1 /* 2 * This file was generated automatically by gen-mterp.py for 'armv7-a-neon'. 3 * 4 * --> DO NOT EDIT <-- 5 */ 6 7 /* File: c/header.cpp */ 8 /* 9 * Copyright (C) 2008 The Android Open Source Project 10 * 11 * Licensed under the Apache License, Version 2.0 (the "License"); 12 * you may not use this file except in compliance with the License. 13 * You may obtain a copy of the License at 14 * 15 * http://www.apache.org/licenses/LICENSE-2.0 16 * 17 * Unless required by applicable law or agreed to in writing, software 18 * distributed under the License is distributed on an "AS IS" BASIS, 19 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 20 * See the License for the specific language governing permissions and 21 * limitations under the License. 22 */ 23 24 /* common includes */ 25 #include "Dalvik.h" 26 #include "interp/InterpDefs.h" 27 #include "mterp/Mterp.h" 28 #include <math.h> // needed for fmod, fmodf 29 #include "mterp/common/FindInterface.h" 30 31 /* 32 * Configuration defines. These affect the C implementations, i.e. the 33 * portable interpreter(s) and C stubs. 34 * 35 * Some defines are controlled by the Makefile, e.g.: 36 * WITH_INSTR_CHECKS 37 * WITH_TRACKREF_CHECKS 38 * EASY_GDB 39 * NDEBUG 40 */ 41 42 #ifdef WITH_INSTR_CHECKS /* instruction-level paranoia (slow!) */ 43 # define CHECK_BRANCH_OFFSETS 44 # define CHECK_REGISTER_INDICES 45 #endif 46 47 /* 48 * Some architectures require 64-bit alignment for access to 64-bit data 49 * types. We can't just use pointers to copy 64-bit values out of our 50 * interpreted register set, because gcc may assume the pointer target is 51 * aligned and generate invalid code. 52 * 53 * There are two common approaches: 54 * (1) Use a union that defines a 32-bit pair and a 64-bit value. 55 * (2) Call memcpy(). 56 * 57 * Depending upon what compiler you're using and what options are specified, 58 * one may be faster than the other. For example, the compiler might 59 * convert a memcpy() of 8 bytes into a series of instructions and omit 60 * the call. The union version could cause some strange side-effects, 61 * e.g. for a while ARM gcc thought it needed separate storage for each 62 * inlined instance, and generated instructions to zero out ~700 bytes of 63 * stack space at the top of the interpreter. 64 * 65 * The default is to use memcpy(). The current gcc for ARM seems to do 66 * better with the union. 67 */ 68 #if defined(__ARM_EABI__) 69 # define NO_UNALIGN_64__UNION 70 #endif 71 /* 72 * MIPS ABI requires 64-bit alignment for access to 64-bit data types. 73 * 74 * Use memcpy() to do the transfer 75 */ 76 #if defined(__mips__) 77 /* # define NO_UNALIGN_64__UNION */ 78 #endif 79 80 81 //#define LOG_INSTR /* verbose debugging */ 82 /* set and adjust ANDROID_LOG_TAGS='*:i jdwp:i dalvikvm:i dalvikvmi:i' */ 83 84 /* 85 * Export another copy of the PC on every instruction; this is largely 86 * redundant with EXPORT_PC and the debugger code. This value can be 87 * compared against what we have stored on the stack with EXPORT_PC to 88 * help ensure that we aren't missing any export calls. 89 */ 90 #if WITH_EXTRA_GC_CHECKS > 1 91 # define EXPORT_EXTRA_PC() (self->currentPc2 = pc) 92 #else 93 # define EXPORT_EXTRA_PC() 94 #endif 95 96 /* 97 * Adjust the program counter. "_offset" is a signed int, in 16-bit units. 98 * 99 * Assumes the existence of "const u2* pc" and "const u2* curMethod->insns". 100 * 101 * We don't advance the program counter until we finish an instruction or 102 * branch, because we do want to have to unroll the PC if there's an 103 * exception. 104 */ 105 #ifdef CHECK_BRANCH_OFFSETS 106 # define ADJUST_PC(_offset) do { \ 107 int myoff = _offset; /* deref only once */ \ 108 if (pc + myoff < curMethod->insns || \ 109 pc + myoff >= curMethod->insns + dvmGetMethodInsnsSize(curMethod)) \ 110 { \ 111 char* desc; \ 112 desc = dexProtoCopyMethodDescriptor(&curMethod->prototype); \ 113 ALOGE("Invalid branch %d at 0x%04x in %s.%s %s", \ 114 myoff, (int) (pc - curMethod->insns), \ 115 curMethod->clazz->descriptor, curMethod->name, desc); \ 116 free(desc); \ 117 dvmAbort(); \ 118 } \ 119 pc += myoff; \ 120 EXPORT_EXTRA_PC(); \ 121 } while (false) 122 #else 123 # define ADJUST_PC(_offset) do { \ 124 pc += _offset; \ 125 EXPORT_EXTRA_PC(); \ 126 } while (false) 127 #endif 128 129 /* 130 * If enabled, log instructions as we execute them. 131 */ 132 #ifdef LOG_INSTR 133 # define ILOGD(...) ILOG(LOG_DEBUG, __VA_ARGS__) 134 # define ILOGV(...) ILOG(LOG_VERBOSE, __VA_ARGS__) 135 # define ILOG(_level, ...) do { \ 136 char debugStrBuf[128]; \ 137 snprintf(debugStrBuf, sizeof(debugStrBuf), __VA_ARGS__); \ 138 if (curMethod != NULL) \ 139 ALOG(_level, LOG_TAG"i", "%-2d|%04x%s", \ 140 self->threadId, (int)(pc - curMethod->insns), debugStrBuf); \ 141 else \ 142 ALOG(_level, LOG_TAG"i", "%-2d|####%s", \ 143 self->threadId, debugStrBuf); \ 144 } while(false) 145 void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly); 146 # define DUMP_REGS(_meth, _frame, _inOnly) dvmDumpRegs(_meth, _frame, _inOnly) 147 static const char kSpacing[] = " "; 148 #else 149 # define ILOGD(...) ((void)0) 150 # define ILOGV(...) ((void)0) 151 # define DUMP_REGS(_meth, _frame, _inOnly) ((void)0) 152 #endif 153 154 /* get a long from an array of u4 */ 155 static inline s8 getLongFromArray(const u4* ptr, int idx) 