes;
    941     if (gDvm.allocProf.enabled) {
    942         gDvm.allocProf.freeCount += ctx.numObjects;
    943         gDvm.allocProf.freeSize += ctx.numBytes;
    944     }
    945 }
    946