Home | History | Annotate | Download | only in src
      1 
      2 /* @(#)e_sqrt.c 1.3 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  */
     13 
     14 #include <sys/cdefs.h>
     15 __FBSDID("$FreeBSD$");
     16 
     17 /* __ieee754_sqrt(x)
     18  * Return correctly rounded sqrt.
     19  *           ------------------------------------------
     20  *	     |  Use the hardware sqrt if you have one |
     21  *           ------------------------------------------
     22  * Method:
     23  *   Bit by bit method using integer arithmetic. (Slow, but portable)
     24  *   1. Normalization
     25  *	Scale x to y in [1,4) with even powers of 2:
     26  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
     27  *		sqrt(x) = 2^k * sqrt(y)
     28  *   2. Bit by bit computation
     29  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
     30  *	     i							 0
     31  *                                     i+1         2
     32  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
     33  *	     i      i            i                 i
     34  *
     35  *	To compute q    from q , one checks whether
     36  *		    i+1       i
     37  *
     38  *			      -(i+1) 2
     39  *			(q + 2      ) <= y.			(2)
     40  *     			  i
     41  *							      -(i+1)
     42  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
     43  *		 	       i+1   i             i+1   i
     44  *
     45  *	With some algebric manipulation, it is not difficult to see
     46  *	that (2) is equivalent to
     47  *                             -(i+1)
     48  *			s  +  2       <= y			(3)
     49  *			 i                i
     50  *
     51  *	The advantage of (3) is that s  and y  can be computed by
     52  *				      i      i
     53  *	the following recurrence formula:
     54  *	    if (3) is false
     55  *
     56  *	    s     =  s  ,	y    = y   ;			(4)
     57  *	     i+1      i		 i+1    i
     58  *
     59  *	    otherwise,
     60  *                         -i                     -(i+1)
     61  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
     62  *           i+1      i          i+1    i     i
     63  *
     64  *	One may easily use induction to prove (4) and (5).
     65  *	Note. Since the left hand side of (3) contain only i+2 bits,
     66  *	      it does not necessary to do a full (53-bit) comparison
     67  *	      in (3).
     68  *   3. Final rounding
     69  *	After generating the 53 bits result, we compute one more bit.
     70  *	Together with the remainder, we can decide whether the
     71  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
     72  *	(it will never equal to 1/2ulp).
     73  *	The rounding mode can be detected by checking whether
     74  *	huge + tiny is equal to huge, and whether huge - tiny is
     75  *	equal to huge for some floating point number "huge" and "tiny".
     76  *
     77  * Special cases:
     78  *	sqrt(+-0) = +-0 	... exact
     79  *	sqrt(inf) = inf
     80  *	sqrt(-ve) = NaN		... with invalid signal
     81  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
     82  *
     83  * Other methods : see the appended file at the end of the program below.