156 { 157 #if defined(NO_UNALIGN_64__UNION) 158 union { s8 ll; u4 parts[2]; } conv; 159 160 ptr += idx; 161 conv.parts[0] = ptr[0]; 162 conv.parts[1] = ptr[1]; 163 return conv.ll; 164 #else 165 s8 val; 166 memcpy(&val, &ptr[idx], 8); 167 return val; 168 #endif 169 } 170 171 /* store a long into an array of u4 */ 172 static inline void putLongToArray(u4* ptr, int idx, s8 val) 173 { 174 #if defined(NO_UNALIGN_64__UNION) 175 union { s8 ll; u4 parts[2]; } conv; 176 177 ptr += idx; 178 conv.ll = val; 179 ptr[0] = conv.parts[0]; 180 ptr[1] = conv.parts[1]; 181 #else 182 memcpy(&ptr[idx], &val, 8); 183 #endif 184 } 185 186 /* get a double from an array of u4 */ 187 static inline double getDoubleFromArray(const u4* ptr, int idx) 188 { 189 #if defined(NO_UNALIGN_64__UNION) 190 union { double d; u4 parts[2]; } conv; 191 192 ptr += idx; 193 conv.parts[0] = ptr[0]; 194 conv.parts[1] = ptr[1]; 195 return conv.d; 196 #else 197 double dval; 198 memcpy(&dval, &ptr[idx], 8); 199 return dval; 200 #endif 201 } 202 203 /* store a double into an array of u4 */ 204 static inline void putDoubleToArray(u4* ptr, int idx, double dval) 205 { 206 #if defined(NO_UNALIGN_64__UNION) 207 union { double d; u4 parts[2]; } conv; 208 209 ptr += idx; 210 conv.d = dval; 211 ptr[0] = conv.parts[0]; 212 ptr[1] = conv.parts[1]; 213 #else 214 memcpy(&ptr[idx], &dval, 8); 215 #endif 216 } 217 218 /* 219 * If enabled, validate the register number on every access. Otherwise, 220 * just do an array access. 221 * 222 * Assumes the existence of "u4* fp". 223 * 224 * "_idx" may be referenced more than once. 225 */ 226 #ifdef CHECK_REGISTER_INDICES 227 # define GET_REGISTER(_idx) \ 228 ( (_idx) < curMethod->registersSize ? \ 229 (fp[(_idx)]) : (assert(!"bad reg"),1969) ) 230 # define SET_REGISTER(_idx, _val) \ 231 ( (_idx) < curMethod->registersSize ? \ 232 (fp[(_idx)] = (u4)(_val)) : (assert(!"bad reg"),1969) ) 233 # define GET_REGISTER_AS_OBJECT(_idx) ((Object *)GET_REGISTER(_idx)) 234 # define SET_REGISTER_AS_OBJECT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 235 # define GET_REGISTER_INT(_idx) ((s4) GET_REGISTER(_idx)) 236 # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 237 # define GET_REGISTER_WIDE(_idx) \ 238 ( (_idx) < curMethod->registersSize-1 ? \ 239 getLongFromArray(fp, (_idx)) : (assert(!"bad reg"),1969) ) 240 # define SET_REGISTER_WIDE(_idx, _val) \ 241 ( (_idx) < curMethod->registersSize-1 ? \ 242 (void)putLongToArray(fp, (_idx), (_val)) : assert(!"bad reg") ) 243 # define GET_REGISTER_FLOAT(_idx) \ 244 ( (_idx) < curMethod->registersSize ? \ 245 (*((float*) &fp[(_idx)])) : (assert(!"bad reg"),1969.0f) ) 246 # define SET_REGISTER_FLOAT(_idx, _val) \ 247 ( (_idx) < curMethod->registersSize ? \ 248 (*((float*) &fp[(_idx)]) = (_val)) : (assert(!"bad reg"),1969.0f) ) 249 # define GET_REGISTER_DOUBLE(_idx) \ 250 ( (_idx) < curMethod->registersSize-1 ? \ 251 getDoubleFromArray(fp, (_idx)) : (assert(!"bad reg"),1969.0) ) 252 # define SET_REGISTER_DOUBLE(_idx, _val) \ 253 ( (_idx) < curMethod->registersSize-1 ? \ 254 (void)putDoubleToArray(fp, (_idx), (_val)) : assert(!"bad reg") ) 255 #else 256 # define GET_REGISTER(_idx) (fp[(_idx)]) 257 # define SET_REGISTER(_idx, _val) (fp[(_idx)] = (_val)) 258 # define GET_REGISTER_AS_OBJECT(_idx) ((Object*) fp[(_idx)]) 259 # define SET_REGISTER_AS_OBJECT(_idx, _val) (fp[(_idx)] = (u4)(_val)) 260 # define GET_REGISTER_INT(_idx) ((s4)GET_REGISTER(_idx)) 261 # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 262 # define GET_REGISTER_WIDE(_idx) getLongFromArray(fp, (_idx)) 263 # define SET_REGISTER_WIDE(_idx, _val) putLongToArray(fp, (_idx), (_val)) 264 # define GET_REGISTER_FLOAT(_idx) (*((float*) &fp[(_idx)])) 265 # define SET_REGISTER_FLOAT(_idx, _val) (*((float*) &fp[(_idx)]) = (_val)) 266 # define GET_REGISTER_DOUBLE(_idx) getDoubleFromArray(fp, (_idx)) 267 # define SET_REGISTER_DOUBLE(_idx, _val) putDoubleToArray(fp, (_idx), (_val)) 268 #endif 269 270 /* 271 * Get 16 bits from the specified offset of the program counter. We always 272 * want to load 16 bits at a time from the instruction stream -- it's more 273 * efficient than 8 and won't have the alignment problems that 32 might. 274 * 275 * Assumes existence of "const u2* pc". 276 */ 277 #define FETCH(_offset) (pc[(_offset)]) 278 279 /* 280 * Extract instruction byte from 16-bit fetch (_inst is a u2). 281 */ 282 #define INST_INST(_inst) ((_inst) & 0xff) 283 284 /* 285 * Replace the opcode (used when handling breakpoints). _opcode is a u1. 286 */ 287 #define INST_REPLACE_OP(_inst, _opcode) (((_inst) & 0xff00) | _opcode) 288 289 /* 290 * Extract the "vA, vB" 4-bit registers from the instruction word (_inst is u2). 291 */ 292 #define INST_A(_inst) (((_inst) >> 8) & 0x0f) 293 #define INST_B(_inst) ((_inst) >> 12) 294 295 /* 296 * Get the 8-bit "vAA" 8-bit register index from the instruction word. 297 * (_inst is u2) 298 */ 299 #define INST_AA(_inst) ((_inst) >> 8) 300 301 /* 302 * The current PC must be available to Throwable constructors, e.g. 303 * those created by the various exception throw routines, so that the 304 * exception stack trace can be generated correctly. If we don't do this, 305 * the offset within the current method won't be shown correctly. See the 306 * notes in Exception.c. 307 * 308 * This is also used to determine the address for precise GC. 309 * 310 * Assumes existence of "u4* fp" and "const u2* pc". 