1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // Intel License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000, Intel Corporation, all rights reserved. 14 // Third party copyrights are property of their respective owners. 15 // 16 // Redistribution and use in source and binary forms, with or without modification, 17 // are permitted provided that the following conditions are met: 18 // 19 // * Redistribution's of source code must retain the above copyright notice, 20 // this list of conditions and the following disclaimer. 21 // 22 // * Redistribution's in binary form must reproduce the above copyright notice, 23 // this list of conditions and the following disclaimer in the documentation 24 // and/or other materials provided with the distribution. 25 // 26 // * The name of Intel Corporation may not be used to endorse or promote products 27 // derived from this software without specific prior written permission. 28 // 29 // This software is provided by the copyright holders and contributors "as is" and 30 // any express or implied warranties, including, but not limited to, the implied 31 // warranties of merchantability and fitness for a particular purpose are disclaimed. 32 // In no event shall the Intel Corporation or contributors be liable for any direct, 33 // indirect, incidental, special, exemplary, or consequential damages 34 // (including, but not limited to, procurement of substitute goods or services; 35 // loss of use, data, or profits; or business interruption) however caused 36 // and on any theory of liability, whether in contract, strict liability, 37 // or tort (including negligence or otherwise) arising in any way out of 38 // the use of this software, even if advised of the possibility of such damage. 39 // 40 //M*/ 41 #include "_cv.h" 42 43 /* Creates new histogram */ 44 CvHistogram * 45 cvCreateHist( int dims, int *sizes, CvHistType type, float** ranges, int uniform ) 46 { 47 CvHistogram *hist = 0; 48 49 CV_FUNCNAME( "cvCreateHist" ); 50 __BEGIN__; 51 52 if( (unsigned)dims > CV_MAX_DIM ) 53 CV_ERROR( CV_BadOrder, "Number of dimensions is out of range" ); 54 55 if( !sizes ) 56 CV_ERROR( CV_HeaderIsNull, "Null <sizes> pointer" ); 57 58 CV_CALL( hist = (CvHistogram *)cvAlloc( sizeof( CvHistogram ))); 59 60 hist->type = CV_HIST_MAGIC_VAL; 61 hist->thresh2 = 0; 62 hist->bins = 0; 63 if( type == CV_HIST_ARRAY ) 64 { 65 CV_CALL( hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, 66 CV_HIST_DEFAULT_TYPE )); 67 CV_CALL( cvCreateData( hist->bins )); 68 } 69 else if( type == CV_HIST_SPARSE ) 70 { 71 CV_CALL( hist->bins = cvCreateSparseMat( dims, sizes, CV_HIST_DEFAULT_TYPE )); 72 } 73 else 74 { 75 CV_ERROR( CV_StsBadArg, "Invalid histogram type" ); 76 } 77 78 if( ranges ) 79 CV_CALL( cvSetHistBinRanges( hist, ranges, uniform )); 80 81 __END__; 82 83 if( cvGetErrStatus() < 0 ) 84 cvReleaseHist( &hist ); 85 86 return hist; 87 } 88 89 90 /* Creates histogram wrapping header for given array */ 91 CV_IMPL CvHistogram* 92 cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist, 93 float *data, float **ranges, int uniform ) 94 { 95 CvHistogram* result = 0; 96 97 CV_FUNCNAME( "cvMakeHistHeaderForArray" ); 98 99 __BEGIN__; 100 101 if( !hist ) 102 CV_ERROR( CV_StsNullPtr, "Null histogram header pointer" ); 103 104 if( !data ) 105 CV_ERROR( CV_StsNullPtr, "Null data pointer" ); 106 107 hist->thresh2 = 0; 108 hist->type = CV_HIST_MAGIC_VAL; 109 CV_CALL( hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, 110 CV_HIST_DEFAULT_TYPE, data )); 111 112 if( ranges ) 113 { 114 if( !uniform ) 115 CV_ERROR( CV_StsBadArg, "Only uniform bin ranges can be used here " 116 "(to avoid memory allocation)" ); 117 CV_CALL( cvSetHistBinRanges( hist, ranges, uniform )); 118 } 119 120 result = hist; 121 122 __END__; 123 124 if( cvGetErrStatus() < 0 && hist ) 125 { 126 hist->type = 0; 127 hist->bins = 0; 128 } 129 130 return result; 131 } 132 133 134 CV_IMPL void 135 cvReleaseHist( CvHistogram **hist ) 136 { 137 CV_FUNCNAME( "cvReleaseHist" ); 138 139 __BEGIN__; 140 141 if( !hist ) 142 CV_ERROR( CV_StsNullPtr, "" ); 143 144 if( *hist ) 145 { 146 CvHistogram* temp = *hist; 147 148 if( !CV_IS_HIST(temp)) 149 CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); 150 151 *hist = 0; 152 153 if( CV_IS_SPARSE_HIST( temp )) 154 cvRelease( &temp->bins ); 155 else 156 { 157 cvReleaseData( temp->bins ); 158 temp->bins = 0; 159 } 160 161 if( temp->thresh2 ) 162 cvFree( &temp->thresh2 ); 163 164 cvFree( &temp ); 165 } 166 167 __END__; 168 } 169 170 CV_IMPL void 171 cvClearHist( CvHistogram *hist ) 172 { 173 CV_FUNCNAME( "cvClearHist" ); 174 175 __BEGIN__; 176 177 if( !CV_IS_HIST(hist) ) 178 CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); 179 180 cvZero( hist->bins ); 181 182 __END__; 183 } 184 185 186 // Clears histogram bins that are below than threshold 187 CV_IMPL void 188 cvThreshHist( CvHistogram* hist, double thresh ) 189 { 190 CV_FUNCNAME( "cvThreshHist" ); 191 192 __BEGIN__; 193 194 if( !CV_IS_HIST(hist) ) 195 CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); 196 197 if( !CV_IS_SPARSE_MAT(hist->bins) ) 198 { 199 CvMat mat; 200 CV_CALL( cvGetMat( hist->bins, &mat, 0, 1 )); 201 CV_CALL( cvThreshold( &mat, &mat, thresh, 0, CV_THRESH_TOZERO )); 202 } 203 else 204 { 205 CvSparseMat* mat = (CvSparseMat*)hist->bins; 206 CvSparseMatIterator iterator; 207 CvSparseNode *node; 208 209 for( node = cvInitSparseMatIterator( mat, &iterator ); 210 node != 0; node = cvGetNextSparseNode( &iterator )) 211 { 212 float* val = (float*)CV_NODE_VAL( mat, node ); 213 if( *val <= thresh ) 214 *val = 0; 215 } 216 } 217 218 __END__; 219 } 220 221 222 // Normalizes histogram (make sum of the histogram bins == factor) 223 CV_IMPL void 224 cvNormalizeHist( CvHistogram* hist, double factor ) 225 { 226 double sum = 0; 227 228 CV_FUNCNAME( "cvNormalizeHist" ); 229 __BEGIN__; 230 231 if( !CV_IS_HIST(hist) ) 232 CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); 233 234 if( !CV_IS_SPARSE_HIST(hist) ) 235 { 236 CvMat mat; 237 CV_CALL( cvGetMat( hist->bins, &mat, 0, 1 )); 238 CV_CALL( sum = cvSum( &mat ).val[0] ); 239 if( fabs(sum) < DBL_EPSILON ) 240 sum = 1; 241 CV_CALL( cvScale( &mat, &mat, factor/sum, 0 )); 242 } 243 else 244 { 245 CvSparseMat* mat = (CvSparseMat*)hist->bins; 246 CvSparseMatIterator iterator; 247 CvSparseNode *node; 248 float scale; 249 250 for( node = cvInitSparseMatIterator( mat, &iterator ); 251 node != 0; node = cvGetNextSparseNode( &iterator )) 252 { 253 sum += *(float*)CV_NODE_VAL(mat,node); 254 } 255 256 if( fabs(sum) < DBL_EPSILON ) 257 sum = 1; 258 scale = (float)(factor/sum); 259 260 for( node = cvInitSparseMatIterator( mat, &iterator ); 261 node != 0; node = cvGetNextSparseNode( &iterator )) 262 { 263 *(float*)CV_NODE_VAL(mat,node) *= scale; 264 } 265 } 266 267 __END__; 268 } 269 270 271 // Retrieves histogram global min, max and their positions 272 CV_IMPL void 273 cvGetMinMaxHistValue( const CvHistogram* hist, 274 float *value_min, float* value_max, 275 int* idx_min, int* idx_max ) 276 { 277 double minVal, maxVal; 278 279 CV_FUNCNAME( "cvGetMinMaxHistValue" ); 280 281 __BEGIN__; 282 283 int i, dims, size[CV_MAX_DIM]; 284 285 if( !CV_IS_HIST(hist) ) 286 CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); 