     84  *---------------
     85  */
     86 
     87 #include <float.h>
     88 
     89 #include "math.h"
     90 #include "math_private.h"
     91 
     92 static	const double	one	= 1.0, tiny=1.0e-300;
     93 
     94 double
     95 __ieee754_sqrt(double x)
     96 {
     97 	double z;
     98 	int32_t sign = (int)0x80000000;
     99 	int32_t ix0,s0,q,m,t,i;
    100 	u_int32_t r,t1,s1,ix1,q1;
    101 
    102 	EXTRACT_WORDS(ix0,ix1,x);
    103 
    104     /* take care of Inf and NaN */
    105 	if((ix0&0x7ff00000)==0x7ff00000) {
    106 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
    107 					   sqrt(-inf)=sNaN */
    108 	}
    109     /* take care of zero */
    110 	if(ix0<=0) {
    111 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
    112 	    else if(ix0<0)
    113 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
    114 	}
    115     /* normalize x */
    116 	m = (ix0>>20);
    117 	if(m==0) {				/* subnormal x */
    118 	    while(ix0==0) {
    119 		m -= 21;
    120 		ix0 |= (ix1>>11); ix1 <<= 21;
    121 	    }
    122 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
    123 	    m -= i-1;
    124 	    ix0 |= (ix1>>(32-i));
    125 	    ix1 <<= i;
    126 	}
    127 	m -= 1023;	/* unbias exponent */
    128 	ix0 = (ix0&0x000fffff)|0x00100000;
    129 	if(m&1){	/* odd m, double x to make it even */
    130 	    ix0 += ix0 + ((ix1&sign)>>31);
    131 	    ix1 += ix1;
    132 	}
    133 	m >>= 1;	/* m = [m/2] */
    134 
    135     /* generate sqrt(x) bit by bit */
    136 	ix0 += ix0 + ((ix1&sign)>>31);
    137 	ix1 += ix1;
    138 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
    139 	r = 0x00200000;		/* r = moving bit from right to left */
    140 
    141 	while(r!=0) {
    142 	    t = s0+r;
    143 	    if(t<=ix0) {
    144 		s0   = t+r;
    145 		ix0 -= t;
    146 		q   += r;
    147 	    }
    148 	    ix0 += ix0 + ((ix1&sign)>>31);
    149 	    ix1 += ix1;
    150 	    r>>=1;
    151 	}
    152 
    153 	r = sign;
    154 	while(r!=0) {
    155 	    t1 = s1+r;
    156 	    t  = s0;
    157 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
    158 		s1  = t1+r;
    159 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
    160 		ix0 -= t;
    161 		if (ix1 < t1) ix0 -= 1;
    162 		ix1 -= t1;
    163 		q1  += r;
    164 	    }
    165 	    ix0 += ix0 + ((ix1&sign)>>31);
    166 	    ix1 += ix1;
    167 	    r>>=1;
    168 	}
    169 
    170     /* use floating add to find out rounding direction */
    171 	if((ix0|ix1)!=0) {
    172 	    z = one-tiny; /* trigger inexact flag */
    173 	    if (z>=one) {
    174 	        z = one+tiny;
    175 	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
    176 		else if (z>one) {
    177 		    if (q1==(u_int32_t)0xfffffffe) q+=1;
    178 		    q1+=2;
    179 		} else
    180 	            q1 += (q1&1);
    181 	    }
    182 	}
    183 	ix0 = (q>>1)+0x3fe00000;
    184 	ix1 =  q1>>1;
    185 	if ((q&1)==1) ix1 |= sign;
    186 	ix0 += (m <<20);
    187 	INSERT_WORDS(z,ix0,ix1);
    188 	return z;
    189 }
    190 
    191 #if (LDBL_MANT_DIG == 53)
    192 __weak_reference(sqrt, sqrtl);
    193 #endif
    194 
    195 /*
    196 Other methods  (use floating-point arithmetic)
    197 -------------
    198 (This is a copy of a drafted paper by Prof W. Kahan
    199 and K.C. Ng, written in May, 1986)
    200 
    201 	Two algorithms are given here to implement sqrt(x)
    202 	(IEEE double precision arithmetic) in software.
    203 	Both supply sqrt(x) correctly rounded. The first algorithm (in
    204 	Section A) uses newton iterations and involves four divisions.
    205 	The second one uses reciproot iterations to avoid division, but
    206 	requires more multiplications. Both algorithms need the ability
    207 	to chop results of arithmetic operations instead of round them,
    208 	and the INEXACT flag to indicate when an arithmetic operation
    209 	is executed exactly with no roundoff error, all part of the
    210 	standard (IEEE 754-1985). The ability to perform shift, add,
    211 	subtract and logical AND operations upon 32-bit words is needed
    212 	too, though not part of the standard.
    213 
    214 A.  sqrt(x) by Newton Iteration
    215 
    216    (1)	Initial approximation
    217 
    218 	Let x0 and x1 be the leading and the trailing 32-bit words of
    219 	a floating point number x (in IEEE double format) respectively
    220 
    221 	    1    11		     52				  ...widths
    222 	   ------------------------------------------------------
    223 	x: |s|	  e     |	      f				|
    224 	   ------------------------------------------------------
    225 	      msb    lsb  msb				      lsb ...order
    226 
    227 
    228 	     ------------------------  	     ------------------------
    229 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
    230 	     ------------------------  	     ------------------------
    231 
    232 	By performing shifts and subtracts on x0 and x1 (both regarded
    233 	as integers), we obtain an 8-bit approximation of sqrt(x) as
    234 	follows.