311 */ 312 #define EXPORT_PC() (SAVEAREA_FROM_FP(fp)->xtra.currentPc = pc) 313 314 /* 315 * Check to see if "obj" is NULL. If so, throw an exception. Assumes the 316 * pc has already been exported to the stack. 317 * 318 * Perform additional checks on debug builds. 319 * 320 * Use this to check for NULL when the instruction handler calls into 321 * something that could throw an exception (so we have already called 322 * EXPORT_PC at the top). 323 */ 324 static inline bool checkForNull(Object* obj) 325 { 326 if (obj == NULL) { 327 dvmThrowNullPointerException(NULL); 328 return false; 329 } 330 #ifdef WITH_EXTRA_OBJECT_VALIDATION 331 if (!dvmIsHeapAddress(obj)) { 332 ALOGE("Invalid object %p", obj); 333 dvmAbort(); 334 } 335 #endif 336 #ifndef NDEBUG 337 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { 338 /* probable heap corruption */ 339 ALOGE("Invalid object class %p (in %p)", obj->clazz, obj); 340 dvmAbort(); 341 } 342 #endif 343 return true; 344 } 345 346 /* 347 * Check to see if "obj" is NULL. If so, export the PC into the stack 348 * frame and throw an exception. 349 * 350 * Perform additional checks on debug builds. 351 * 352 * Use this to check for NULL when the instruction handler doesn't do 353 * anything else that can throw an exception. 354 */ 355 static inline bool checkForNullExportPC(Object* obj, u4* fp, const u2* pc) 356 { 357 if (obj == NULL) { 358 EXPORT_PC(); 359 dvmThrowNullPointerException(NULL); 360 return false; 361 } 362 #ifdef WITH_EXTRA_OBJECT_VALIDATION 363 if (!dvmIsHeapAddress(obj)) { 364 ALOGE("Invalid object %p", obj); 365 dvmAbort(); 366 } 367 #endif 368 #ifndef NDEBUG 369 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { 370 /* probable heap corruption */ 371 ALOGE("Invalid object class %p (in %p)", obj->clazz, obj); 372 dvmAbort(); 373 } 374 #endif 375 return true; 376 } 377 378 /* File: cstubs/stubdefs.cpp */ 379 /* 380 * In the C mterp stubs, "goto" is a function call followed immediately 381 * by a return. 382 */ 383 384 #define GOTO_TARGET_DECL(_target, ...) \ 385 extern "C" void dvmMterp_##_target(Thread* self, ## __VA_ARGS__); 386 387 /* (void)xxx to quiet unused variable compiler warnings. */ 388 #define GOTO_TARGET(_target, ...) \ 389 void dvmMterp_##_target(Thread* self, ## __VA_ARGS__) { \ 390 u2 ref, vsrc1, vsrc2, vdst; \ 391 u2 inst = FETCH(0); \ 392 const Method* methodToCall; \ 393 StackSaveArea* debugSaveArea; \ 394 (void)ref; (void)vsrc1; (void)vsrc2; (void)vdst; (void)inst; \ 395 (void)methodToCall; (void)debugSaveArea; 396 397 #define GOTO_TARGET_END } 398 399 /* 400 * Redefine what used to be local variable accesses into Thread struct 401 * references. (These are undefined down in "footer.cpp".) 402 */ 403 #define retval self->interpSave.retval 404 #define pc self->interpSave.pc 405 #define fp self->interpSave.curFrame 406 #define curMethod self->interpSave.method 407 #define methodClassDex self->interpSave.methodClassDex 408 #define debugTrackedRefStart self->interpSave.debugTrackedRefStart 409 410 /* ugh */ 411 #define STUB_HACK(x) x 412 #if defined(WITH_JIT) 413 #define JIT_STUB_HACK(x) x 414 #else 415 #define JIT_STUB_HACK(x) 416 #endif 417 418 /* 419 * InterpSave's pc and fp must be valid when breaking out to a 420 * "Reportxxx" routine. Because the portable interpreter uses local 421 * variables for these, we must flush prior. Stubs, however, use 422 * the interpSave vars directly, so this is a nop for stubs. 423 */ 424 #define PC_FP_TO_SELF() 425 #define PC_TO_SELF() 426 427 /* 428 * Opcode handler framing macros. Here, each opcode is a separate function 429 * that takes a "self" argument and returns void. We can't declare 430 * these "static" because they may be called from an assembly stub. 431 * (void)xxx to quiet unused variable compiler warnings. 432 */ 433 #define HANDLE_OPCODE(_op) \ 434 extern "C" void dvmMterp_##_op(Thread* self); \ 435 void dvmMterp_##_op(Thread* self) { \ 436 u4 ref; \ 437 u2 vsrc1, vsrc2, vdst; \ 438 u2 inst = FETCH(0); \ 439 (void)ref; (void)vsrc1; (void)vsrc2; (void)vdst; (void)inst; 440 441 #define OP_END } 442 443 /* 444 * Like the "portable" FINISH, but don't reload "inst", and return to caller 445 * when done. Further, debugger/profiler checks are handled 446 * before handler execution in mterp, so we don't do them here either. 447 */ 448 #if defined(WITH_JIT) 449 #define FINISH(_offset) { \ 450 ADJUST_PC(_offset); \ 451 if (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild) { \ 452 dvmCheckJit(pc, self); \ 453 } \ 454 return; \ 455 } 456 #else 457 #define FINISH(_offset) { \ 458 ADJUST_PC(_offset); \ 459 return; \ 460 } 461 #endif 462 463 #define FINISH_BKPT(_opcode) /* FIXME? */ 464 #define DISPATCH_EXTENDED(_opcode) /* FIXME? */ 465 466 /* 467 * The "goto label" statements turn into function calls followed by 468 * return statements. Some of the functions take arguments, which in the 469 * portable interpreter are handled by assigning values to globals. 