Home | History | Annotate | Download | only in memory
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // PLEASE READ: Do you really need a singleton?
      6 //
      7 // Singletons make it hard to determine the lifetime of an object, which can
      8 // lead to buggy code and spurious crashes.
      9 //
     10 // Instead of adding another singleton into the mix, try to identify either:
     11 //   a) An existing singleton that can manage your object's lifetime
     12 //   b) Locations where you can deterministically create the object and pass
     13 //      into other objects
     14 //
     15 // If you absolutely need a singleton, please keep them as trivial as possible
     16 // and ideally a leaf dependency. Singletons get problematic when they attempt
     17 // to do too much in their destructor or have circular dependencies.
     18 
     19 #ifndef BASE_MEMORY_SINGLETON_H_
     20 #define BASE_MEMORY_SINGLETON_H_
     21 
     22 #include "base/at_exit.h"
     23 #include "base/atomicops.h"
     24 #include "base/base_export.h"
     25 #include "base/memory/aligned_memory.h"
     26 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
     27 #include "base/threading/thread_restrictions.h"
     28 
     29 namespace base {
     30 namespace internal {
     31 
     32 // Our AtomicWord doubles as a spinlock, where a value of
     33 // kBeingCreatedMarker means the spinlock is being held for creation.
     34 static const subtle::AtomicWord kBeingCreatedMarker = 1;
     35 
     36 // We pull out some of the functionality into a non-templated function, so that
     37 // we can implement the more complicated pieces out of line in the .cc file.
     38 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
     39 
     40 }  // namespace internal
     41 }  // namespace base
     42 
     43 // TODO(joth): Move more of this file into namespace base
     44 
     45 // Default traits for Singleton<Type>. Calls operator new and operator delete on
     46 // the object. Registers automatic deletion at process exit.
     47 // Overload if you need arguments or another memory allocation function.
     48 template<typename Type>
     49 struct DefaultSingletonTraits {
     50   // Allocates the object.
     51   static Type* New() {
     52     // The parenthesis is very important here; it forces POD type
     53     // initialization.
     54     return new Type();
     55   }
     56 
     57   // Destroys the object.
     58   static void Delete(Type* x) {
     59     delete x;
     60   }
     61 
     62   // Set to true to automatically register deletion of the object on process
     63   // exit. See below for the required call that makes this happen.
     64   static const bool kRegisterAtExit = true;
     65 
     66   // Set to false to disallow access on a non-joinable thread.  This is
     67   // different from kRegisterAtExit because StaticMemorySingletonTraits allows
     68   // access on non-joinable threads, and gracefully handles this.
     69   static const bool kAllowedToAccessOnNonjoinableThread = false;
     70 };
     71 
     72 
     73 // Alternate traits for use with the Singleton<Type>.  Identical to
     74 // DefaultSingletonTraits except that the Singleton will not be cleaned up
     75 // at exit.
     76 template<typename Type>
     77 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
     78   static const bool kRegisterAtExit = false;
     79   static const bool kAllowedToAccessOnNonjoinableThread = true;
     80 };
     81 
     82 
     83 // Alternate traits for use with the Singleton<Type>.  Allocates memory
     84 // for the singleton instance from a static buffer.  The singleton will
     85 // be cleaned up at exit, but can't be revived after destruction unless
     86 // the Resurrect() method is called.
     87 //
     88 // This is useful for a certain category of things, notably logging and
     89 // tracing, where the singleton instance is of a type carefully constructed to
     90 // be safe to access post-destruction.
     91 // In logging and tracing you'll typically get stray calls at odd times, like
     92 // during static destruction, thread teardown and the like, and there's a
     93 // termination race on the heap-based singleton - e.g. if one thread calls
     94 // get(), but then another thread initiates AtExit processing, the first thread
     95 // may call into an object residing in unallocated memory. If the instance is
     96 // allocated from the data segment, then this is survivable.