    235 
    236 		k  := (x0>>1) + 0x1ff80000;
    237 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
    238 	Here k is a 32-bit integer and T1[] is an integer array containing
    239 	correction terms. Now magically the floating value of y (y's
    240 	leading 32-bit word is y0, the value of its trailing word is 0)
    241 	approximates sqrt(x) to almost 8-bit.
    242 
    243 	Value of T1:
    244 	static int T1[32]= {
    245 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
    246 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
    247 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
    248 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
    249 
    250     (2)	Iterative refinement
    251 
    252 	Apply Heron's rule three times to y, we have y approximates
    253 	sqrt(x) to within 1 ulp (Unit in the Last Place):
    254 
    255 		y := (y+x/y)/2		... almost 17 sig. bits
    256 		y := (y+x/y)/2		... almost 35 sig. bits
    257 		y := y-(y-x/y)/2	... within 1 ulp
    258 
    259 
    260 	Remark 1.
    261 	    Another way to improve y to within 1 ulp is:
    262 
    263 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
    264 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
    265 
    266 				2
    267 			    (x-y )*y
    268 		y := y + 2* ----------	...within 1 ulp
    269 			       2
    270 			     3y  + x
    271 
    272 
    273 	This formula has one division fewer than the one above; however,
    274 	it requires more multiplications and additions. Also x must be
    275 	scaled in advance to avoid spurious overflow in evaluating the
    276 	expression 3y*y+x. Hence it is not recommended uless division
    277 	is slow. If division is very slow, then one should use the
    278 	reciproot algorithm given in section B.
    279 
    280     (3) Final adjustment
    281 
    282 	By twiddling y's last bit it is possible to force y to be
    283 	correctly rounded according to the prevailing rounding mode
    284 	as follows. Let r and i be copies of the rounding mode and
    285 	inexact flag before entering the square root program. Also we
    286 	use the expression y+-ulp for the next representable floating
    287 	numbers (up and down) of y. Note that y+-ulp = either fixed
    288 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
    289 	mode.
    290 
    291 		I := FALSE;	... reset INEXACT flag I
    292 		R := RZ;	... set rounding mode to round-toward-zero
    293 		z := x/y;	... chopped quotient, possibly inexact
    294 		If(not I) then {	... if the quotient is exact
    295 		    if(z=y) {
    296 		        I := i;	 ... restore inexact flag
    297 		        R := r;  ... restore rounded mode
    298 		        return sqrt(x):=y.
    299 		    } else {
    300 			z := z - ulp;	... special rounding
    301 		    }
    302 		}
    303 		i := TRUE;		... sqrt(x) is inexact
    304 		If (r=RN) then z=z+ulp	... rounded-to-nearest
    305 		If (r=RP) then {	... round-toward-+inf
    306 		    y = y+ulp; z=z+ulp;
    307 		}
    308 		y := y+z;		... chopped sum
    309 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
    310 	        I := i;	 		... restore inexact flag
    311 	        R := r;  		... restore rounded mode
    312 	        return sqrt(x):=y.
    313 
    314     (4)	Special cases
    315 
    316 	Square root of +inf, +-0, or NaN is itself;
    317 	Square root of a negative number is NaN with invalid signal.
    318 
    319 
    320 B.  sqrt(x) by Reciproot Iteration
    321 
    322    (1)	Initial approximation
    323 
    324 	Let x0 and x1 be the leading and the trailing 32-bit words of
    325 	a floating point number x (in IEEE double format) respectively
    326 	(see section A). By performing shifs and subtracts on x0 and y0,
    327 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
    328 
    329 	    k := 0x5fe80000 - (x0>>1);
    330 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
    331 
    332 	Here k is a 32-bit integer and T2[] is an integer array
    333 	containing correction terms. Now magically the floating
    334 	value of y (y's leading 32-bit word is y0, the value of
    335 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
    336 	to almost 7.8-bit.