470 */ 471 472 #define GOTO_exceptionThrown() \ 473 do { \ 474 dvmMterp_exceptionThrown(self); \ 475 return; \ 476 } while(false) 477 478 #define GOTO_returnFromMethod() \ 479 do { \ 480 dvmMterp_returnFromMethod(self); \ 481 return; \ 482 } while(false) 483 484 #define GOTO_invoke(_target, _methodCallRange) \ 485 do { \ 486 dvmMterp_##_target(self, _methodCallRange); \ 487 return; \ 488 } while(false) 489 490 #define GOTO_invokeMethod(_methodCallRange, _methodToCall, _vsrc1, _vdst) \ 491 do { \ 492 dvmMterp_invokeMethod(self, _methodCallRange, _methodToCall, \ 493 _vsrc1, _vdst); \ 494 return; \ 495 } while(false) 496 497 /* 498 * As a special case, "goto bail" turns into a longjmp. 499 */ 500 #define GOTO_bail() \ 501 dvmMterpStdBail(self) 502 503 /* 504 * Periodically check for thread suspension. 505 * 506 * While we're at it, see if a debugger has attached or the profiler has 507 * started. 508 */ 509 #define PERIODIC_CHECKS(_pcadj) { \ 510 if (dvmCheckSuspendQuick(self)) { \ 511 EXPORT_PC(); /* need for precise GC */ \ 512 dvmCheckSuspendPending(self); \ 513 } \ 514 } 515 516 /* File: c/opcommon.cpp */ 517 /* forward declarations of goto targets */ 518 GOTO_TARGET_DECL(filledNewArray, bool methodCallRange); 519 GOTO_TARGET_DECL(invokeVirtual, bool methodCallRange); 520 GOTO_TARGET_DECL(invokeSuper, bool methodCallRange); 521 GOTO_TARGET_DECL(invokeInterface, bool methodCallRange); 522 GOTO_TARGET_DECL(invokeDirect, bool methodCallRange); 523 GOTO_TARGET_DECL(invokeStatic, bool methodCallRange); 524 GOTO_TARGET_DECL(invokeVirtualQuick, bool methodCallRange); 525 GOTO_TARGET_DECL(invokeSuperQuick, bool methodCallRange); 526 GOTO_TARGET_DECL(invokeMethod, bool methodCallRange, const Method* methodToCall, 527 u2 count, u2 regs); 528 GOTO_TARGET_DECL(returnFromMethod); 529 GOTO_TARGET_DECL(exceptionThrown); 530 531 /* 532 * =========================================================================== 533 * 534 * What follows are opcode definitions shared between multiple opcodes with 535 * minor substitutions handled by the C pre-processor. These should probably 536 * use the mterp substitution mechanism instead, with the code here moved 537 * into common fragment files (like the asm "binop.S"), although it's hard 538 * to give up the C preprocessor in favor of the much simpler text subst. 539 * 540 * =========================================================================== 541 */ 542 543 #define HANDLE_NUMCONV(_opcode, _opname, _fromtype, _totype) \ 544 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 545 vdst = INST_A(inst); \ 546 vsrc1 = INST_B(inst); \ 547 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 548 SET_REGISTER##_totype(vdst, \ 549 GET_REGISTER##_fromtype(vsrc1)); \ 550 FINISH(1); 551 552 #define HANDLE_FLOAT_TO_INT(_opcode, _opname, _fromvtype, _fromrtype, \ 553 _tovtype, _tortype) \ 554 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 555 { \ 556 /* spec defines specific handling for +/- inf and NaN values */ \ 557 _fromvtype val; \ 558 _tovtype intMin, intMax, result; \ 559 vdst = INST_A(inst); \ 560 vsrc1 = INST_B(inst); \ 561 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 562 val = GET_REGISTER##_fromrtype(vsrc1); \ 563 intMin = (_tovtype) 1 << (sizeof(_tovtype) * 8 -1); \ 564 intMax = ~intMin; \ 565 result = (_tovtype) val; \ 566 if (val >= intMax) /* +inf */ \ 567 result = intMax; \ 568 else if (val <= intMin) /* -inf */ \ 569 result = intMin; \ 570 else if (val != val) /* NaN */ \ 571 result = 0; \ 572 else \ 573 result = (_tovtype) val; \ 574 SET_REGISTER##_tortype(vdst, result); \ 575 } \ 576 FINISH(1); 577 578 #define HANDLE_INT_TO_SMALL(_opcode, _opname, _type) \ 579 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 580 vdst = INST_A(inst); \ 581 vsrc1 = INST_B(inst); \ 582 ILOGV("|int-to-%s v%d,v%d", (_opname), vdst, vsrc1); \ 583 SET_REGISTER(vdst, (_type) GET_REGISTER(vsrc1)); \ 584 FINISH(1); 585 586 /* NOTE: the comparison result is always a signed 4-byte integer */ 587 #define HANDLE_OP_CMPX(_opcode, _opname, _varType, _type, _nanVal) \ 588 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 589 { \ 590 int result; \ 591 u2 regs; \ 592 _varType val1, val2; \ 593 vdst = INST_AA(inst); \ 594 regs = FETCH(1); \ 595 vsrc1 = regs & 0xff; \ 596 vsrc2 = regs >> 8; \ 597 ILOGV("|cmp%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 598 val1 = GET_REGISTER##_type(vsrc1); \ 599 val2 = GET_REGISTER##_type(vsrc2); \ 600 if (val1 == val2) \ 601 result = 0; \ 602 else if (val1 < val2) \ 603 result = -1; \ 604 else if (val1 > val2) \ 605 result = 1; \ 606 else \ 607 result = (_nanVal); \ 608 ILOGV("+ result=%d", result); \ 609 SET_REGISTER(vdst, result); \ 610 } \ 611 FINISH(2); 612 613 #define HANDLE_OP_IF_XX(_opcode, _opname, _cmp) \ 614 HANDLE_OPCODE(_opcode /*vA, vB, +CCCC*/) \ 615 vsrc1 = INST_A(inst); \ 616 vsrc2 = INST_B(inst); \ 617 if ((s4) GET_REGISTER(vsrc1) _cmp (s4) GET_REGISTER(vsrc2)) { \ 618 int branchOffset = (s2)FETCH(1); /* sign-extended */ \ 619 ILOGV("|if-%s v%d,v%d,+0x%04x", (_opname), vsrc1, vsrc2, \ 620 branchOffset); \ 621 ILOGV("> branch taken"); \ 622 if (branchOffset < 0) \ 623 PERIODIC_CHECKS(branchOffset); \ 624 FINISH(branchOffset); \ 625 } else { \ 626 ILOGV("|if-%s v%d,v%d,-", (_opname), vsrc1, vsrc2); \ 627 FINISH(2); \ 628 } 629 630 #define HANDLE_OP_IF_XXZ(_opcode, _opname, _cmp) \ 631 HANDLE_OPCODE(_opcode /*vAA, +BBBB*/) \ 632 vsrc1 = INST_AA(inst); \ 633 if ((s4) GET_REGISTER(vsrc1) _cmp 0) { \ 634 int branchOffset = (s2)FETCH(1); /* sign-extended */ \ 635 ILOGV("|if-%s v%d,+0x%04x", (_opname), vsrc1, branchOffset); \ 636 ILOGV("> branch