Home | History | Annotate | Download | only in metrics
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/metrics/stats_table.h"
      6 
      7 #include "base/logging.h"
      8 #include "base/memory/scoped_ptr.h"
      9 #include "base/memory/shared_memory.h"
     10 #include "base/process/process_handle.h"
     11 #include "base/strings/string_piece.h"
     12 #include "base/strings/string_util.h"
     13 #include "base/strings/utf_string_conversions.h"
     14 #include "base/threading/platform_thread.h"
     15 #include "base/threading/thread_local_storage.h"
     16 
     17 #if defined(OS_POSIX)
     18 #include "errno.h"
     19 #endif
     20 
     21 namespace base {
     22 
     23 // The StatsTable uses a shared memory segment that is laid out as follows
     24 //
     25 // +-------------------------------------------+
     26 // | Version | Size | MaxCounters | MaxThreads |
     27 // +-------------------------------------------+
     28 // | Thread names table                        |
     29 // +-------------------------------------------+
     30 // | Thread TID table                          |
     31 // +-------------------------------------------+
     32 // | Thread PID table                          |
     33 // +-------------------------------------------+
     34 // | Counter names table                       |
     35 // +-------------------------------------------+
     36 // | Data                                      |
     37 // +-------------------------------------------+
     38 //
     39 // The data layout is a grid, where the columns are the thread_ids and the
     40 // rows are the counter_ids.
     41 //
     42 // If the first character of the thread_name is '\0', then that column is
     43 // empty.
     44 // If the first character of the counter_name is '\0', then that row is
     45 // empty.
     46 //
     47 // About Locking:
     48 // This class is designed to be both multi-thread and multi-process safe.
     49 // Aside from initialization, this is done by partitioning the data which
     50 // each thread uses so that no locking is required.  However, to allocate
     51 // the rows and columns of the table to particular threads, locking is
     52 // required.
     53 //
     54 // At the shared-memory level, we have a lock.  This lock protects the
     55 // shared-memory table only, and is used when we create new counters (e.g.
     56 // use rows) or when we register new threads (e.g. use columns).  Reading
     57 // data from the table does not require any locking at the shared memory
     58 // level.
     59 //
     60 // Each process which accesses the table will create a StatsTable object.
     61 // The StatsTable maintains a hash table of the existing counters in the
     62 // table for faster lookup.  Since the hash table is process specific,
     63 // each process maintains its own cache.  We avoid complexity here by never
     64 // de-allocating from the hash table.  (Counters are dynamically added,
     65 // but not dynamically removed).
     66 
     67 // In order for external viewers to be able to read our shared memory,
     68 // we all need to use the same size ints.
     69 COMPILE_ASSERT(sizeof(int)==4, expect_4_byte_ints);
     70 
     71 namespace {
     72 
     73 // An internal version in case we ever change the format of this
     74 // file, and so that we can identify our table.
     75 const int kTableVersion = 0x13131313;
     76 
     77 // The name for un-named counters and threads in the table.
     78 const char kUnknownName[] = "<unknown>";
     79 
     80 // Calculates delta to align an offset to the size of an int
     81 inline int AlignOffset(int offset) {
     82   return (sizeof(int) - (offset % sizeof(int))) % sizeof(int);
     83 }
     84 
     85 inline int AlignedSize(int size) {
     86   return size + AlignOffset(size);
     87 }
     88 
     89 }  // namespace
     90 
     91 // The StatsTable::Private maintains convenience pointers into the
     92 // shared memory segment.  Use this class to keep the data structure
     93 // clean and accessible.
     94 class StatsTable::Private {
     95  public:
     96   // Various header information contained in the memory mapped segment.
     97   struct TableHeader {
     98     int version;
     99     int size;
    100     int max_counters;
    101     int max_threads;
    102   };
    103 
    104   // Construct a new Private based on expected size parameters, or
    105   // return NULL on failure.
    106   static Private* New(const std::string& name, int size,
    107                                 int max_threads, int max_counters);
    108 
    109   SharedMemory* shared_memory() { return &shared_memory_; }
    110 
    111   // Accessors for our header pointers
    112   TableHeader* table_header() const { return table_header_; }
    113   int version() const { return table_header_->version; }
    114   int size() const { return table_header_->size; }
    115   int max_counters() const { return table_header_->max_counters; }
    116   int max_threads() const { return table_header_->max_threads; }
    117 
    118   // Accessors for our tables
    119   char* thread_name(int slot_id) const {
    120     return &thread_names_table_[
    121       (slot_id-1) * (StatsTable::kMaxThreadNameLength)];
    122   }
    123   PlatformThreadId* thread_tid(int slot_id) const {
    124     return &(thread_tid_table_[slot_id-1]);
    125   }
    126   int* thread_pid(int slot_id) const {
    127     return &(thread_pid_table_[slot_id-1]);
    128   }
    129   char* counter_name(int counter_id) const {
    130     return &counter_names_table_[
    131       (counter_id-1) * (StatsTable::kMaxCounterNameLength)];
    132   }
    133   int* row(int counter_id) const {
    134     return &data_table_[(counter_id-1) * max_threads()];
    135   }
    136 
    137  private:
    138   // Constructor is private because you should use New() instead.