    337 
    338 	Value of T2:
    339 	static int T2[64]= {
    340 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
    341 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
    342 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
    343 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
    344 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
    345 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
    346 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
    347 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
    348 
    349     (2)	Iterative refinement
    350 
    351 	Apply Reciproot iteration three times to y and multiply the
    352 	result by x to get an approximation z that matches sqrt(x)
    353 	to about 1 ulp. To be exact, we will have
    354 		-1ulp < sqrt(x)-z<1.0625ulp.
    355 
    356 	... set rounding mode to Round-to-nearest
    357 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
    358 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
    359 	... special arrangement for better accuracy
    360 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
    361 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
    362 
    363 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
    364 	(a) the term z*y in the final iteration is always less than 1;
    365 	(b) the error in the final result is biased upward so that
    366 		-1 ulp < sqrt(x) - z < 1.0625 ulp
    367 	    instead of |sqrt(x)-z|<1.03125ulp.
    368 
    369     (3)	Final adjustment
    370 
    371 	By twiddling y's last bit it is possible to force y to be
    372 	correctly rounded according to the prevailing rounding mode
    373 	as follows. Let r and i be copies of the rounding mode and
    374 	inexact flag before entering the square root program. Also we
    375 	use the expression y+-ulp for the next representable floating
    376 	numbers (up and down) of y. Note that y+-ulp = either fixed
    377 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
    378 	mode.
    379 
    380 	R := RZ;		... set rounding mode to round-toward-zero
    381 	switch(r) {
    382 	    case RN:		... round-to-nearest
    383 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
    384 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
    385 	       break;
    386 	    case RZ:case RM:	... round-to-zero or round-to--inf
    387 	       R:=RP;		... reset rounding mod to round-to-+inf
    388 	       if(x<z*z ... rounded up) z = z - ulp; else
    389 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
    390 	       break;
    391 	    case RP:		... round-to-+inf
    392 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
    393 	       if(x>z*z ...chopped) z = z+ulp;
    394 	       break;
    395 	}
    396 
    397 	Remark 3. The above comparisons can be done in fixed point. For
    398 	example, to compare x and w=z*z chopped, it suffices to compare
    399 	x1 and w1 (the trailing parts of x and w), regarding them as
    400 	two's complement integers.
    401 
    402 	...Is z an exact square root?
    403 	To determine whether z is an exact square root of x, let z1 be the
    404 	trailing part of z, and also let x0 and x1 be the leading and
    405 	trailing parts of x.
    406 
    407 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
    408 	    I := 1;		... Raise Inexact flag: z is not exact
    409 	else {
    410 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
    411 	    k := z1 >> 26;		... get z's 25-th and 26-th
    412 					    fraction bits
    413 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
    414 	}
    415 	R:= r		... restore rounded mode
    416 	return sqrt(x):=z.
    417 
    418 	If multiplication is cheaper then the foregoing red tape, the
    419 	Inexact flag can be evaluated by
    420 
    421 	    I := i;
    422 	    I := (z*z!=x) or I.
    423 
    424 	Note that z*z can overwrite I; this value must be sensed if it is
    425 	True.
    426 
    427 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
    428 	zero.
    429 
    430 		    --------------------
    431 		z1: |        f2        |
    432 		    --------------------
    433 		bit 31		   bit 0
    434 
    435 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
    436 	or even of logb(x) have the following relations:
    437 
    438 	-------------------------------------------------
    439 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
    440 	-------------------------------------------------
    441 	00			00		odd and even
    442 	01			01		even
    443 	10			10		odd
    444 	10			00		even
    445 	11			01		even
    446 	-------------------------------------------------
    447 
    448     (4)	Special cases (see (4) of Section A).
    449 
    450  */
    451 
    452