287 288 dims = cvGetDims( hist->bins, size ); 289 290 if( !CV_IS_SPARSE_HIST(hist) ) 291 { 292 CvMat mat; 293 CvPoint minPt, maxPt; 294 295 CV_CALL( cvGetMat( hist->bins, &mat, 0, 1 )); 296 CV_CALL( cvMinMaxLoc( &mat, &minVal, &maxVal, &minPt, &maxPt )); 297 298 if( dims == 1 ) 299 { 300 if( idx_min ) 301 *idx_min = minPt.y + minPt.x; 302 if( idx_max ) 303 *idx_max = maxPt.y + maxPt.x; 304 } 305 else if( dims == 2 ) 306 { 307 if( idx_min ) 308 idx_min[0] = minPt.y, idx_min[1] = minPt.x; 309 if( idx_max ) 310 idx_max[0] = maxPt.y, idx_max[1] = maxPt.x; 311 } 312 else if( idx_min || idx_max ) 313 { 314 int imin = minPt.y*mat.cols + minPt.x; 315 int imax = maxPt.y*mat.cols + maxPt.x; 316 int i; 317 318 for( i = dims - 1; i >= 0; i-- ) 319 { 320 if( idx_min ) 321 { 322 int t = imin / size[i]; 323 idx_min[i] = imin - t*size[i]; 324 imin = t; 325 } 326 327 if( idx_max ) 328 { 329 int t = imax / size[i]; 330 idx_max[i] = imax - t*size[i]; 331 imax = t; 332 } 333 } 334 } 335 } 336 else 337 { 338 CvSparseMat* mat = (CvSparseMat*)hist->bins; 339 CvSparseMatIterator iterator; 340 CvSparseNode *node; 341 int minv = INT_MAX; 342 int maxv = INT_MIN; 343 CvSparseNode* minNode = 0; 344 CvSparseNode* maxNode = 0; 345 const int *_idx_min = 0, *_idx_max = 0; 346 Cv32suf m; 347 348 for( node = cvInitSparseMatIterator( mat, &iterator ); 349 node != 0; node = cvGetNextSparseNode( &iterator )) 350 { 351 int value = *(int*)CV_NODE_VAL(mat,node); 352 value = CV_TOGGLE_FLT(value); 353 if( value < minv ) 354 { 355 minv = value; 356 minNode = node; 357 } 358 359 if( value > maxv ) 360 { 361 maxv = value; 362 maxNode = node; 363 } 364 } 365 366 if( minNode ) 367 { 368 _idx_min = CV_NODE_IDX(mat,minNode); 369 _idx_max = CV_NODE_IDX(mat,maxNode); 370 m.i = CV_TOGGLE_FLT(minv); minVal = m.f; 371 m.i = CV_TOGGLE_FLT(maxv); maxVal = m.f; 372 } 373 else 374 { 375 minVal = maxVal = 0; 376 } 377 378 for( i = 0; i < dims; i++ ) 379 { 380 if( idx_min ) 381 idx_min[i] = _idx_min ? _idx_min[i] : -1; 382 if( idx_max ) 383 idx_max[i] = _idx_max ? _idx_max[i] : -1; 384 } 385 } 386 387 if( value_min ) 388 *value_min = (float)minVal; 389 390 if( value_max ) 391 *value_max = (float)maxVal; 392 393 __END__; 394 } 395 396 397 // Compares two histograms using one of a few methods 398 CV_IMPL double 399 cvCompareHist( const CvHistogram* hist1, 400 const CvHistogram* hist2, 401 int method ) 402 { 403 double _result = -1; 404 405 CV_FUNCNAME( "cvCompareHist" ); 406 407 __BEGIN__; 408 409 int i, dims1, dims2; 410 int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1; 411 double result = 0; 412 413 if( !CV_IS_HIST(hist1) || !CV_IS_HIST(hist2) ) 414 CV_ERROR( CV_StsBadArg, "Invalid histogram header[s]" ); 415 416 if( CV_IS_SPARSE_MAT(hist1->bins) != CV_IS_SPARSE_MAT(hist2->bins)) 417 CV_ERROR(CV_StsUnmatchedFormats, "One of histograms is sparse and other is not"); 418 419 CV_CALL( dims1 = cvGetDims( hist1->bins, size1 )); 420 CV_CALL( dims2 = cvGetDims( hist2->bins, size2 )); 421 422 if( dims1 != dims2 ) 423 CV_ERROR( CV_StsUnmatchedSizes, 424 "The histograms have different numbers of dimensions" ); 425 426 for( i = 0; i < dims1; i++ ) 427 { 428 if( size1[i] != size2[i] ) 429 CV_ERROR( CV_StsUnmatchedSizes, "The histograms have different sizes" ); 430 total *= size1[i]; 431 } 432 433 434 if( !CV_IS_SPARSE_MAT(hist1->bins)) 435 { 436 union { float* fl; uchar* ptr; } v; 437 float *ptr1, *ptr2; 438 v.fl = 0; 439 CV_CALL( cvGetRawData( hist1->bins, &v.ptr )); 440 ptr1 = v.fl; 441 CV_CALL( cvGetRawData( hist2->bins, &v.ptr )); 442 ptr2 = v.fl; 443 444 switch( method ) 445 { 446 case CV_COMP_CHISQR: 447 for( i = 0; i < total; i++ ) 448 { 449 double a = ptr1[i] - ptr2[i]; 450 double b = ptr1[i] + ptr2[i]; 451 if( fabs(b) > DBL_EPSILON ) 452 result += a*a/b; 453 } 454 break; 455 case CV_COMP_CORREL: 456 { 457 double s1 = 0, s11 = 0; 458 double s2 = 0, s22 = 0; 459 double s12 = 0; 460 double num, denom2, scale = 1./total; 461 462 for( i = 0; i < total; i++ ) 463 { 464 double a = ptr1[i]; 465 double b = ptr2[i]; 466 467 s12 += a*b; 468 s1 += a; 469 s11 += a*a; 470 s2 += b; 471 s22 += b*b; 472 } 473 474 num = s12 - s1*s2*scale; 475 denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); 476 result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1; 477 } 478 break; 479 case CV_COMP_INTERSECT: 480 for( i = 0; i < total; i++ ) 481 { 482 float a = ptr1[i]; 483 float b = ptr2[i]; 484 if( a <= b ) 485 result += a; 486 else 487 result += b; 488 } 489 break; 490 case CV_COMP_BHATTACHARYYA: 491 { 492 double s1 = 0, s2 = 0; 493 for( i = 0; i < total; i++ ) 494 { 495 double a = ptr1[i]; 496 double b = ptr2[i]; 497 result += sqrt(a*b); 498 s1 += a; 499 s2 += b; 500 } 501 s1 *= s2; 502 s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.; 503 result = 1. - result*s1; 504 result = sqrt(MAX(result,0.)); 505 } 506 break; 507 default: 508 CV_ERROR( CV_StsBadArg, "Unknown comparison method" ); 509 } 510 } 511 else 512 { 513 CvSparseMat* mat1 = (CvSparseMat*)(hist1->bins); 514 CvSparseMat* mat2 = (CvSparseMat*)(hist2->bins); 515 CvSparseMatIterator iterator; 516 CvSparseNode *node1, *node2; 517 518 if( mat1->heap->active_count > mat2->heap->active_count ) 519 { 520 CvSparseMat* t; 521 CV_SWAP( mat1, mat2, t ); 522 } 523 524 switch( method ) 525 { 526 case CV_COMP_CHISQR: 527 for( node1 = cvInitSparseMatIterator( mat1, &iterator ); 528 node1 != 0; node1 = cvGetNextSparseNode( &iterator )) 529 { 530 double v1 = *(float*)CV_NODE_VAL(mat1,node1); 531 uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); 532 if( !node2_data ) 533 result += v1; 534 else 535 { 536 double v2 = *(float*)node2_data; 537 double a = v1 - v2; 538 double b = v1 + v2; 539 if( fabs(b) > DBL_EPSILON ) 540 result += a*a/b; 541 } 542 } 543 544 for( node2 = cvInitSparseMatIterator( mat2, &iterator ); 545 node2 != 0; node2 = cvGetNextSparseNode( &iterator )) 546 { 547 double v2 = *(float*)CV_NODE_VAL(mat2,node2); 548 if( !cvPtrND( mat1, CV_NODE_IDX(mat2,node2), 0, 0, &node2->hashval )) 549 result += v2; 550 } 551 break; 552 case CV_COMP_CORREL: 553 { 554 double s1 = 0, s11 = 0; 555 double s2 = 0, s22 = 0; 556 double s12 = 0; 557 double num, denom2, scale = 1./total; 558 559 for( node1 = cvInitSparseMatIterator( mat1, &iterator ); 560 node1 != 0; node1 = cvGetNextSparseNode( &iterator )) 561 { 562 double v1 = *(float*)CV_NODE_VAL(mat1,node1); 563 uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 564 0, 0, &node1->hashval ); 565 if( node2_data ) 566 { 567 double v2 = *(float*)node2_data; 568 s12 += v1*v2; 569 } 570 s1 += v1; 571 s11 += v1*v1; 572 } 573 574 for( node2 = cvInitSparseMatIterator( mat2, &iterator ); 575 node2 != 0; node2 = cvGetNextSparseNode( &iterator )) 576 { 577 double v2 = *(float*)CV_NODE_VAL(mat2,node2); 578 s2 += v2; 579 s22 += v2*v2; 580 } 581 582 num = s12 - s1*s2*scale; 583 denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); 584 result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1; 585 } 586 break; 587 case CV_COMP_INTERSECT: 588 { 589 for( node1 = cvInitSparseMatIterator( mat1, &iterator ); 590 node1 != 0; node1 = cvGetNextSparseNode( &iterator )) 591 { 592 float v1 = *(float*)CV_NODE_VAL(mat1,node1); 593 uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 594 