    139   Private()
    140       : table_header_(NULL),
    141         thread_names_table_(NULL),
    142         thread_tid_table_(NULL),
    143         thread_pid_table_(NULL),
    144         counter_names_table_(NULL),
    145         data_table_(NULL) {
    146   }
    147 
    148   // Initializes the table on first access.  Sets header values
    149   // appropriately and zeroes all counters.
    150   void InitializeTable(void* memory, int size, int max_counters,
    151                        int max_threads);
    152 
    153   // Initializes our in-memory pointers into a pre-created StatsTable.
    154   void ComputeMappedPointers(void* memory);
    155 
    156   SharedMemory shared_memory_;
    157   TableHeader* table_header_;
    158   char* thread_names_table_;
    159   PlatformThreadId* thread_tid_table_;
    160   int* thread_pid_table_;
    161   char* counter_names_table_;
    162   int* data_table_;
    163 };
    164 
    165 // static
    166 StatsTable::Private* StatsTable::Private::New(const std::string& name,
    167                                               int size,
    168                                               int max_threads,
    169                                               int max_counters) {
    170   scoped_ptr<Private> priv(new Private());
    171   if (!priv->shared_memory_.CreateNamed(name, true, size))
    172     return NULL;
    173   if (!priv->shared_memory_.Map(size))
    174     return NULL;
    175   void* memory = priv->shared_memory_.memory();
    176 
    177   TableHeader* header = static_cast<TableHeader*>(memory);
    178 
    179   // If the version does not match, then assume the table needs
    180   // to be initialized.
    181   if (header->version != kTableVersion)
    182     priv->InitializeTable(memory, size, max_counters, max_threads);
    183 
    184   // We have a valid table, so compute our pointers.
    185   priv->ComputeMappedPointers(memory);
    186 
    187   return priv.release();
    188 }
    189 
    190 void StatsTable::Private::InitializeTable(void* memory, int size,
    191                                           int max_counters,
    192                                           int max_threads) {
    193   // Zero everything.
    194   memset(memory, 0, size);
    195 
    196   // Initialize the header.
    197   TableHeader* header = static_cast<TableHeader*>(memory);
    198   header->version = kTableVersion;
    199   header->size = size;
    200   header->max_counters = max_counters;
    201   header->max_threads = max_threads;
    202 }
    203 
    204 void StatsTable::Private::ComputeMappedPointers(void* memory) {
    205   char* data = static_cast<char*>(memory);
    206   int offset = 0;
    207 
    208   table_header_ = reinterpret_cast<TableHeader*>(data);
    209   offset += sizeof(*table_header_);
    210   offset += AlignOffset(offset);
    211 
    212   // Verify we're looking at a valid StatsTable.
    213   DCHECK_EQ(table_header_->version, kTableVersion);
    214 
    215   thread_names_table_ = reinterpret_cast<char*>(data + offset);
    216   offset += sizeof(char) *
    217             max_threads() * StatsTable::kMaxThreadNameLength;
    218   offset += AlignOffset(offset);
    219 
    220   thread_tid_table_ = reinterpret_cast<PlatformThreadId*>(data + offset);
    221   offset += sizeof(int) * max_threads();
    222   offset += AlignOffset(offset);
    223 
    224   thread_pid_table_ = reinterpret_cast<int*>(data + offset);
    225   offset += sizeof(int) * max_threads();
    226   offset += AlignOffset(offset);
    227 
    228   counter_names_table_ = reinterpret_cast<char*>(data + offset);
    229   offset += sizeof(char) *
    230             max_counters() * StatsTable::kMaxCounterNameLength;
    231   offset += AlignOffset(offset);
    232 
    233   data_table_ = reinterpret_cast<int*>(data + offset);
    234   offset += sizeof(int) * max_threads() * max_counters();
    235 
    236   DCHECK_EQ(offset, size());
    237 }
    238 
    239 // TLSData carries the data stored in the TLS slots for the
    240 // StatsTable.  This is used so that we can properly cleanup when the
    241 // thread exits and return the table slot.
    242 //
    243 // Each thread that calls RegisterThread in the StatsTable will have
    244 // a TLSData stored in its TLS.
    245 struct StatsTable::TLSData {
    246   StatsTable* table;
    247   int slot;
    248 };
    249 
    250 // We keep a singleton table which can be easily accessed.