taken"); \ 637 if (branchOffset < 0) \ 638 PERIODIC_CHECKS(branchOffset); \ 639 FINISH(branchOffset); \ 640 } else { \ 641 ILOGV("|if-%s v%d,-", (_opname), vsrc1); \ 642 FINISH(2); \ 643 } 644 645 #define HANDLE_UNOP(_opcode, _opname, _pfx, _sfx, _type) \ 646 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 647 vdst = INST_A(inst); \ 648 vsrc1 = INST_B(inst); \ 649 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 650 SET_REGISTER##_type(vdst, _pfx GET_REGISTER##_type(vsrc1) _sfx); \ 651 FINISH(1); 652 653 #define HANDLE_OP_X_INT(_opcode, _opname, _op, _chkdiv) \ 654 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 655 { \ 656 u2 srcRegs; \ 657 vdst = INST_AA(inst); \ 658 srcRegs = FETCH(1); \ 659 vsrc1 = srcRegs & 0xff; \ 660 vsrc2 = srcRegs >> 8; \ 661 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ 662 if (_chkdiv != 0) { \ 663 s4 firstVal, secondVal, result; \ 664 firstVal = GET_REGISTER(vsrc1); \ 665 secondVal = GET_REGISTER(vsrc2); \ 666 if (secondVal == 0) { \ 667 EXPORT_PC(); \ 668 dvmThrowArithmeticException("divide by zero"); \ 669 GOTO_exceptionThrown(); \ 670 } \ 671 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ 672 if (_chkdiv == 1) \ 673 result = firstVal; /* division */ \ 674 else \ 675 result = 0; /* remainder */ \ 676 } else { \ 677 result = firstVal _op secondVal; \ 678 } \ 679 SET_REGISTER(vdst, result); \ 680 } else { \ 681 /* non-div/rem case */ \ 682 SET_REGISTER(vdst, \ 683 (s4) GET_REGISTER(vsrc1) _op (s4) GET_REGISTER(vsrc2)); \ 684 } \ 685 } \ 686 FINISH(2); 687 688 #define HANDLE_OP_SHX_INT(_opcode, _opname, _cast, _op) \ 689 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 690 { \ 691 u2 srcRegs; \ 692 vdst = INST_AA(inst); \ 693 srcRegs = FETCH(1); \ 694 vsrc1 = srcRegs & 0xff; \ 695 vsrc2 = srcRegs >> 8; \ 696 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ 697 SET_REGISTER(vdst, \ 698 _cast GET_REGISTER(vsrc1) _op (GET_REGISTER(vsrc2) & 0x1f)); \ 699 } \ 700 FINISH(2); 701 702 #define HANDLE_OP_X_INT_LIT16(_opcode, _opname, _op, _chkdiv) \ 703 HANDLE_OPCODE(_opcode /*vA, vB, #+CCCC*/) \ 704 vdst = INST_A(inst); \ 705 vsrc1 = INST_B(inst); \ 706 vsrc2 = FETCH(1); \ 707 ILOGV("|%s-int/lit16 v%d,v%d,#+0x%04x", \ 708 (_opname), vdst, vsrc1, vsrc2); \ 709 if (_chkdiv != 0) { \ 710 s4 firstVal, result; \ 711 firstVal = GET_REGISTER(vsrc1); \ 712 if ((s2) vsrc2 == 0) { \ 713 EXPORT_PC(); \ 714 dvmThrowArithmeticException("divide by zero"); \ 715 GOTO_exceptionThrown(); \ 716 } \ 717 if ((u4)firstVal == 0x80000000 && ((s2) vsrc2) == -1) { \ 718 /* won't generate /lit16 instr for this; check anyway */ \ 719 if (_chkdiv == 1) \ 720 result = firstVal; /* division */ \ 721 else \ 722 result = 0; /* remainder */ \ 723 } else { \ 724 result = firstVal _op (s2) vsrc2; \ 725 } \ 726 SET_REGISTER(vdst, result); \ 727 } else { \ 728 /* non-div/rem case */ \ 729 SET_REGISTER(vdst, GET_REGISTER(vsrc1) _op (s2) vsrc2); \ 730 } \ 731 FINISH(2); 732 733 #define HANDLE_OP_X_INT_LIT8(_opcode, _opname, _op, _chkdiv) \ 734 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ 735 { \ 736 u2 litInfo; \ 737 vdst = INST_AA(inst); \ 738 litInfo = FETCH(1); \ 739 vsrc1 = litInfo & 0xff; \ 740 vsrc2 = litInfo >> 8; /* constant */ \ 741 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ 742 (_opname), vdst, vsrc1, vsrc2); \ 743 if (_chkdiv != 0) { \ 744 s4 firstVal, result; \ 745 firstVal = GET_REGISTER(vsrc1); \ 746 if ((s1) vsrc2 == 0) { \ 747 EXPORT_PC(); \ 748 dvmThrowArithmeticException("divide by zero"); \ 749 GOTO_exceptionThrown(); \ 750 } \ 751 if ((u4)firstVal == 0x80000000 && ((s1) vsrc2) == -1) { \ 752 if (_chkdiv == 1) \ 753 result = firstVal; /* division */ \ 754 else \ 755 result = 0; /* remainder */ \ 756 } else { \ 757 result = firstVal _op ((s1) vsrc2); \ 758 } \ 759 SET_REGISTER(vdst, result); \ 760 } else { \ 761 SET_REGISTER(vdst, \ 762 (s4) GET_REGISTER(vsrc1) _op (s1) vsrc2); \ 763 } \ 764 } \ 765 FINISH(2); 766 767 #define HANDLE_OP_SHX_INT_LIT8(_opcode, _opname, _cast, _op) \ 768 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ 769 { \ 770 u2 litInfo; \ 771 vdst = INST_AA(inst); \ 772 litInfo = FETCH(1); \ 773 vsrc1 = litInfo & 0xff; \ 774 vsrc2 = litInfo >> 8; /* constant */ \ 775 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ 776 (_opname), vdst, vsrc1, vsrc2); \ 777 SET_REGISTER(vdst, \ 778 _cast GET_REGISTER(vsrc1) _op (vsrc2 & 0x1f)); \ 779 } \ 780 FINISH(2); 781 782 #define HANDLE_OP_X_INT_2ADDR(_opcode, _opname, _op, _chkdiv) \ 783 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 784 vdst = INST_A(inst); \ 785 vsrc1 = INST_B(inst); \ 786 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 787 if (_chkdiv != 0) { \ 788 s4 firstVal, secondVal, result; \ 789 firstVal = GET_REGISTER(vdst); \ 790 secondVal = GET_REGISTER(vsrc1); \ 791 if (secondVal == 0) { \ 792 EXPORT_PC(); \ 793 dvmThrowArithmeticException("divide by zero"); \ 794 GOTO_exceptionThrown(); \ 795 } \ 796 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ 797 if (_chkdiv == 1) \ 798 result = firstVal; /* division */ \ 799 else \ 800 result = 0; /* remainder */ \ 801 } else { \ 802 result = firstVal _op secondVal; \ 803 } \ 804 SET_REGISTER(vdst, result); \ 805 } else { \ 806 SET_REGISTER(vdst, \ 807 (s4) GET_REGISTER(vdst) _op (s4) GET_REGISTER(vsrc1)); \ 808 } \ 809 FINISH(1); 