0, 0, &node1->hashval ); 595 if( node2_data ) 596 { 597 float v2 = *(float*)node2_data; 598 if( v1 <= v2 ) 599 result += v1; 600 else 601 result += v2; 602 } 603 } 604 } 605 break; 606 case CV_COMP_BHATTACHARYYA: 607 { 608 double s1 = 0, s2 = 0; 609 610 for( node1 = cvInitSparseMatIterator( mat1, &iterator ); 611 node1 != 0; node1 = cvGetNextSparseNode( &iterator )) 612 { 613 double v1 = *(float*)CV_NODE_VAL(mat1,node1); 614 uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 615 0, 0, &node1->hashval ); 616 s1 += v1; 617 if( node2_data ) 618 { 619 double v2 = *(float*)node2_data; 620 result += sqrt(v1 * v2); 621 } 622 } 623 624 for( node1 = cvInitSparseMatIterator( mat2, &iterator ); 625 node1 != 0; node1 = cvGetNextSparseNode( &iterator )) 626 { 627 double v2 = *(float*)CV_NODE_VAL(mat2,node1); 628 s2 += v2; 629 } 630 631 s1 *= s2; 632 s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.; 633 result = 1. - result*s1; 634 result = sqrt(MAX(result,0.)); 635 } 636 break; 637 default: 638 CV_ERROR( CV_StsBadArg, "Unknown comparison method" ); 639 } 640 } 641 642 _result = result; 643 644 __END__; 645 646 return _result; 647 } 648 649 // copies one histogram to another 650 CV_IMPL void 651 cvCopyHist( const CvHistogram* src, CvHistogram** _dst ) 652 { 653 CV_FUNCNAME( "cvCopyHist" ); 654 655 __BEGIN__; 656 657 int eq = 0; 658 int is_sparse; 659 int i, dims1, dims2; 660 int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1; 661 float* ranges[CV_MAX_DIM]; 662 float** thresh = 0; 663 CvHistogram* dst; 664 665 if( !_dst ) 666 CV_ERROR( CV_StsNullPtr, "Destination double pointer is NULL" ); 667 668 dst = *_dst; 669 670 if( !CV_IS_HIST(src) || (dst && !CV_IS_HIST(dst)) ) 671 CV_ERROR( CV_StsBadArg, "Invalid histogram header[s]" ); 672 673 is_sparse = CV_IS_SPARSE_MAT(src->bins); 674 CV_CALL( dims1 = cvGetDims( src->bins, size1 )); 675 for( i = 0; i < dims1; i++ ) 676 total *= size1[i]; 677 678 if( dst && is_sparse == CV_IS_SPARSE_MAT(dst->bins)) 679 { 680 CV_CALL( dims2 = cvGetDims( dst->bins, size2 )); 681 682 if( dims1 == dims2 ) 683 { 684 for( i = 0; i < dims1; i++ ) 685 if( size1[i] != size2[i] ) 686 break; 687 } 688 689 eq = i == dims1; 690 } 691 692 if( !eq ) 693 { 694 cvReleaseHist( _dst ); 695 CV_CALL( dst = cvCreateHist( dims1, size1, 696 !is_sparse ? CV_HIST_ARRAY : CV_HIST_SPARSE, 0, 0 )); 697 *_dst = dst; 698 } 699 700 if( CV_HIST_HAS_RANGES( src )) 701 { 702 if( CV_IS_UNIFORM_HIST( src )) 703 { 704 for( i = 0; i < dims1; i++ ) 705 ranges[i] = (float*)src->thresh[i]; 706 thresh = ranges; 707 } 708 else 709 thresh = src->thresh2; 710 CV_CALL( cvSetHistBinRanges( dst, thresh, CV_IS_UNIFORM_HIST(src))); 711 } 712 713 CV_CALL( cvCopy( src->bins, dst->bins )); 714 715 __END__; 716 } 717 718 719 // Sets a value range for every histogram bin 720 CV_IMPL void 721 cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform ) 722 { 723 CV_FUNCNAME( "cvSetHistBinRanges" ); 724 725 __BEGIN__; 726 727 int dims, size[CV_MAX_DIM], total = 0; 728 int i, j; 729 730 if( !ranges ) 731 CV_ERROR( CV_StsNullPtr, "NULL ranges pointer" ); 732 733 if( !CV_IS_HIST(hist) ) 734 CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); 735 736 CV_CALL( dims = cvGetDims( hist->bins, size )); 737 for( i = 0; i < dims; i++ ) 738 total += size[i]+1; 739 740 if( uniform ) 741 { 742 for( i = 0; i < dims; i++ ) 743 { 744 if( !ranges[i] ) 745 CV_ERROR( CV_StsNullPtr, "One of <ranges> elements is NULL" ); 746 hist->thresh[i][0] = ranges[i][0]; 747 hist->thresh[i][1] = ranges[i][1]; 748 } 749 750 hist->type |= CV_HIST_UNIFORM_FLAG + CV_HIST_RANGES_FLAG; 751 } 752 else 753 { 754 float* dim_ranges; 755 756 if( !hist->thresh2 ) 757 { 758 CV_CALL( hist->thresh2 = (float**)cvAlloc( 759 dims*sizeof(hist->thresh2[0])+ 760 total*sizeof(hist->thresh2[0][0]))); 761 } 762 dim_ranges = (float*)(hist->thresh2 + dims); 763 764 for( i = 0; i < dims; i++ ) 765 { 766 float val0 = -FLT_MAX; 767 768 if( !ranges[i] ) 769 CV_ERROR( CV_StsNullPtr, "One of <ranges> elements is NULL" ); 770 771 for( j = 0; j <= size[i]; j++ ) 772 { 773 float val = ranges[i][j]; 774 if( val <= val0 ) 775 CV_ERROR(CV_StsOutOfRange, "Bin ranges should go in ascenting order"); 776 val0 = dim_ranges[j] = val; 777 } 778 779 hist->thresh2[i] = dim_ranges; 780 dim_ranges += size[i] + 1; 781 } 782 783 hist->type |= CV_HIST_RANGES_FLAG; 784 hist->type &= ~CV_HIST_UNIFORM_FLAG; 785 } 786 787 __END__; 788 } 789 790 791 #define ICV_HIST_DUMMY_IDX (INT_MIN/3) 792 793 static CvStatus 794 icvCalcHistLookupTables8u( const CvHistogram* hist, int dims, int* size, int* tab ) 795 { 796 const int lo = 0, hi = 256; 797 int is_sparse = CV_IS_SPARSE_HIST( hist ); 798 int have_range = CV_HIST_HAS_RANGES(hist); 799 int i, j; 800 801 if( !have_range || CV_IS_UNIFORM_HIST(hist)) 802 { 803 for( i = 0; i < dims; i++ ) 804 { 805 double a = have_range ? hist->thresh[i][0] : 0; 806 double b = have_range ? hist->thresh[i][1] : 256; 807 int sz = size[i]; 808 double scale = sz/(b - a); 809 int step = 1; 810 811 if( !is_sparse ) 812 step = ((CvMatND*)(hist->bins))->dim[i].step/sizeof(float); 813 814 for( j = lo; j < hi; j++ ) 815 { 816 int idx = cvFloor((j - a)*scale); 817 if( (unsigned)idx < (unsigned)sz ) 818 idx *= step; 819 else 820 idx = ICV_HIST_DUMMY_IDX; 821 822 tab[i*(hi - lo) + j - lo] = idx; 823 } 824 } 825 } 826 else 827 { 828 for( i = 0; i < dims; i++ ) 829 { 830 double limit = hist->thresh2[i][0]; 831 int idx = -1, write_idx = ICV_HIST_DUMMY_IDX, sz = size[i]; 832 int step = 1; 833 834 if( !is_sparse ) 835 step = ((CvMatND*)(hist->bins))->dim[i].step/sizeof(float); 836 837 if( limit > hi ) 838 limit = hi; 839 840 j = lo; 841 for(;;) 842 { 843 for( ; j < limit; j++ ) 844 tab[i*(hi - lo) + j - lo] = write_idx; 845 846 if( (unsigned)(++idx) < (unsigned)sz ) 847 { 848 limit = hist->thresh2[i][idx+1]; 849 if( limit > hi ) 850 limit = hi; 851 write_idx = idx*step; 852 } 853 else 854 { 855 for( ; j < hi; j++ ) 856 tab[i*(hi - lo) + j - lo] = ICV_HIST_DUMMY_IDX; 857 break; 858 } 859 } 860 } 861 } 862 863 return CV_OK; 864 } 865 866 867 /***************************** C A L C H I S T O G R A M *************************/ 868 869 // Calculates histogram for one or more 8u arrays 870 static CvStatus CV_STDCALL 871 icvCalcHist_8u_C1R( uchar** img, int step, uchar* mask, int maskStep, 872 CvSize size, CvHistogram* hist ) 873 { 874 int* tab; 875 int is_sparse = CV_IS_SPARSE_HIST(hist); 876 int dims, histsize[CV_MAX_DIM]; 877 int i, x; 878 CvStatus status; 879 880 dims = cvGetDims( hist->bins, histsize ); 881 882 tab = (int*)cvStackAlloc( dims*256*sizeof(int)); 883 status = icvCalcHistLookupTables8u( hist, dims, histsize, tab ); 884 885 if( status < 0 ) 886 return status; 887 888 if( !is_sparse ) 889 { 890 int total = 1; 891 int* bins = ((CvMatND*)(hist->bins))->data.i; 892 893 for( i = 0; i < dims; i++ ) 894 total *= histsize[i]; 895 896 if( dims <= 3 && total >= -ICV_HIST_DUMMY_IDX ) 897 return CV_BADSIZE_ERR; // too big histogram 898 899 switch( dims ) 900 { 901 case 1: 902 { 903 int tab1d[256]; 904 memset( tab1d, 0, sizeof(tab1d)); 905 906 for( ; size.height--; img[0] += step ) 907 { 908 uchar* ptr = img[0]; 909 if( !mask ) 910 { 911 for( x = 0; x <= size.width - 4; x += 4 ) 912 { 913 int v0 = ptr[x]; 914 int v1 = ptr[x+1]; 915 916 tab1d[v0]++; 917 tab1d[v1]++; 918 919 v0 = ptr[x+2]; 920 v1 = ptr[x+3]; 921 922 tab1d[v0]++; 923 tab1d[v1]++; 924 } 925 926 for( ; x < size.width; x++ ) 927 tab1d[ptr[x]]++; 928 } 929 else 930 { 931 for( x = 0; x < size.width; x++ ) 932 if( mask[x] ) 933 tab1d[ptr[x]]++; 934 mask += maskStep; 935 } 936 } 937 938 for( i = 0; i < 256; i++ ) 939 { 940 int idx = tab[i]; 941 if( idx >= 0 ) 942 bins[idx] += tab1d[i]; 943 } 944 } 945 break; 946 case 2: 947 for( ; size.height--; img[0] += step, img[1] += step ) 948 { 949 uchar* ptr0 = img[0]; 950 uchar* ptr1 = img[1]; 951 if( !mask ) 952 { 953 for( x = 0; x < size.width; x++ ) 954 { 955 int v0 = ptr0[x]; 956 int v1 = ptr1[x]; 957 int idx = tab[v0] + tab[256+v1]; 958 959 if( idx >= 0 ) 960 bins[idx]++; 961 } 962 } 963 else 964 { 965 for( x = 0; x < size.width; x++ ) 966 { 967 if( mask[x] ) 968 { 969 int v0 = ptr0[x]; 970 int v1 = ptr1[x]; 971 972 int idx = tab[v0] + tab[256+v1]; 973 974 if( idx >= 0 ) 975 bins[idx]++; 976 } 977 } 978 mask += maskStep; 979 } 980 } 981 break; 982 case 3: 983 for( ; size.height--; img[0] += step, img[1] += step, img[2] += step ) 984 { 985 uchar* ptr0 = img[0]; 986 uchar* ptr1 = img[1]; 987 uchar* ptr2 = img[2]; 988 if( !mask ) 989 { 990 for( x = 0; x < size.width; x++ ) 991 { 992 int v0 = ptr0[x]; 993 int v1 = ptr1[x]; 994 int v2 = ptr2[x]; 995 int idx = tab[v0] + tab[256+v1] + tab[512+v2]; 996 997 if( idx >= 0 ) 998 bins[idx]++; 999 } 1000 } 1001 else 1002 { 1003 for( x = 0; x < size.width; x++ ) 1004 { 1005 if( mask[x] ) 1006 { 1007 int v0 = ptr0[x]; 1008 int v1 = ptr1[x]; 1009 int v2 = ptr2[x]; 1010 int idx = tab[v0] + tab[256+v1] + tab[512+v2]; 1011 1012 if( idx >= 0 ) 1013 bins[idx]++; 1014 } 1015 } 1016 mask += maskStep; 1017 } 1018 } 1019 break; 1020 default: 1021 for( ; size.height--; ) 1022 { 1023 if( !mask ) 1024 { 1025 for( x = 0; x < size.width; x++ ) 1026 { 1027 int* binptr = bins; 1028 for( i = 0; i < dims; i++ ) 1029 { 1030 int idx = tab[i*256 + img[i][x]]; 1031 if( idx < 0 ) 1032 break; 1033 binptr += idx; 1034 } 1035 if( i == dims ) 1036 binptr[0]++; 1037 } 1038 } 1039 else 1040 { 1041 for( x = 0; x < size.width; x++ ) 1042 { 1043 if( mask[x] ) 1044 { 1045 int* binptr = bins; 1046 for( i = 0; i < dims; i++ ) 1047 { 1048 int idx = tab[i*256 + img[i][x]]; 1049 if( idx < 0 ) 1050 break; 1051 binptr += idx; 1052 } 1053 if( i == dims ) 1054 binptr[0]++; 1055 } 1056 } 1057 mask += maskStep; 1058 } 1059 1060 for( i = 0; i < dims; i++ ) 1061 img[i] += step; 1062 } 1063 } 1064 } 1065 else 1066 { 1067 CvSparseMat* mat = (CvSparseMat*)(hist->bins); 1068 int node_idx[CV_MAX_DIM]; 1069 1070 for( ; size.height--; ) 1071 { 1072 if( !mask ) 1073 { 1074 for( x = 0; x < size.width; x++ ) 1075 { 1076 for( i = 0; i < dims; i++ ) 1077 { 1078 int idx = tab[i*256 + img[i][x]]; 1079 if( idx < 0 ) 1080 break; 1081 node_idx[i] = idx; 1082 } 1083 if( i == dims ) 1084 { 1085 int* bin = (int*)cvPtrND( mat, node_idx, 0, 1 ); 1086 bin[0]++; 1087 } 1088 } 1089 } 1090 else 1091 { 1092 for( x = 0; x < size.width; x++ ) 1093 { 1094 if( mask[x] ) 1095 { 1096 for( i = 0; i < dims; i++ ) 1097 { 1098 int idx = tab[i*256 + img[i][x]]; 1099 if( idx < 0 ) 1100 break; 1101 node_idx[i] = idx; 1102 } 1103 if( i == dims ) 1104 { 1105 int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 ); 1106 bin[0]++; 1107 } 1108 } 1109 } 1110 mask += maskStep; 1111 } 1112 1113 for( i = 0; i < dims; i++ ) 1114 img[i] += step; 1115 } 1116 } 1117 1118 return CV_OK; 1119 } 1120 1121 1122 // Calculates histogram for one or more 32f arrays 1123 static CvStatus CV_STDCALL 1124 icvCalcHist_32f_C1R( float** img, int step, uchar* mask, int maskStep, 1125 CvSize size, CvHistogram* hist ) 1126 { 1127 int is_sparse = CV_IS_SPARSE_HIST(hist); 1128 int uniform = CV_IS_UNIFORM_HIST(hist); 1129 int dims, histsize[CV_MAX_DIM]; 1130 double uni_range[CV_MAX_DIM][2]; 1131 int i, x; 1132 1133 dims = cvGetDims( hist->bins, histsize ); 1134 step /= sizeof(img[0][0]); 1135 1136 if( uniform ) 1137 { 1138 for( i = 0; i < dims; i++ ) 1139 { 1140 double t = histsize[i]/((double)hist->thresh[i][1] - hist->thresh[i][0]); 1141 uni_range[i][0] = t; 1142 uni_range[i][1] = -t*hist->thresh[i][0]; 1143 } 1144 } 1145 1146 if( !is_sparse ) 1147 { 1148 CvMatND* mat = (CvMatND*)(hist->bins); 1149 int* bins = mat->data.i; 1150 1151 if( uniform ) 1152 { 1153 switch( dims ) 1154 { 1155 case 1: 1156 { 1157 double a = uni_range[0][0], b = uni_range[0][1]; 1158 int sz = histsize[0]; 1159 1160 for( ; size.height--; img[0] += step ) 1161 { 1162 float* ptr = img[0]; 1163 1164 if( !mask ) 1165 { 1166 for( x = 0; x <= size.width - 4; x += 4 ) 1167 { 1168 int v0 = cvFloor(ptr[x]*a + b); 1169 int v1 = cvFloor(ptr[x+1]*a + b); 1170 1171 if( (unsigned)v0 < (unsigned)sz ) 1172 bins[v0]++; 1173 if( (unsigned)v1 < (unsigned)sz ) 1174 bins[v1]++; 1175 1176 v0 = cvFloor(ptr[x+2]*a + b); 1177 v1 = cvFloor(ptr[x+3]*a + b); 1178 1179 if( (unsigned)v0 < (unsigned)sz ) 1180 bins[v0]++; 1181 if( (unsigned)v1 < (unsigned)sz ) 1182 bins[v1]++; 1183 } 1184 1185 for( ; x < size.width; x++ ) 1186 { 1187 int v0 = cvFloor(ptr[x]*a + b); 1188 if( (unsigned)v0 < (unsigned)sz ) 1189 bins[v0]++; 1190 } 1191 } 1192 else 1193 { 1194 for( x = 0; x < size.width; x++ ) 1195 if( mask[x] ) 1196 { 1197 int v0 = cvFloor(ptr[x]*a + b); 1198 if( (unsigned)v0 < (unsigned)sz ) 1199 bins[v0]++; 1200 } 1201 mask += maskStep; 1202 } 1203 } 1204 } 1205 break; 1206 case 2: 1207 { 1208 double a0 = uni_range[0][0], b0 = uni_range[0][1]; 1209 double a1 = uni_range[1][0], b1 = uni_range[1][1]; 1210 int sz0 = histsize[0], sz1 = histsize[1]; 1211 int step0 = ((CvMatND*)(hist->bins))->dim[0].step/sizeof(float); 1212 1213 for( ; size.height--; img[0] += step, img[1] += step ) 1214 { 1215 float* ptr0 = img[0]; 1216 float* ptr1 = img[1]; 1217 1218 if( !mask ) 1219 { 1220 for( x = 0; x < size.width; x++ ) 1221 { 1222 int v0 = cvFloor( ptr0[x]*a0 + b0 ); 1223 int v1 = cvFloor( ptr1[x]*a1 + b1 ); 1224 1225 if( (unsigned)v0 < (unsigned)sz0 && 1226 (unsigned)v1 < (unsigned)sz1 ) 1227 bins[v0*step0 + v1]++; 1228 } 1229 } 1230 else 1231 { 1232 for( x = 0; x < size.width; x++ ) 1233 { 1234 if( mask[x] ) 1235 { 1236 int v0 = cvFloor( ptr0[x]*a0 + b0 ); 1237 int v1 = cvFloor( ptr1[x]*a1 + b1 ); 1238 1239 if( (unsigned)v0 < (unsigned)sz0 && 1240 (unsigned)v1 < (unsigned)sz1 ) 1241 bins[v0*step0 + v1]++; 1242 } 1243 } 1244 mask += maskStep; 1245 } 1246 } 1247 } 1248 break; 1249 default: 1250 for( ; size.height--; ) 1251 { 1252 if( !mask ) 1253 { 1254 for( x = 0; x < size.width; x++ ) 1255 { 1256 int* binptr = bins; 1257 for( i = 0; i < dims; i++ ) 1258 { 1259 int idx = cvFloor((double)img[i][x]*uni_range[i][0] 1260 + uni_range[i][1]); 1261 if( (unsigned)idx >= (unsigned)histsize[i] ) 1262 break; 1263 binptr += idx*(mat->dim[i].step/sizeof(float)); 1264 } 1265 if( i == dims ) 1266 binptr[0]++; 1267 } 1268 } 1269 else 1270 { 1271 for( x = 0; x < size.width; x++ ) 1272 { 1273 if( mask[x] ) 1274 { 1275 int* binptr = bins; 1276 for( i = 0; i < dims; i++ ) 1277 { 1278 int idx = cvFloor((double)img[i][x]*uni_range[i][0] 1279 + uni_range[i][1]); 1280 if( (unsigned)idx >= (unsigned)histsize[i] ) 1281 break; 1282 binptr += idx*(mat->dim[i].step/sizeof(float)); 1283 } 1284 if( i == dims ) 