    251 StatsTable* global_table = NULL;
    252 
    253 StatsTable::StatsTable(const std::string& name, int max_threads,
    254                        int max_counters)
    255     : impl_(NULL),
    256       tls_index_(SlotReturnFunction) {
    257   int table_size =
    258     AlignedSize(sizeof(Private::TableHeader)) +
    259     AlignedSize((max_counters * sizeof(char) * kMaxCounterNameLength)) +
    260     AlignedSize((max_threads * sizeof(char) * kMaxThreadNameLength)) +
    261     AlignedSize(max_threads * sizeof(int)) +
    262     AlignedSize(max_threads * sizeof(int)) +
    263     AlignedSize((sizeof(int) * (max_counters * max_threads)));
    264 
    265   impl_ = Private::New(name, table_size, max_threads, max_counters);
    266 
    267   if (!impl_)
    268     DPLOG(ERROR) << "StatsTable did not initialize";
    269 }
    270 
    271 StatsTable::~StatsTable() {
    272   // Before we tear down our copy of the table, be sure to
    273   // unregister our thread.
    274   UnregisterThread();
    275 
    276   // Return ThreadLocalStorage.  At this point, if any registered threads
    277   // still exist, they cannot Unregister.
    278   tls_index_.Free();
    279 
    280   // Cleanup our shared memory.
    281   delete impl_;
    282 
    283   // If we are the global table, unregister ourselves.
    284   if (global_table == this)
    285     global_table = NULL;
    286 }
    287 
    288 StatsTable* StatsTable::current() {
    289   return global_table;
    290 }
    291 
    292 void StatsTable::set_current(StatsTable* value) {
    293   global_table = value;
    294 }
    295 
    296 int StatsTable::GetSlot() const {
    297   TLSData* data = GetTLSData();
    298   if (!data)
    299     return 0;
    300   return data->slot;
    301 }
    302 
    303 int StatsTable::RegisterThread(const std::string& name) {
    304   int slot = 0;
    305   if (!impl_)
    306     return 0;
    307 
    308   // Registering a thread requires that we lock the shared memory
    309   // so that two threads don't grab the same slot.  Fortunately,
    310   // thread creation shouldn't happen in inner loops.
    311   {
    312     SharedMemoryAutoLock lock(impl_->shared_memory());
    313     slot = FindEmptyThread();
    314     if (!slot) {
    315       return 0;
    316     }
    317 
    318     // We have space, so consume a column in the table.
    319     std::string thread_name = name;
    320     if (name.empty())
    321       thread_name = kUnknownName;
    322     strlcpy(impl_->thread_name(slot), thread_name.c_str(),
    323             kMaxThreadNameLength);
    324     *(impl_->thread_tid(slot)) = PlatformThread::CurrentId();
    325     *(impl_->thread_pid(slot)) = GetCurrentProcId();
    326   }
    327 
    328   // Set our thread local storage.
    329   TLSData* data = new TLSData;
    330   data->table = this;
    331   data->slot = slot;
    332   tls_index_.Set(data);
    333   return slot;
    334 }
    335 
    336 int StatsTable::CountThreadsRegistered() const {
    337   if (!impl_)
    338     return 0;
    339 
    340   // Loop through the shared memory and count the threads that are active.
    341   // We intentionally do not lock the table during the operation.
    342   int count = 0;
    343   for (int index = 1; index <= impl_->max_threads(); index++) {
    344     char* name = impl_->thread_name(index);
    345     if (*name != '\0')
    346       count++;
    347   }
    348   return count;
    349 }
    350 
    351 int StatsTable::FindCounter(const std::string& name) {
    352   // Note: the API returns counters numbered from 1..N, although
    353   // internally, the array is 0..N-1.  This is so that we can return
    354   // zero as "not found".
    355   if (!impl_)
    356     return 0;
    357 
    358   // Create a scope for our auto-lock.
    359   {
    360     AutoLock scoped_lock(counters_lock_);
    361 
    362     // Attempt to find the counter.
    363     CountersMap::const_iterator iter;
    364     iter = counters_.find(name);
    365     if (iter != counters_.end())
    366       return iter->second;
    367   }
    368 
    369   // Counter does not exist, so add it.