810 811 #define HANDLE_OP_SHX_INT_2ADDR(_opcode, _opname, _cast, _op) \ 812 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 813 vdst = INST_A(inst); \ 814 vsrc1 = INST_B(inst); \ 815 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 816 SET_REGISTER(vdst, \ 817 _cast GET_REGISTER(vdst) _op (GET_REGISTER(vsrc1) & 0x1f)); \ 818 FINISH(1); 819 820 #define HANDLE_OP_X_LONG(_opcode, _opname, _op, _chkdiv) \ 821 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 822 { \ 823 u2 srcRegs; \ 824 vdst = INST_AA(inst); \ 825 srcRegs = FETCH(1); \ 826 vsrc1 = srcRegs & 0xff; \ 827 vsrc2 = srcRegs >> 8; \ 828 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 829 if (_chkdiv != 0) { \ 830 s8 firstVal, secondVal, result; \ 831 firstVal = GET_REGISTER_WIDE(vsrc1); \ 832 secondVal = GET_REGISTER_WIDE(vsrc2); \ 833 if (secondVal == 0LL) { \ 834 EXPORT_PC(); \ 835 dvmThrowArithmeticException("divide by zero"); \ 836 GOTO_exceptionThrown(); \ 837 } \ 838 if ((u8)firstVal == 0x8000000000000000ULL && \ 839 secondVal == -1LL) \ 840 { \ 841 if (_chkdiv == 1) \ 842 result = firstVal; /* division */ \ 843 else \ 844 result = 0; /* remainder */ \ 845 } else { \ 846 result = firstVal _op secondVal; \ 847 } \ 848 SET_REGISTER_WIDE(vdst, result); \ 849 } else { \ 850 SET_REGISTER_WIDE(vdst, \ 851 (s8) GET_REGISTER_WIDE(vsrc1) _op (s8) GET_REGISTER_WIDE(vsrc2)); \ 852 } \ 853 } \ 854 FINISH(2); 855 856 #define HANDLE_OP_SHX_LONG(_opcode, _opname, _cast, _op) \ 857 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 858 { \ 859 u2 srcRegs; \ 860 vdst = INST_AA(inst); \ 861 srcRegs = FETCH(1); \ 862 vsrc1 = srcRegs & 0xff; \ 863 vsrc2 = srcRegs >> 8; \ 864 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 865 SET_REGISTER_WIDE(vdst, \ 866 _cast GET_REGISTER_WIDE(vsrc1) _op (GET_REGISTER(vsrc2) & 0x3f)); \ 867 } \ 868 FINISH(2); 869 870 #define HANDLE_OP_X_LONG_2ADDR(_opcode, _opname, _op, _chkdiv) \ 871 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 872 vdst = INST_A(inst); \ 873 vsrc1 = INST_B(inst); \ 874 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 875 if (_chkdiv != 0) { \ 876 s8 firstVal, secondVal, result; \ 877 firstVal = GET_REGISTER_WIDE(vdst); \ 878 secondVal = GET_REGISTER_WIDE(vsrc1); \ 879 if (secondVal == 0LL) { \ 880 EXPORT_PC(); \ 881 dvmThrowArithmeticException("divide by zero"); \ 882 GOTO_exceptionThrown(); \ 883 } \ 884 if ((u8)firstVal == 0x8000000000000000ULL && \ 885 secondVal == -1LL) \ 886 { \ 887 if (_chkdiv == 1) \ 888 result = firstVal; /* division */ \ 889 else \ 890 result = 0; /* remainder */ \ 891 } else { \ 892 result = firstVal _op secondVal; \ 893 } \ 894 SET_REGISTER_WIDE(vdst, result); \ 895 } else { \ 896 SET_REGISTER_WIDE(vdst, \ 897 (s8) GET_REGISTER_WIDE(vdst) _op (s8)GET_REGISTER_WIDE(vsrc1));\ 898 } \ 899 FINISH(1); 900 901 #define HANDLE_OP_SHX_LONG_2ADDR(_opcode, _opname, _cast, _op) \ 902 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 903 vdst = INST_A(inst); \ 904 vsrc1 = INST_B(inst); \ 905 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 906 SET_REGISTER_WIDE(vdst, \ 907 _cast GET_REGISTER_WIDE(vdst) _op (GET_REGISTER(vsrc1) & 0x3f)); \ 908 FINISH(1); 909 910 #define HANDLE_OP_X_FLOAT(_opcode, _opname, _op) \ 911 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 912 { \ 913 u2 srcRegs; \ 914 vdst = INST_AA(inst); \ 915 srcRegs = FETCH(1); \ 916 vsrc1 = srcRegs & 0xff; \ 917 vsrc2 = srcRegs >> 8; \ 918 ILOGV("|%s-float v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 919 SET_REGISTER_FLOAT(vdst, \ 920 GET_REGISTER_FLOAT(vsrc1) _op GET_REGISTER_FLOAT(vsrc2)); \ 921 } \ 922 FINISH(2); 923 924 #define HANDLE_OP_X_DOUBLE(_opcode, _opname, _op) \ 925 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 926 { \ 927 u2 srcRegs; \ 928 vdst = INST_AA(inst); \ 929 srcRegs = FETCH(1); \ 930 vsrc1 = srcRegs & 0xff; \ 931 vsrc2 = srcRegs >> 8; \ 932 ILOGV("|%s-double v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 933 SET_REGISTER_DOUBLE(vdst, \ 934 GET_REGISTER_DOUBLE(vsrc1) _op GET_REGISTER_DOUBLE(vsrc2)); \ 935 } \ 936 FINISH(2); 937 938 #define HANDLE_OP_X_FLOAT_2ADDR(_opcode, _opname, _op) \ 939 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 940 vdst = INST_A(inst); \ 941 vsrc1 = INST_B(inst); \ 942 ILOGV("|%s-float-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 943 SET_REGISTER_FLOAT(vdst, \ 944 GET_REGISTER_FLOAT(vdst) _op GET_REGISTER_FLOAT(vsrc1)); \ 945 FINISH(1); 946 947 #define HANDLE_OP_X_DOUBLE_2ADDR(_opcode, _opname, _op) \ 948 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 949 vdst = INST_A(inst); \ 950 vsrc1 = INST_B(inst); \ 951 ILOGV("|%s-double-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 952 SET_REGISTER_DOUBLE(vdst, \ 953 GET_REGISTER_DOUBLE(vdst) _op GET_REGISTER_DOUBLE(vsrc1)); \ 954 FINISH(1); 955 956 #define HANDLE_OP_AGET(_opcode, _opname, _type, _regsize) \ 957 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 958 { \ 959 ArrayObject* arrayObj; \ 960 u2 arrayInfo; \ 961 EXPORT_PC(); \ 962 vdst = INST_AA(inst); \ 963 arrayInfo = FETCH(1); \ 964 vsrc1 = arrayInfo & 0xff; /* array ptr */ \ 965 vsrc2 = arrayInfo >> 8; /* index */ \ 966 ILOGV("|aget%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 967 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ 968 if (!checkForNull((Object*) arrayObj)) \ 