1285 binptr[0]++; 1286 } 1287 } 1288 mask += maskStep; 1289 } 1290 1291 for( i = 0; i < dims; i++ ) 1292 img[i] += step; 1293 } 1294 } 1295 } 1296 else 1297 { 1298 for( ; size.height--; ) 1299 { 1300 for( x = 0; x < size.width; x++ ) 1301 { 1302 if( !mask || mask[x] ) 1303 { 1304 int* binptr = bins; 1305 for( i = 0; i < dims; i++ ) 1306 { 1307 float v = img[i][x]; 1308 float* thresh = hist->thresh2[i]; 1309 int idx = -1, sz = histsize[i]; 1310 1311 while( v >= thresh[idx+1] && ++idx < sz ) 1312 /* nop */; 1313 1314 if( (unsigned)idx >= (unsigned)sz ) 1315 break; 1316 1317 binptr += idx*(mat->dim[i].step/sizeof(float)); 1318 } 1319 if( i == dims ) 1320 binptr[0]++; 1321 } 1322 } 1323 1324 for( i = 0; i < dims; i++ ) 1325 img[i] += step; 1326 if( mask ) 1327 mask += maskStep; 1328 } 1329 } 1330 } 1331 else 1332 { 1333 CvSparseMat* mat = (CvSparseMat*)(hist->bins); 1334 int node_idx[CV_MAX_DIM]; 1335 1336 for( ; size.height--; ) 1337 { 1338 if( uniform ) 1339 { 1340 for( x = 0; x < size.width; x++ ) 1341 { 1342 if( !mask || mask[x] ) 1343 { 1344 for( i = 0; i < dims; i++ ) 1345 { 1346 int idx = cvFloor(img[i][x]*uni_range[i][0] 1347 + uni_range[i][1]); 1348 if( (unsigned)idx >= (unsigned)histsize[i] ) 1349 break; 1350 node_idx[i] = idx; 1351 } 1352 if( i == dims ) 1353 { 1354 int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 ); 1355 bin[0]++; 1356 } 1357 } 1358 } 1359 } 1360 else 1361 { 1362 for( x = 0; x < size.width; x++ ) 1363 { 1364 if( !mask || mask[x] ) 1365 { 1366 for( i = 0; i < dims; i++ ) 1367 { 1368 float v = img[i][x]; 1369 float* thresh = hist->thresh2[i]; 1370 int idx = -1, sz = histsize[i]; 1371 1372 while( v >= thresh[idx+1] && ++idx < sz ) 1373 /* nop */; 1374 1375 if( (unsigned)idx >= (unsigned)sz ) 1376 break; 1377 1378 node_idx[i] = idx; 1379 } 1380 if( i == dims ) 1381 { 1382 int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 ); 1383 bin[0]++; 1384 } 1385 } 1386 } 1387 } 1388 1389 for( i = 0; i < dims; i++ ) 1390 img[i] += step; 1391 1392 if( mask ) 1393 mask += maskStep; 1394 } 1395 } 1396 1397 return CV_OK; 1398 } 1399 1400 1401 CV_IMPL void 1402 cvCalcArrHist( CvArr** img, CvHistogram* hist, 1403 int do_not_clear, const CvArr* mask ) 1404 { 1405 CV_FUNCNAME( "cvCalcHist" ); 1406 1407 __BEGIN__; 1408 1409 uchar* ptr[CV_MAX_DIM]; 1410 uchar* maskptr = 0; 1411 int maskstep = 0, step = 0; 1412 int i, dims; 1413 int cont_flag = -1; 1414 CvMat stub0, *mat0 = 0; 1415 CvMatND dense; 1416 CvSize size; 1417 1418 if( !CV_IS_HIST(hist)) 1419 CV_ERROR( CV_StsBadArg, "Bad histogram pointer" ); 1420 1421 if( !img ) 1422 CV_ERROR( CV_StsNullPtr, "Null double array pointer" ); 1423 1424 CV_CALL( dims = cvGetDims( hist->bins )); 1425 1426 for( i = 0; i < dims; i++ ) 1427 { 1428 CvMat stub, *mat = (CvMat*)img[i]; 1429 CV_CALL( mat = cvGetMat( mat, i == 0 ? &stub0 : &stub, 0, 1 )); 1430 1431 if( CV_MAT_CN( mat->type ) != 1 ) 1432 CV_ERROR( CV_BadNumChannels, "Only 1-channel arrays are allowed here" ); 1433 1434 if( i == 0 ) 1435 { 1436 mat0 = mat; 1437 step = mat0->step; 1438 } 1439 else 1440 { 1441 if( !CV_ARE_SIZES_EQ( mat0, mat )) 1442 CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal sizes" ); 1443 1444 if( mat0->step != mat->step ) 1445 CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal steps" ); 1446 1447 if( !CV_ARE_TYPES_EQ( mat0, mat )) 1448 CV_ERROR( CV_StsUnmatchedFormats, "Not all the planes have equal types" ); 1449 } 1450 1451 cont_flag &= mat->type; 1452 ptr[i] = mat->data.ptr; 1453 } 1454 1455 if( mask ) 1456 { 1457 CvMat stub, *mat = (CvMat*)mask; 1458 CV_CALL( mat = cvGetMat( mat, &stub, 0, 1 )); 1459 1460 if( !CV_IS_MASK_ARR(mat)) 1461 CV_ERROR( CV_StsBadMask, "Bad mask array" ); 1462 1463 if( !CV_ARE_SIZES_EQ( mat0, mat )) 1464 CV_ERROR( CV_StsUnmatchedSizes, 1465 "Mask size does not match to other arrays\' size" ); 1466 maskptr = mat->data.ptr; 1467 maskstep = mat->step; 1468 cont_flag &= mat->type; 1469 } 1470 1471 size = cvGetMatSize(mat0); 1472 if( CV_IS_MAT_CONT( cont_flag )) 1473 { 1474 size.width *= size.height; 1475 size.height = 1; 1476 maskstep = step = CV_STUB_STEP; 1477 } 1478 1479 if( !CV_IS_SPARSE_HIST(hist)) 1480 { 1481 dense = *(CvMatND*)hist->bins; 1482 dense.type = (dense.type & ~CV_MAT_TYPE_MASK) | CV_32SC1; 1483 } 1484 1485 if( !do_not_clear ) 1486 { 1487 CV_CALL( cvZero( hist->bins )); 1488 } 1489 else if( !CV_IS_SPARSE_HIST(hist)) 1490 { 1491 CV_CALL( cvConvert( (CvMatND*)hist->bins, &dense )); 1492 } 1493 else 1494 { 1495 CvSparseMat* mat = (CvSparseMat*)(hist->bins); 1496 CvSparseMatIterator iterator; 1497 CvSparseNode* node; 1498 1499 for( node = cvInitSparseMatIterator( mat, &iterator ); 1500 node != 0; node = cvGetNextSparseNode( &iterator )) 1501 { 1502 Cv32suf* val = (Cv32suf*)CV_NODE_VAL( mat, node ); 1503 val->i = cvRound( val->f ); 1504 } 1505 } 1506 1507 if( CV_MAT_DEPTH(mat0->type) > CV_8S && !CV_HIST_HAS_RANGES(hist)) 1508 CV_ERROR( CV_StsBadArg, "histogram ranges must be set (via cvSetHistBinRanges) " 1509 "before calling the function" ); 1510 1511 switch( CV_MAT_DEPTH(mat0->type) ) 1512 { 1513 case CV_8U: 1514 IPPI_CALL( icvCalcHist_8u_C1R( ptr, step, maskptr, maskstep, size, hist )); 1515 break; 1516 case CV_32F: 1517 { 1518 union { uchar** ptr; float** fl; } v; 1519 v.ptr = ptr; 1520 IPPI_CALL( icvCalcHist_32f_C1R( v.fl, step, maskptr, maskstep, size, hist )); 1521 } 1522 break; 1523 default: 1524 CV_ERROR( CV_StsUnsupportedFormat, "Unsupported array type" ); 1525 } 1526 1527 if( !CV_IS_SPARSE_HIST(hist)) 1528 { 1529 CV_CALL( cvConvert( &dense, (CvMatND*)hist->bins )); 1530 } 1531 else 1532 { 1533 CvSparseMat* mat = (CvSparseMat*)(hist->bins); 1534 CvSparseMatIterator iterator; 1535 CvSparseNode* node; 1536 1537 for( node = cvInitSparseMatIterator( mat, &iterator ); 1538 node != 0; node = cvGetNextSparseNode( &iterator )) 1539 { 1540 Cv32suf* val = (Cv32suf*)CV_NODE_VAL( mat, node ); 1541 val->f = (float)val->i; 1542 } 1543 } 1544 1545 __END__; 1546 } 1547 1548 1549 /***************************** B A C K P R O J E C T *****************************/ 1550 1551 // Calculates back project for one or more 8u arrays 1552 static CvStatus CV_STDCALL 1553 icvCalcBackProject_8u_C1R( uchar** img, int step, uchar* dst, int dstStep, 1554 CvSize size, const CvHistogram* hist ) 1555 { 1556 const int small_hist_size = 1<<12; 1557 int* tab = 0; 1558 int is_sparse = CV_IS_SPARSE_HIST(hist); 1559 int dims, histsize[CV_MAX_DIM]; 1560 int i, x; 1561 CvStatus status; 1562 1563 dims = cvGetDims( hist->bins, histsize ); 1564 1565 tab = (int*)cvStackAlloc( dims*256*sizeof(int)); 1566 status = icvCalcHistLookupTables8u( hist, dims, histsize, tab ); 1567 if( status < 0 ) 1568 return status; 1569 1570 if( !is_sparse ) 1571 { 1572 int total = 1; 1573 CvMatND* mat = (CvMatND*)(hist->bins); 1574 float* bins = mat->data.fl; 1575 uchar* buffer = 0; 1576 1577 for( i = 0; i < dims; i++ ) 1578 total *= histsize[i]; 1579 1580 if( dims <= 3 && total >= -ICV_HIST_DUMMY_IDX ) 1581 return CV_BADSIZE_ERR; // too big histogram 1582 1583 if( dims > 1 && total <= small_hist_size && CV_IS_MAT_CONT(mat->type)) 1584 { 1585 buffer = (uchar*)cvAlloc(total); 1586 if( !buffer ) 1587 return CV_OUTOFMEM_ERR; 1588 for( i = 0; i < total; i++ ) 1589 { 1590 int v = cvRound(bins[i]); 1591 