     97 //
     98 // The destructor is to deallocate system resources, in this case to unregister
     99 // a callback the system will invoke when logging levels change. Note that
    100 // this is also used in e.g. Chrome Frame, where you have to allow for the
    101 // possibility of loading briefly into someone else's process space, and
    102 // so leaking is not an option, as that would sabotage the state of your host
    103 // process once you've unloaded.
    104 template <typename Type>
    105 struct StaticMemorySingletonTraits {
    106   // WARNING: User has to deal with get() in the singleton class
    107   // this is traits for returning NULL.
    108   static Type* New() {
    109     // Only constructs once and returns pointer; otherwise returns NULL.
    110     if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1))
    111       return NULL;
    112 
    113     return new(buffer_.void_data()) Type();
    114   }
    115 
    116   static void Delete(Type* p) {
    117     if (p != NULL)
    118       p->Type::~Type();
    119   }
    120 
    121   static const bool kRegisterAtExit = true;
    122   static const bool kAllowedToAccessOnNonjoinableThread = true;
    123 
    124   // Exposed for unittesting.
    125   static void Resurrect() {
    126     base::subtle::NoBarrier_Store(&dead_, 0);
    127   }
    128 
    129  private:
    130   static base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
    131   // Signal the object was already deleted, so it is not revived.
    132   static base::subtle::Atomic32 dead_;
    133 };
    134 
    135 template <typename Type> base::AlignedMemory<sizeof(Type), ALIGNOF(Type)>
    136     StaticMemorySingletonTraits<Type>::buffer_;
    137 template <typename Type> base::subtle::Atomic32
    138     StaticMemorySingletonTraits<Type>::dead_ = 0;
    139 
    140 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
    141 // instance of Type which will be created on first use and will be destroyed at
    142 // normal process exit). The Trait::Delete function will not be called on
    143 // abnormal process exit.
    144 //
    145 // DifferentiatingType is used as a key to differentiate two different
    146 // singletons having the same memory allocation functions but serving a
    147 // different purpose. This is mainly used for Locks serving different purposes.
    148 //
    149 // Example usage:
    150 //
    151 // In your header:
    152 //   template <typename T> struct DefaultSingletonTraits;
    153 //   class FooClass {
    154 //    public:
    155 //     static FooClass* GetInstance();  <-- See comment below on this.
    156 //     void Bar() { ... }
    157 //    private:
    158 //     FooClass() { ... }
    159 //     friend struct DefaultSingletonTraits<FooClass>;
    160 //
    161 //     DISALLOW_COPY_AND_ASSIGN(FooClass);
    162 //   };
    163 //
    164 // In your source file:
    165 //  #include "base/memory/singleton.h"
    166 //  FooClass* FooClass::GetInstance() {
    167 //    return Singleton<FooClass>::get();
    168 //  }
    169 //
    170 // And to call methods on FooClass:
    171 //   FooClass::GetInstance()->Bar();
    172 //
    173 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
    174 // and it is important that FooClass::GetInstance() is not inlined in the
    175 // header. This makes sure that when source files from multiple targets include
    176 // this header they don't end up with different copies of the inlined code
    177 // creating multiple copies of the singleton.
    178 //
    179 // Singleton<> has no non-static members and doesn't need to actually be
    180 // instantiated.
    181 //
    182 // This class is itself thread-safe. The underlying Type must of course be
    183 // thread-safe if you want to use it concurrently. Two parameters may be tuned
    184 // depending on the user's requirements.
    185 //
    186 // Glossary:
    187 //   RAE = kRegisterAtExit
    188 //
    189 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
    190 // process exit. More precisely it uses base::AtExitManager which requires an
    191 // object of this type to be instantiated. AtExitManager mimics the semantics
    192 // of atexit() such as LIFO order but under Windows is safer to call. For more
    193 // information see at_exit.h.