969 GOTO_exceptionThrown(); \ 970 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ 971 dvmThrowArrayIndexOutOfBoundsException( \ 972 arrayObj->length, GET_REGISTER(vsrc2)); \ 973 GOTO_exceptionThrown(); \ 974 } \ 975 SET_REGISTER##_regsize(vdst, \ 976 ((_type*)(void*)arrayObj->contents)[GET_REGISTER(vsrc2)]); \ 977 ILOGV("+ AGET[%d]=%#x", GET_REGISTER(vsrc2), GET_REGISTER(vdst)); \ 978 } \ 979 FINISH(2); 980 981 #define HANDLE_OP_APUT(_opcode, _opname, _type, _regsize) \ 982 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 983 { \ 984 ArrayObject* arrayObj; \ 985 u2 arrayInfo; \ 986 EXPORT_PC(); \ 987 vdst = INST_AA(inst); /* AA: source value */ \ 988 arrayInfo = FETCH(1); \ 989 vsrc1 = arrayInfo & 0xff; /* BB: array ptr */ \ 990 vsrc2 = arrayInfo >> 8; /* CC: index */ \ 991 ILOGV("|aput%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 992 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ 993 if (!checkForNull((Object*) arrayObj)) \ 994 GOTO_exceptionThrown(); \ 995 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ 996 dvmThrowArrayIndexOutOfBoundsException( \ 997 arrayObj->length, GET_REGISTER(vsrc2)); \ 998 GOTO_exceptionThrown(); \ 999 } \ 1000 ILOGV("+ APUT[%d]=0x%08x", GET_REGISTER(vsrc2), GET_REGISTER(vdst));\ 1001 ((_type*)(void*)arrayObj->contents)[GET_REGISTER(vsrc2)] = \ 1002 GET_REGISTER##_regsize(vdst); \ 1003 } \ 1004 FINISH(2); 1005 1006 /* 1007 * It's possible to get a bad value out of a field with sub-32-bit stores 1008 * because the -quick versions always operate on 32 bits. Consider: 1009 * short foo = -1 (sets a 32-bit register to 0xffffffff) 1010 * iput-quick foo (writes all 32 bits to the field) 1011 * short bar = 1 (sets a 32-bit register to 0x00000001) 1012 * iput-short (writes the low 16 bits to the field) 1013 * iget-quick foo (reads all 32 bits from the field, yielding 0xffff0001) 1014 * This can only happen when optimized and non-optimized code has interleaved 1015 * access to the same field. This is unlikely but possible. 1016 * 1017 * The easiest way to fix this is to always read/write 32 bits at a time. On 1018 * a device with a 16-bit data bus this is sub-optimal. (The alternative 1019 * approach is to have sub-int versions of iget-quick, but now we're wasting 1020 * Dalvik instruction space and making it less likely that handler code will 1021 * already be in the CPU i-cache.) 1022 */ 1023 #define HANDLE_IGET_X(_opcode, _opname, _ftype, _regsize) \ 1024 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1025 { \ 1026 InstField* ifield; \ 1027 Object* obj; \ 1028 EXPORT_PC(); \ 1029 vdst = INST_A(inst); \ 1030 vsrc1 = INST_B(inst); /* object ptr */ \ 1031 ref = FETCH(1); /* field ref */ \ 1032 ILOGV("|iget%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ 1033 obj = (Object*) GET_REGISTER(vsrc1); \ 1034 if (!checkForNull(obj)) \ 1035 GOTO_exceptionThrown(); \ 1036 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ 1037 if (ifield == NULL) { \ 1038 ifield = dvmResolveInstField(curMethod->clazz, ref); \ 1039 if (ifield == NULL) \ 1040 GOTO_exceptionThrown(); \ 1041 } \ 1042 SET_REGISTER##_regsize(vdst, \ 1043 dvmGetField##_ftype(obj, ifield->byteOffset)); \ 1044 ILOGV("+ IGET '%s'=0x%08llx", ifield->name, \ 1045 (u8) GET_REGISTER##_regsize(vdst)); \ 1046 } \ 1047 FINISH(2); 1048 1049 #define HANDLE_IGET_X_QUICK(_opcode, _opname, _ftype, _regsize) \ 1050 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1051 { \ 1052 Object* obj; \ 1053 vdst = INST_A(inst); \ 1054 vsrc1 = INST_B(inst); /* object ptr */ \ 1055 ref = FETCH(1); /* field offset */ \ 1056 ILOGV("|iget%s-quick v%d,v%d,field@+%u", \ 1057 (_opname), vdst, vsrc1, ref); \ 1058 obj = (Object*) GET_REGISTER(vsrc1); \ 1059 if (!checkForNullExportPC(obj, fp, pc)) \ 1060 GOTO_exceptionThrown(); \ 1061 SET_REGISTER##_regsize(vdst, dvmGetField##_ftype(obj, ref)); \ 1062 ILOGV("+ IGETQ %d=0x%08llx", ref, \ 1063 (u8) GET_REGISTER##_regsize(vdst)); \ 1064 } \ 1065 FINISH(2); 1066 1067 #define HANDLE_IPUT_X(_opcode, _opname, _ftype, _regsize) \ 1068 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1069 { \ 1070 InstField* ifield; \ 1071 Object* obj; \ 1072 EXPORT_PC(); \ 1073 vdst = INST_A(inst); \ 1074 vsrc1 = INST_B(inst); /* object ptr */ \ 1075 ref = FETCH(1); /* field ref */ \ 1076 ILOGV("|iput%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ 1077 obj = (Object*) GET_REGISTER(vsrc1); \ 1078 if (!checkForNull(obj)) \ 1079 GOTO_exceptionThrown(); \ 1080 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ 1081 if (ifield == NULL) { \ 1082 ifield = dvmResolveInstField(curMethod->clazz, ref); \ 1083 if (ifield == NULL) \ 1084 GOTO_exceptionThrown(); \ 1085 } \ 1086 dvmSetField##_ftype(obj, ifield->byteOffset, \ 1087 GET_REGISTER##_regsize(vdst)); \ 1088 ILOGV("+ IPUT '%s'=0x%08llx", ifield->name, \ 1089 (u8) GET_REGISTER##_regsize(vdst)); \ 1090 } \ 1091 FINISH(2); 1092 1093 #define HANDLE_IPUT_X_QUICK(_opcode, _opname, _ftype, _regsize) \ 1094 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1095 { \ 1096 Object* obj; \ 1097 vdst = INST_A(inst); \ 1098 vsrc1 = INST_B(inst); /* object ptr */ \ 1099 ref = FETCH(1); /* field offset */ \ 1100 ILOGV("|iput%s-quick v%d,v%d,field@0x%04x", \ 1101 (_opname), vdst, vsrc1, ref); \ 1102 obj = (Object*) GET_REGISTER(vsrc1); \ 1103 if (!checkForNullExportPC(obj, fp, pc)) \ 1104 GOTO_exceptionThrown(); \ 1105 dvmSetField##_ftype(obj, ref, GET_REGISTER##_regsize(vdst)); \ 1106 ILOGV("+ IPUTQ %d=0x%08llx", ref, \ 1107 (u8) GET_REGISTER##_regsize(vdst)); \ 1108 } \ 1109 FINISH(2); 1110 1111 /* 1112 * The JIT needs dvmDexGetResolvedField() to return non-null. 1113 * Because the portable interpreter is not involved with the JIT 1114 * and trace building, we only need the extra check here when this 1115 * code is massaged into a stub called from an assembly interpreter. 