buffer[i] = CV_CAST_8U(v); 1592 } 1593 } 1594 1595 switch( dims ) 1596 { 1597 case 1: 1598 { 1599 uchar tab1d[256]; 1600 for( i = 0; i < 256; i++ ) 1601 { 1602 int idx = tab[i]; 1603 if( idx >= 0 ) 1604 { 1605 int v = cvRound(bins[idx]); 1606 tab1d[i] = CV_CAST_8U(v); 1607 } 1608 else 1609 tab1d[i] = 0; 1610 } 1611 1612 for( ; size.height--; img[0] += step, dst += dstStep ) 1613 { 1614 uchar* ptr = img[0]; 1615 for( x = 0; x <= size.width - 4; x += 4 ) 1616 { 1617 uchar v0 = tab1d[ptr[x]]; 1618 uchar v1 = tab1d[ptr[x+1]]; 1619 1620 dst[x] = v0; 1621 dst[x+1] = v1; 1622 1623 v0 = tab1d[ptr[x+2]]; 1624 v1 = tab1d[ptr[x+3]]; 1625 1626 dst[x+2] = v0; 1627 dst[x+3] = v1; 1628 } 1629 1630 for( ; x < size.width; x++ ) 1631 dst[x] = tab1d[ptr[x]]; 1632 } 1633 } 1634 break; 1635 case 2: 1636 for( ; size.height--; img[0] += step, img[1] += step, dst += dstStep ) 1637 { 1638 uchar* ptr0 = img[0]; 1639 uchar* ptr1 = img[1]; 1640 1641 if( buffer ) 1642 { 1643 for( x = 0; x < size.width; x++ ) 1644 { 1645 int v0 = ptr0[x]; 1646 int v1 = ptr1[x]; 1647 int idx = tab[v0] + tab[256+v1]; 1648 int v = 0; 1649 1650 if( idx >= 0 ) 1651 v = buffer[idx]; 1652 1653 dst[x] = (uchar)v; 1654 } 1655 } 1656 else 1657 { 1658 for( x = 0; x < size.width; x++ ) 1659 { 1660 int v0 = ptr0[x]; 1661 int v1 = ptr1[x]; 1662 int idx = tab[v0] + tab[256+v1]; 1663 int v = 0; 1664 1665 if( idx >= 0 ) 1666 { 1667 v = cvRound(bins[idx]); 1668 v = CV_CAST_8U(v); 1669 } 1670 1671 dst[x] = (uchar)v; 1672 } 1673 } 1674 } 1675 break; 1676 case 3: 1677 for( ; size.height--; img[0] += step, img[1] += step, 1678 img[2] += step, dst += dstStep ) 1679 { 1680 uchar* ptr0 = img[0]; 1681 uchar* ptr1 = img[1]; 1682 uchar* ptr2 = img[2]; 1683 1684 if( buffer ) 1685 { 1686 for( x = 0; x < size.width; x++ ) 1687 { 1688 int v0 = ptr0[x]; 1689 int v1 = ptr1[x]; 1690 int v2 = ptr2[x]; 1691 int idx = tab[v0] + tab[256+v1] + tab[512+v2]; 1692 int v = 0; 1693 1694 if( idx >= 0 ) 1695 v = buffer[idx]; 1696 1697 dst[x] = (uchar)v; 1698 } 1699 } 1700 else 1701 { 1702 for( x = 0; x < size.width; x++ ) 1703 { 1704 int v0 = ptr0[x]; 1705 int v1 = ptr1[x]; 1706 int v2 = ptr2[x]; 1707 int idx = tab[v0] + tab[256+v1] + tab[512+v2]; 1708 int v = 0; 1709 1710 if( idx >= 0 ) 1711 { 1712 v = cvRound(bins[idx]); 1713 v = CV_CAST_8U(v); 1714 } 1715 dst[x] = (uchar)v; 1716 } 1717 } 1718 } 1719 break; 1720 default: 1721 for( ; size.height--; dst += dstStep ) 1722 { 1723 if( buffer ) 1724 { 1725 for( x = 0; x < size.width; x++ ) 1726 { 1727 uchar* binptr = buffer; 1728 int v = 0; 1729 1730 for( i = 0; i < dims; i++ ) 1731 { 1732 int idx = tab[i*256 + img[i][x]]; 1733 if( idx < 0 ) 1734 break; 1735 binptr += idx; 1736 } 1737 1738 if( i == dims ) 1739 v = binptr[0]; 1740 1741 dst[x] = (uchar)v; 1742 } 1743 } 1744 else 1745 { 1746 for( x = 0; x < size.width; x++ ) 1747 { 1748 float* binptr = bins; 1749 int v = 0; 1750 1751 for( i = 0; i < dims; i++ ) 1752 { 1753 int idx = tab[i*256 + img[i][x]]; 1754 if( idx < 0 ) 1755 break; 1756 binptr += idx; 1757 } 1758 1759 if( i == dims ) 1760 { 1761 v = cvRound( binptr[0] ); 1762 v = CV_CAST_8U(v); 1763 } 1764 1765 dst[x] = (uchar)v; 1766 } 1767 } 1768 1769 for( i = 0; i < dims; i++ ) 1770 img[i] += step; 1771 } 1772 } 1773 1774 cvFree( &buffer ); 1775 } 1776 else 1777 { 1778 CvSparseMat* mat = (CvSparseMat*)(hist->bins); 1779 int node_idx[CV_MAX_DIM]; 1780 1781 for( ; size.height--; dst += dstStep ) 1782 { 1783 for( x = 0; x < size.width; x++ ) 1784 { 1785 int v = 0; 1786 1787 for( i = 0; i < dims; i++ ) 1788 { 1789 int idx = tab[i*256 + img[i][x]]; 1790 if( idx < 0 ) 1791 break; 1792 node_idx[i] = idx; 1793 } 1794 if( i == dims ) 1795 { 1796 float* bin = (float*)cvPtrND( mat, node_idx, 0, 1, 0 ); 1797 v = cvRound(bin[0]); 1798 v = CV_CAST_8U(v); 1799 } 1800 1801 dst[x] = (uchar)v; 1802 } 1803 1804 for( i = 0; i < dims; i++ ) 1805 img[i] += step; 1806 } 1807 } 1808 1809 return CV_OK; 1810 } 1811 1812 1813 // Calculates back project for one or more 32f arrays 1814 static CvStatus CV_STDCALL 1815 icvCalcBackProject_32f_C1R( float** img, int step, float* dst, int dstStep, 1816 CvSize size, const CvHistogram* hist ) 1817 { 1818 int is_sparse = CV_IS_SPARSE_HIST(hist); 1819 int uniform = CV_IS_UNIFORM_HIST(hist); 1820 int dims, histsize[CV_MAX_DIM]; 1821 double uni_range[CV_MAX_DIM][2]; 1822 int i, x; 1823 1824 dims = cvGetDims( hist->bins, histsize ); 1825 step /= sizeof(img[0][0]); 1826 dstStep /= sizeof(dst[0]); 1827 1828 if( uniform ) 1829 { 1830 for( i = 0; i < dims; i++ ) 1831 { 1832 double t = ((double)histsize[i])/ 1833 ((double)hist->thresh[i][1] - hist->thresh[i][0]); 1834 uni_range[i][0] = t; 1835 uni_range[i][1] = -t*hist->thresh[i][0]; 1836 } 1837 } 1838 1839 if( !is_sparse ) 1840 { 1841 CvMatND* mat = (CvMatND*)(hist->bins); 1842 float* bins = mat->data.fl; 1843 1844 if( uniform ) 1845 { 1846 switch( dims ) 1847 { 1848 case 1: 1849 { 1850 double a = uni_range[0][0], b = uni_range[0][1]; 1851 int sz = histsize[0]; 1852 1853 for( ; size.height--; img[0] += step, dst += dstStep ) 1854 { 1855 float* ptr = img[0]; 1856 1857 for( x = 0; x <= size.width - 4; x += 4 ) 1858 { 1859 int v0 = cvFloor(ptr[x]*a + b); 1860 int v1 = cvFloor(ptr[x+1]*a + b); 1861 1862 if( (unsigned)v0 < (unsigned)sz ) 1863 dst[x] = bins[v0]; 1864 else 1865 dst[x] = 0; 1866 1867 if( (unsigned)v1 < (unsigned)sz ) 1868 dst[x+1] = bins[v1]; 1869 else 1870 dst[x+1] = 0; 1871 1872 v0 = cvFloor(ptr[x+2]*a + b); 1873 v1 = cvFloor(ptr[x+3]*a + b); 1874 1875 if( (unsigned)v0 < (unsigned)sz ) 1876 dst[x+2] = bins[v0]; 1877 else 1878 dst[x+2] = 0; 1879 1880 if( (unsigned)v1 < (unsigned)sz ) 1881 dst[x+3] = bins[v1]; 1882 else 1883 dst[x+3] = 0; 1884 } 1885 1886 for( ; x < size.width; x++ ) 1887 { 1888 int v0 = cvFloor(ptr[x]*a + b); 1889 1890 if( (unsigned)v0 < (unsigned)sz ) 1891 dst[x] = bins[v0]; 1892 else 1893 dst[x] = 0; 1894 } 1895 } 1896 } 1897 break; 1898 case 2: 1899 { 1900 double a0 = uni_range[0][0], b0 = uni_range[0][1]; 1901 double a1 = uni_range[1][0], b1 = uni_range[1][1]; 1902 int sz0 = histsize[0], sz1 = histsize[1]; 1903 int step0 = ((CvMatND*)(hist->bins))->dim[0].step/sizeof(float); 1904 1905 for( ; size.height--; img[0] += step, img[1] += step, dst += dstStep ) 1906 { 1907 float* ptr0 = img[0]; 1908 float* ptr1 = img[1]; 1909 1910 for( x = 0; x < size.width; x++ ) 1911 { 1912 int v0 = cvFloor( ptr0[x]*a0 + b0 ); 1913 int v1 = cvFloor( ptr1[x]*a1 + b1 ); 1914 1915 if( (unsigned)v0 < (unsigned)sz0 && 1916 (unsigned)v1 < (unsigned)sz1 ) 1917 dst[x] = bins[v0*step0 + v1]; 1918 else 1919 dst[x] = 0; 1920 } 1921 } 1922 } 1923 break; 1924 default: 1925 for( ; size.height--; dst += dstStep ) 1926 { 1927 for( x = 0; x < size.width; x++ ) 1928 { 1929 float* binptr = bins; 1930 1931 for( i = 0; i < dims; i++ ) 1932 { 1933 int idx = cvFloor(img[i][x]*uni_range[i][0] 1934 + uni_range[i][1]); 1935 if( (unsigned)idx >= (unsigned)histsize[i] ) 1936 break; 1937 binptr += idx*(mat->dim[i].step/sizeof(float)); 1938 } 1939 if( i == dims ) 1940 dst[x] = binptr[0]; 1941 else 1942 dst[x] = 0; 1943 } 1944 } 1945 1946 for( i = 0; i < dims; i++ ) 1947 img[i] += step; 1948 } 1949 } 1950 else 1951 { 1952 for( ; size.height--; dst += dstStep ) 1953 { 1954 for( x = 0; x < size.width; x++ ) 1955 { 1956 