    194 //
    195 // If Traits::RAE is false, the singleton will not be freed at process exit,
    196 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
    197 // shouldn't be false unless absolutely necessary. Remember that the heap where
    198 // the object is allocated may be destroyed by the CRT anyway.
    199 //
    200 // Caveats:
    201 // (a) Every call to get(), operator->() and operator*() incurs some overhead
    202 //     (16ns on my P4/2.8GHz) to check whether the object has already been
    203 //     initialized.  You may wish to cache the result of get(); it will not
    204 //     change.
    205 //
    206 // (b) Your factory function must never throw an exception. This class is not
    207 //     exception-safe.
    208 //
    209 template <typename Type,
    210           typename Traits = DefaultSingletonTraits<Type>,
    211           typename DifferentiatingType = Type>
    212 class Singleton {
    213  private:
    214   // Classes using the Singleton<T> pattern should declare a GetInstance()
    215   // method and call Singleton::get() from within that.
    216   friend Type* Type::GetInstance();
    217 
    218   // Allow TraceLog tests to test tracing after OnExit.
    219   friend class DeleteTraceLogForTesting;
    220 
    221   // This class is safe to be constructed and copy-constructed since it has no
    222   // member.
    223 
    224   // Return a pointer to the one true instance of the class.
    225   static Type* get() {
    226 #ifndef NDEBUG
    227     // Avoid making TLS lookup on release builds.
    228     if (!Traits::kAllowedToAccessOnNonjoinableThread)
    229       base::ThreadRestrictions::AssertSingletonAllowed();
    230 #endif
    231 
    232     base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_);
    233     if (value != 0 && value != base::internal::kBeingCreatedMarker) {
    234       // See the corresponding HAPPENS_BEFORE below.
    235       ANNOTATE_HAPPENS_AFTER(&instance_);
    236       return reinterpret_cast<Type*>(value);
    237     }
    238 
    239     // Object isn't created yet, maybe we will get to create it, let's try...
    240     if (base::subtle::Acquire_CompareAndSwap(
    241           &instance_, 0, base::internal::kBeingCreatedMarker) == 0) {
    242       // instance_ was NULL and is now kBeingCreatedMarker.  Only one thread
    243       // will ever get here.  Threads might be spinning on us, and they will
    244       // stop right after we do this store.
    245       Type* newval = Traits::New();
    246 
    247       // This annotation helps race detectors recognize correct lock-less
    248       // synchronization between different threads calling get().
    249       // See the corresponding HAPPENS_AFTER below and above.
    250       ANNOTATE_HAPPENS_BEFORE(&instance_);
    251       base::subtle::Release_Store(
    252           &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval));
    253 
    254       if (newval != NULL && Traits::kRegisterAtExit)
    255         base::AtExitManager::RegisterCallback(OnExit, NULL);
    256 
    257       return newval;
    258     }
    259 
    260     // We hit a race. Wait for the other thread to complete it.
    261     value = base::internal::WaitForInstance(&instance_);
    262 
    263     // See the corresponding HAPPENS_BEFORE above.
    264     ANNOTATE_HAPPENS_AFTER(&instance_);
    265     return reinterpret_cast<Type*>(value);
    266   }
    267 
    268   // Adapter function for use with AtExit().  This should be called single
    269   // threaded, so don't use atomic operations.
    270   // Calling OnExit while singleton is in use by other threads is a mistake.
    271   static void OnExit(void* /*unused*/) {
    272     // AtExit should only ever be register after the singleton instance was
    273     // created.  We should only ever get here with a valid instance_ pointer.
    274     Traits::Delete(
    275         reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_)));
    276     instance_ = 0;
    277   }
    278   static base::subtle::AtomicWord instance_;
    279 };
    280 
    281 template <typename Type, typename Traits, typename DifferentiatingType>
    282 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::
    283     instance_ = 0;
    284 
    285 #endif  // BASE_MEMORY_SINGLETON_H_
    286