1116 * This is controlled by the JIT_STUB_HACK maco. 1117 */ 1118 1119 #define HANDLE_SGET_X(_opcode, _opname, _ftype, _regsize) \ 1120 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ 1121 { \ 1122 StaticField* sfield; \ 1123 vdst = INST_AA(inst); \ 1124 ref = FETCH(1); /* field ref */ \ 1125 ILOGV("|sget%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ 1126 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ 1127 if (sfield == NULL) { \ 1128 EXPORT_PC(); \ 1129 sfield = dvmResolveStaticField(curMethod->clazz, ref); \ 1130 if (sfield == NULL) \ 1131 GOTO_exceptionThrown(); \ 1132 if (dvmDexGetResolvedField(methodClassDex, ref) == NULL) { \ 1133 JIT_STUB_HACK(dvmJitEndTraceSelect(self,pc)); \ 1134 } \ 1135 } \ 1136 SET_REGISTER##_regsize(vdst, dvmGetStaticField##_ftype(sfield)); \ 1137 ILOGV("+ SGET '%s'=0x%08llx", \ 1138 sfield->name, (u8)GET_REGISTER##_regsize(vdst)); \ 1139 } \ 1140 FINISH(2); 1141 1142 #define HANDLE_SPUT_X(_opcode, _opname, _ftype, _regsize) \ 1143 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ 1144 { \ 1145 StaticField* sfield; \ 1146 vdst = INST_AA(inst); \ 1147 ref = FETCH(1); /* field ref */ \ 1148 ILOGV("|sput%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ 1149 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ 1150 if (sfield == NULL) { \ 1151 EXPORT_PC(); \ 1152 sfield = dvmResolveStaticField(curMethod->clazz, ref); \ 1153 if (sfield == NULL) \ 1154 GOTO_exceptionThrown(); \ 1155 if (dvmDexGetResolvedField(methodClassDex, ref) == NULL) { \ 1156 JIT_STUB_HACK(dvmJitEndTraceSelect(self,pc)); \ 1157 } \ 1158 } \ 1159 dvmSetStaticField##_ftype(sfield, GET_REGISTER##_regsize(vdst)); \ 1160 ILOGV("+ SPUT '%s'=0x%08llx", \ 1161 sfield->name, (u8)GET_REGISTER##_regsize(vdst)); \ 1162 } \ 1163 FINISH(2); 1164 1165 /* File: cstubs/enddefs.cpp */ 1166 1167 /* undefine "magic" name remapping */ 1168 #undef retval 1169 #undef pc 1170 #undef fp 1171 #undef curMethod 1172 #undef methodClassDex 1173 #undef self 1174 #undef debugTrackedRefStart 1175 1176 /* File: armv5te/debug.cpp */ 1177 #include <inttypes.h> 1178 1179 /* 1180 * Dump the fixed-purpose ARM registers, along with some other info. 1181 * 1182 * This function MUST be compiled in ARM mode -- THUMB will yield bogus 1183 * results. 1184 * 1185 * This will NOT preserve r0-r3/ip. 1186 */ 1187 void dvmMterpDumpArmRegs(uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3) 1188 { 1189 // TODO: Clang does not support asm declaration syntax. 1190 #ifndef __clang__ 1191 register uint32_t rPC asm("r4"); 1192 register uint32_t rFP asm("r5"); 1193 register uint32_t rSELF asm("r6"); 1194 register uint32_t rINST asm("r7"); 1195 register uint32_t rIBASE asm("r8"); 1196 register uint32_t r9 asm("r9"); 1197 register uint32_t r10 asm("r10"); 1198 1199 //extern char dvmAsmInstructionStart[]; 1200 1201 printf("REGS: r0=%08x r1=%08x r2=%08x r3=%08x\n", r0, r1, r2, r3); 1202 printf(" : rPC=%08x rFP=%08x rSELF=%08x rINST=%08x\n", 1203 rPC, rFP, rSELF, rINST); 1204 printf(" : rIBASE=%08x r9=%08x r10=%08x\n", rIBASE, r9, r10); 1205 #endif 1206 1207 //Thread* self = (Thread*) rSELF; 1208 //const Method* method = self->method; 1209 printf(" + self is %p\n", dvmThreadSelf()); 1210 //printf(" + currently in %s.%s %s\n", 1211 // method->clazz->descriptor, method->name, method->shorty); 1212 //printf(" + dvmAsmInstructionStart = %p\n", dvmAsmInstructionStart); 1213 //printf(" + next handler for 0x%02x = %p\n", 1214 // rINST & 0xff, dvmAsmInstructionStart + (rINST & 0xff) * 64); 1215 } 1216 1217 /* 1218 * Dump the StackSaveArea for the specified frame pointer. 1219 */ 1220 void dvmDumpFp(void* fp, StackSaveArea* otherSaveArea) 1221 { 1222 StackSaveArea* saveArea = SAVEAREA_FROM_FP(fp); 1223 printf("StackSaveArea for fp %p [%p/%p]:\n", fp, saveArea, otherSaveArea); 1224 #ifdef EASY_GDB 1225 printf(" prevSave=%p, prevFrame=%p savedPc=%p meth=%p curPc=%p\n", 1226 saveArea->prevSave, saveArea->prevFrame, saveArea->savedPc, 1227 saveArea->method, saveArea->xtra.currentPc); 1228 #else 1229 printf(" prevFrame=%p savedPc=%p meth=%p curPc=%p fp[0]=0x%08x\n", 1230 saveArea->prevFrame, saveArea->savedPc, 1231 saveArea->method, saveArea->xtra.currentPc, 1232 *(u4*)fp); 1233 #endif 1234 } 1235 1236 /* 1237 * Does the bulk of the work for common_printMethod(). 1238 */ 1239 void dvmMterpPrintMethod(Method* method) 1240 { 1241 /* 1242 * It is a direct (non-virtual) method if it is static, private, 1243 * or a constructor. 1244 */ 1245 bool isDirect = 1246 ((method->accessFlags & (ACC_STATIC|ACC_PRIVATE)) != 0) || 1247 (method->name[0] == '<'); 1248 1249 char* desc = dexProtoCopyMethodDescriptor(&method->prototype); 1250 1251 printf("<%c:%s.%s %s> ", 1252 isDirect ? 'D' : 'V', 1253 method->clazz->descriptor, 1254 method->name, 1255 desc); 1256 1257 free(desc); 1258 } 1259 1260