float* binptr = bins; 1957 for( i = 0; i < dims; i++ ) 1958 { 1959 float v = img[i][x]; 1960 float* thresh = hist->thresh2[i]; 1961 int idx = -1, sz = histsize[i]; 1962 1963 while( v >= thresh[idx+1] && ++idx < sz ) 1964 /* nop */; 1965 1966 if( (unsigned)idx >= (unsigned)sz ) 1967 break; 1968 1969 binptr += idx*(mat->dim[i].step/sizeof(float)); 1970 } 1971 if( i == dims ) 1972 dst[x] = binptr[0]; 1973 else 1974 dst[x] = 0; 1975 } 1976 1977 for( i = 0; i < dims; i++ ) 1978 img[i] += step; 1979 } 1980 } 1981 } 1982 else 1983 { 1984 CvSparseMat* mat = (CvSparseMat*)(hist->bins); 1985 int node_idx[CV_MAX_DIM]; 1986 1987 for( ; size.height--; dst += dstStep ) 1988 { 1989 if( uniform ) 1990 { 1991 for( x = 0; x < size.width; x++ ) 1992 { 1993 for( i = 0; i < dims; i++ ) 1994 { 1995 int idx = cvFloor(img[i][x]*uni_range[i][0] 1996 + uni_range[i][1]); 1997 if( (unsigned)idx >= (unsigned)histsize[i] ) 1998 break; 1999 node_idx[i] = idx; 2000 } 2001 if( i == dims ) 2002 { 2003 float* bin = (float*)cvPtrND( mat, node_idx, 0, 1, 0 ); 2004 dst[x] = bin[0]; 2005 } 2006 else 2007 dst[x] = 0; 2008 } 2009 } 2010 else 2011 { 2012 for( x = 0; x < size.width; x++ ) 2013 { 2014 for( i = 0; i < dims; i++ ) 2015 { 2016 float v = img[i][x]; 2017 float* thresh = hist->thresh2[i]; 2018 int idx = -1, sz = histsize[i]; 2019 2020 while( v >= thresh[idx+1] && ++idx < sz ) 2021 /* nop */; 2022 2023 if( (unsigned)idx >= (unsigned)sz ) 2024 break; 2025 2026 node_idx[i] = idx; 2027 } 2028 if( i == dims ) 2029 { 2030 float* bin = (float*)cvPtrND( mat, node_idx, 0, 1, 0 ); 2031 dst[x] = bin[0]; 2032 } 2033 else 2034 dst[x] = 0; 2035 } 2036 } 2037 2038 for( i = 0; i < dims; i++ ) 2039 img[i] += step; 2040 } 2041 } 2042 2043 return CV_OK; 2044 } 2045 2046 2047 CV_IMPL void 2048 cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist ) 2049 { 2050 CV_FUNCNAME( "cvCalcArrBackProject" ); 2051 2052 __BEGIN__; 2053 2054 uchar* ptr[CV_MAX_DIM]; 2055 uchar* dstptr = 0; 2056 int dststep = 0, step = 0; 2057 int i, dims; 2058 int cont_flag = -1; 2059 CvMat stub0, *mat0 = 0; 2060 CvSize size; 2061 2062 if( !CV_IS_HIST(hist)) 2063 CV_ERROR( CV_StsBadArg, "Bad histogram pointer" ); 2064 2065 if( !img ) 2066 CV_ERROR( CV_StsNullPtr, "Null double array pointer" ); 2067 2068 CV_CALL( dims = cvGetDims( hist->bins )); 2069 2070 for( i = 0; i <= dims; i++ ) 2071 { 2072 CvMat stub, *mat = (CvMat*)(i < dims ? img[i] : dst); 2073 CV_CALL( mat = cvGetMat( mat, i == 0 ? &stub0 : &stub, 0, 1 )); 2074 2075 if( CV_MAT_CN( mat->type ) != 1 ) 2076 CV_ERROR( CV_BadNumChannels, "Only 1-channel arrays are allowed here" ); 2077 2078 if( i == 0 ) 2079 { 2080 mat0 = mat; 2081 step = mat0->step; 2082 } 2083 else 2084 { 2085 if( !CV_ARE_SIZES_EQ( mat0, mat )) 2086 CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal sizes" ); 2087 2088 if( mat0->step != mat->step ) 2089 CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal steps" ); 2090 2091 if( !CV_ARE_TYPES_EQ( mat0, mat )) 2092 CV_ERROR( CV_StsUnmatchedFormats, "Not all the planes have equal types" ); 2093 } 2094 2095 cont_flag &= mat->type; 2096 if( i < dims ) 2097 ptr[i] = mat->data.ptr; 2098 else 2099 { 2100 dstptr = mat->data.ptr; 2101 dststep = mat->step; 2102 } 2103 } 2104 2105 size = cvGetMatSize(mat0); 2106 if( CV_IS_MAT_CONT( cont_flag )) 2107 { 2108 size.width *= size.height; 2109 size.height = 1; 2110 dststep = step = CV_STUB_STEP; 2111 } 2112 2113 if( CV_MAT_DEPTH(mat0->type) > CV_8S && !CV_HIST_HAS_RANGES(hist)) 2114 CV_ERROR( CV_StsBadArg, "histogram ranges must be set (via cvSetHistBinRanges) " 2115 "before calling the function" ); 2116 2117 switch( CV_MAT_DEPTH(mat0->type) ) 2118 { 2119 case CV_8U: 2120 IPPI_CALL( icvCalcBackProject_8u_C1R( ptr, step, dstptr, dststep, size, hist )); 2121 break; 2122 case CV_32F: 2123 { 2124 union { uchar** ptr; float** fl; } v; 2125 v.ptr = ptr; 2126 IPPI_CALL( icvCalcBackProject_32f_C1R( v.fl, step, 2127 (float*)dstptr, dststep, size, hist )); 2128 } 2129 break; 2130 default: 2131 CV_ERROR( CV_StsUnsupportedFormat, "Unsupported array type" ); 2132 } 2133 2134 __END__; 2135 } 2136 2137 2138 ////////////////////// B A C K P R O J E C T P A T C H ///////////////////////// 2139 2140 CV_IMPL void 2141 cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogram* hist, 2142 int method, double norm_factor ) 2143 { 2144 CvHistogram* model = 0; 2145 2146 CV_FUNCNAME( "cvCalcArrBackProjectPatch" ); 2147 2148 __BEGIN__; 2149 2150 IplImage imgstub[CV_MAX_DIM], *img[CV_MAX_DIM]; 2151 IplROI roi; 2152 CvMat dststub, *dstmat; 2153 int i, dims; 2154 int x, y; 2155 CvSize size; 2156 2157 if( !CV_IS_HIST(hist)) 2158 CV_ERROR( CV_StsBadArg, "Bad histogram pointer" ); 2159 2160 if( !arr ) 2161 CV_ERROR( CV_StsNullPtr, "Null double array pointer" ); 2162 2163 if( norm_factor <= 0 ) 2164 CV_ERROR( CV_StsOutOfRange, 2165 "Bad normalization factor (set it to 1.0 if unsure)" ); 2166 2167 if( patch_size.width <= 0 || patch_size.height <= 0 ) 2168 CV_ERROR( CV_StsBadSize, "The patch width and height must be positive" ); 2169 2170 CV_CALL( dims = cvGetDims( hist->bins )); 2171 CV_CALL( cvCopyHist( hist, &model )); 2172 CV_CALL( cvNormalizeHist( hist, norm_factor )); 2173 2174 for( i = 0; i < dims; i++ ) 2175 { 2176 CvMat stub, *mat; 2177 CV_CALL( mat = cvGetMat( arr[i], &stub, 0, 0 )); 2178 CV_CALL( img[i] = cvGetImage( mat, &imgstub[i] )); 2179 img[i]->roi = &roi; 2180 } 2181 2182 CV_CALL( dstmat = cvGetMat( dst, &dststub, 0, 0 )); 2183 if( CV_MAT_TYPE( dstmat->type ) != CV_32FC1 ) 2184 CV_ERROR( CV_StsUnsupportedFormat, "Resultant image must have 32fC1 type" ); 2185 2186 if( dstmat->cols != img[0]->width - patch_size.width + 1 || 2187 dstmat->rows != img[0]->height - patch_size.height + 1 ) 2188 CV_ERROR( CV_StsUnmatchedSizes, 2189 "The output map must be (W-w+1 x H-h+1), " 2190 "where the input images are (W x H) each and the patch is (w x h)" ); 2191 2192 size = cvGetMatSize(dstmat); 2193 roi.coi = 0; 2194 roi.width = patch_size.width; 2195 roi.height = patch_size.height; 2196 2197 for( y = 0; y < size.height; y++ ) 2198 { 2199 for( x = 0; x < size.width; x++ ) 2200 { 2201 double result; 2202 2203 roi.xOffset = x; 2204 roi.yOffset = y; 2205 2206 CV_CALL( cvCalcHist( img, model )); 2207 2208 CV_CALL( cvNormalizeHist( model, norm_factor )); 2209 CV_CALL( result = cvCompareHist( model, hist, method )); 2210 CV_MAT_ELEM( *dstmat, float, y, x ) = (float)result; 2211 } 2212 } 2213 2214 __END__; 2215 2216 cvReleaseHist( &model ); 2217 } 2218 2219 2220 // Calculates Bayes probabilistic histograms 2221 CV_IMPL void 2222 cvCalcBayesianProb( CvHistogram** src, int count, CvHistogram** dst ) 2223 { 2224 CV_FUNCNAME( "cvCalcBayesianProb" ); 2225 2226 __BEGIN__; 2227 2228 int i; 2229 2230 if( !src || !dst ) 2231 CV_ERROR( CV_StsNullPtr, "NULL histogram array pointer" ); 2232 2233 if( count < 2 ) 2234 CV_ERROR( CV_StsOutOfRange, "Too small number of histograms" ); 2235 2236 for( i = 0; i < count; i++ ) 2237 { 2238 if( !CV_IS_HIST(src[i]) || !CV_IS_HIST(dst[i]) ) 2239 CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); 2240 2241 if( !CV_IS_MATND(src[i]->bins) || !CV_IS_MATND(dst[i]->bins) ) 2242 CV_ERROR( CV_StsBadArg, "The function supports dense histograms only" ); 2243 } 2244 2245 cvZero( dst[0]->bins ); 2246 // dst[0] = src[0] + ... + src[count-1] 2247 for( i = 0; i < count; i++ ) 2248 CV_CALL( cvAdd( src[i]->bins, dst[0]->bins, dst[0]->bins )); 2249 2250 CV_CALL( cvDiv( 0, dst[0]->bins, dst[0]->bins )); 2251 2252 // dst[i] = src[i]*(1/dst[0]) 2253 for( i = count - 1; i >= 0; i-- ) 2254 CV_CALL( cvMul( src[i]->bins, dst[0]->bins, dst[i]->bins )); 2255 2256 __END__; 2257 } 2258 2259 2260 CV_IMPL void 2261 cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask, 2262 CvHistogram* hist_dens, double scale ) 2263 { 2264 CV_FUNCNAME( "cvCalcProbDensity" ); 2265 2266 __BEGIN__; 2267 2268 if( scale <= 0 ) 2269 CV_ERROR( CV_StsOutOfRange, "scale must be positive" ); 2270 2271 if( !CV_IS_HIST(hist) || !CV_IS_HIST(hist_mask) || !CV_IS_HIST(hist_dens) ) 2272 CV_ERROR( CV_StsBadArg, "Invalid histogram pointer[s]" ); 2273 2274 { 2275 CvArr* arrs[] = { hist->bins, hist_mask->bins, hist_dens->bins }; 2276 CvMatND stubs[3]; 2277 CvNArrayIterator iterator; 2278 2279 CV_CALL( cvInitNArrayIterator( 3, arrs, 0, stubs, &iterator )); 2280 2281 if( CV_MAT_TYPE(iterator.hdr[0]->type) != CV_32FC1 ) 2282 CV_ERROR( CV_StsUnsupportedFormat, "All histograms must have 32fC1 type" ); 2283 2284 do 2285 { 2286 const float* srcdata = (const float*)(iterator.ptr[0]); 2287 const float* maskdata = (const float*)(iterator.ptr[1]); 2288 float* dstdata = (float*)(iterator.ptr[2]); 2289 int i; 2290 2291 for( i = 0; i < iterator.size.width; i++ ) 2292 { 2293 float s = srcdata[i]; 2294 float m = maskdata[i]; 2295 if( s > FLT_EPSILON ) 2296 if( m <= s ) 2297 dstdata[i] = (float)(m*scale/s); 2298 else 2299 dstdata[i] = (float)scale; 2300 else 2301 dstdata[i] = (float)0; 2302 } 2303 } 2304 while( cvNextNArraySlice( &iterator )); 2305 } 2306 2307 __END__; 2308 } 2309 2310 2311 CV_IMPL void cvEqualizeHist( const CvArr* src, CvArr* dst ) 2312 { 2313 CvHistogram* hist = 0; 2314 CvMat* lut = 0; 2315 2316 CV_FUNCNAME( "cvEqualizeHist" ); 2317 2318 __BEGIN__; 2319 2320 int i, hist_sz = 256; 2321 CvSize img_sz; 2322 float scale; 2323 float* h; 2324 int sum = 0; 2325 int type; 2326 2327 CV_CALL( type = cvGetElemType( src )); 2328 if( type != CV_8UC1 ) 2329 CV_ERROR( CV_StsUnsupportedFormat, "Only 8uC1 images are supported" ); 2330 2331 CV_CALL( hist = cvCreateHist( 1, &hist_sz, CV_HIST_ARRAY )); 2332 CV_CALL( lut = cvCreateMat( 1, 256, CV_8UC1 )); 2333 CV_CALL( cvCalcArrHist( (CvArr**)&src, hist )); 2334 CV_CALL( img_sz = cvGetSize( src )); 2335 scale = 255.f/(img_sz.width*img_sz.height); 2336 h = (float*)cvPtr1D( hist->bins, 0 ); 2337 2338 for( i = 0; i < hist_sz; i++ ) 2339 { 2340 sum += cvRound(h[i]); 2341 lut->data.ptr[i] = (uchar)cvRound(sum*scale); 2342 } 2343 2344 lut->data.ptr[0] = 0; 2345 CV_CALL( cvLUT( src, dst, lut )); 2346 2347 __END__; 2348 2349 cvReleaseHist(&hist); 2350 cvReleaseMat(&lut); 2351 } 2352 2353 /* Implementation of RTTI and Generic Functions for CvHistogram */ 2354 #define CV_TYPE_NAME_HIST "opencv-hist" 2355 2356 static int icvIsHist( const void * ptr ){ 2357 return CV_IS_HIST( ((CvHistogram*)ptr) ); 2358 } 2359 2360 static CvHistogram * icvCloneHist( const CvHistogram * src ){ 2361 CvHistogram * dst=NULL; 2362 cvCopyHist(src, &dst); 2363 return dst; 2364 } 2365 2366 static void *icvReadHist( CvFileStorage * fs, CvFileNode * node ){ 2367 CvHistogram * h = 0; 2368 int is_uniform = 0; 2369 int have_ranges = 0; 2370 2371 CV_FUNCNAME("icvReadHist"); 2372 __BEGIN__; 2373 2374 CV_CALL( h = (CvHistogram *) cvAlloc( sizeof(CvHistogram) )); 2375 2376 is_uniform = cvReadIntByName( fs, node, "is_uniform", 0 ); 2377 have_ranges = cvReadIntByName( fs, node, "have_ranges", 0); 2378 h->type = CV_HIST_MAGIC_VAL | 2379 (is_uniform ? CV_HIST_UNIFORM_FLAG : 0) | 2380 (have_ranges ? CV_HIST_RANGES_FLAG : 0); 2381 2382 if(is_uniform){ 2383 // read histogram bins 2384 CvMatND * mat = (CvMatND *) cvReadByName( fs, node, "mat" ); 2385 int sizes[CV_MAX_DIM]; 2386 int i; 2387 if(!CV_IS_MATND(mat)){ 2388 CV_ERROR( CV_StsError, "Expected CvMatND"); 2389 } 2390 for(i=0; i<mat->dims; i++){ 2391 sizes[i] = mat->dim[i].size; 2392 } 2393 2394 cvInitMatNDHeader( &(h->mat), mat->dims, sizes, mat->type, mat->data.ptr ); 2395 h->bins = &(h->mat); 2396 2397 // take ownership of refcount pointer as well 2398 h->mat.refcount = mat->refcount; 2399 2400 // increase refcount so freeing temp header doesn't free data 2401 cvIncRefData( mat ); 2402 2403 // free temporary header 2404 cvReleaseMatND( &mat ); 2405 } 2406 else{ 2407 h->bins = cvReadByName( fs, node, "bins" ); 2408 if(!CV_IS_SPARSE_MAT(h->bins)){ 2409 CV_ERROR( CV_StsError, "Unknown Histogram type"); 2410 } 2411 } 2412 2413 // read thresholds 2414 if(have_ranges){ 2415 int i; 2416 int dims; 2417 int size[CV_MAX_DIM]; 2418 int total = 0; 2419 CvSeqReader reader; 2420 CvFileNode * thresh_node; 2421 2422 CV_CALL( dims = cvGetDims( h->bins, size )); 2423 for( i = 0; i < dims; i++ ){ 2424 total += size[i]+1; 2425 } 2426 2427 thresh_node = cvGetFileNodeByName( fs, node, "thresh" ); 2428 if(!thresh_node){ 2429 CV_ERROR( CV_StsError, "'thresh' node is missing"); 2430 } 2431 cvStartReadRawData( fs, thresh_node, &reader ); 2432 2433 if(is_uniform){ 2434 for(i=0; i<dims; i++){ 2435 cvReadRawDataSlice( fs, &reader, 2, h->thresh[i], "f" ); 2436 } 2437 h->thresh2 = NULL; 2438 } 2439 else{ 2440 float* dim_ranges; 2441 CV_CALL( h->thresh2 = (float**)cvAlloc( 2442 dims*sizeof(h->thresh2[0])+ 2443 total*sizeof(h->thresh2[0][0]))); 2444 dim_ranges = (float*)(h->thresh2 + dims); 2445 for(i=0; i < dims; i++){ 2446 h->thresh2[i] = dim_ranges; 2447 cvReadRawDataSlice( fs, &reader, size[i]+1, dim_ranges, "f" ); 2448 dim_ranges += size[i] + 1; 2449 } 2450 } 2451 2452 } 2453 2454 __END__; 2455 2456 return h; 2457 } 2458 2459 static void icvWriteHist( CvFileStorage* fs, const char* name, const void* struct_ptr, 2460 CvAttrList /*attributes*/ ){ 2461 const CvHistogram * hist = (const CvHistogram *) struct_ptr; 2462 int sizes[CV_MAX_DIM]; 2463 int dims; 2464 int i; 2465 int is_uniform, have_ranges; 2466 2467 CV_FUNCNAME("icvWriteHist"); 2468 __BEGIN__; 2469 2470 cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HIST ); 2471 2472 is_uniform = (CV_IS_UNIFORM_HIST(hist) ? 1 : 0); 2473 have_ranges = (hist->type & CV_HIST_RANGES_FLAG ? 1 : 0); 2474 2475 cvWriteInt( fs, "is_uniform", is_uniform ); 2476 cvWriteInt( fs, "have_ranges", have_ranges ); 2477 if(CV_IS_UNIFORM_HIST(hist)){ 2478 cvWrite( fs, "mat", &(hist->mat) ); 2479 } 2480 else if(CV_IS_SPARSE_HIST(hist)){ 2481 cvWrite( fs, "bins", hist->bins ); 2482 } 2483 else{ 2484 CV_ERROR( CV_StsError, "Unknown Histogram Type" ); 2485 } 2486 2487 // write thresholds 2488 if(have_ranges){ 2489 dims = cvGetDims( hist->bins, sizes ); 2490 cvStartWriteStruct( fs, "thresh", CV_NODE_SEQ + CV_NODE_FLOW ); 2491 if(is_uniform){ 2492 for(i=0; i<dims; i++){ 2493 cvWriteRawData( fs, hist->thresh[i], 2, "f" ); 2494 } 2495 } 2496 else{ 2497 for(i=0; i<dims; i++){ 2498 cvWriteRawData( fs, hist->thresh2[i], sizes[i]+1, "f" ); 2499 } 2500 } 2501 cvEndWriteStruct( fs ); 2502 } 2503 2504 cvEndWriteStruct( fs ); 2505 __END__; 2506 } 2507 2508 2509 CvType hist_type( CV_TYPE_NAME_HIST, icvIsHist, (CvReleaseFunc)cvReleaseHist, 2510 icvReadHist, icvWriteHist, (CvCloneFunc)icvCloneHist ); 2511 2512 /* End of file. */ 2513 2514