    370   return AddCounter(name);
    371 }
    372 
    373 int* StatsTable::GetLocation(int counter_id, int slot_id) const {
    374   if (!impl_)
    375     return NULL;
    376   if (slot_id > impl_->max_threads())
    377     return NULL;
    378 
    379   int* row = impl_->row(counter_id);
    380   return &(row[slot_id-1]);
    381 }
    382 
    383 const char* StatsTable::GetRowName(int index) const {
    384   if (!impl_)
    385     return NULL;
    386 
    387   return impl_->counter_name(index);
    388 }
    389 
    390 int StatsTable::GetRowValue(int index) const {
    391   return GetRowValue(index, 0);
    392 }
    393 
    394 int StatsTable::GetRowValue(int index, int pid) const {
    395   if (!impl_)
    396     return 0;
    397 
    398   int rv = 0;
    399   int* row = impl_->row(index);
    400   for (int slot_id = 0; slot_id < impl_->max_threads(); slot_id++) {
    401     if (pid == 0 || *impl_->thread_pid(slot_id) == pid)
    402       rv += row[slot_id];
    403   }
    404   return rv;
    405 }
    406 
    407 int StatsTable::GetCounterValue(const std::string& name) {
    408   return GetCounterValue(name, 0);
    409 }
    410 
    411 int StatsTable::GetCounterValue(const std::string& name, int pid) {
    412   if (!impl_)
    413     return 0;
    414 
    415   int row = FindCounter(name);
    416   if (!row)
    417     return 0;
    418   return GetRowValue(row, pid);
    419 }
    420 
    421 int StatsTable::GetMaxCounters() const {
    422   if (!impl_)
    423     return 0;
    424   return impl_->max_counters();
    425 }
    426 
    427 int StatsTable::GetMaxThreads() const {
    428   if (!impl_)
    429     return 0;
    430   return impl_->max_threads();
    431 }
    432 
    433 int* StatsTable::FindLocation(const char* name) {
    434   // Get the static StatsTable
    435   StatsTable *table = StatsTable::current();
    436   if (!table)
    437     return NULL;
    438 
    439   // Get the slot for this thread.  Try to register
    440   // it if none exists.
    441   int slot = table->GetSlot();
    442   if (!slot && !(slot = table->RegisterThread(std::string())))
    443     return NULL;
    444 
    445   // Find the counter id for the counter.
    446   std::string str_name(name);
    447   int counter = table->FindCounter(str_name);
    448 
    449   // Now we can find the location in the table.
    450   return table->GetLocation(counter, slot);
    451 }
    452 
    453 void StatsTable::UnregisterThread() {
    454   UnregisterThread(GetTLSData());
    455 }
    456 
    457 void StatsTable::UnregisterThread(TLSData* data) {
    458   if (!data)
    459     return;
    460   DCHECK(impl_);
    461 
    462   // Mark the slot free by zeroing out the thread name.
    463   char* name = impl_->thread_name(data->slot);
    464   *name = '\0';
    465 
    466   // Remove the calling thread's TLS so that it cannot use the slot.
    467   tls_index_.Set(NULL);
    468   delete data;
    469 }
    470 
    471 void StatsTable::SlotReturnFunction(void* data) {
    472   // This is called by the TLS destructor, which on some platforms has
    473   // already cleared the TLS info, so use the tls_data argument
    474   // rather than trying to fetch it ourselves.
    475   TLSData* tls_data = static_cast<TLSData*>(data);
    476   if (tls_data) {
    477     DCHECK(tls_data->table);
    478     tls_data->table->UnregisterThread(tls_data);
    479   }
    480 }
    481 
    482 int StatsTable::FindEmptyThread() const {
    483   // Note: the API returns slots numbered from 1..N, although
    484   // internally, the array is 0..N-1.  This is so that we can return
    485   // zero as "not found".
    486   //
    487   // The reason for doing this is because the thread 'slot' is stored
    488   // in TLS, which is always initialized to zero, not -1.  If 0 were
    489   // returned as a valid slot number, it would be confused with the
    490   // uninitialized state.
    491   if (!impl_)
    492     return 0;
    493 
    494   int index = 1;
    495   for (; index <= impl_->max_threads(); index++) {
    496     char* name = impl_->thread_name(index);
    497     if (!*name)
    498       break;
    499   }
    500   if (index > impl_->max_threads())
    501     return 0;  // The table is full.
    502   return index;
    503 }
    504 
    505 int StatsTable::FindCounterOrEmptyRow(const std::string& name) const {
    506   // Note: the API returns slots numbered from 1..N, although
    507   // internally, the array is 0..N-1.  This is so that we can return
    508   // zero as "not found".
    509   //
    510   // There isn't much reason for this other than to be consistent
    511   // with the way we track columns for thread slots.  (See comments
    512   // in FindEmptyThread for why it is done this way).
    513   if (!impl_)
    514     return 0;
    515 
    516   int free_slot = 0;
    517   for (int index = 1; index <= impl_->max_counters(); index++) {
    518     char* row_name = impl_->counter_name(index);
    519     if (!*row_name && !free_slot)
    520       free_slot = index;  // save that we found a free slot
    521     else if (!strncmp(row_name, name.c_str(), kMaxCounterNameLength))
    522       return index;
    523   }
    524   return free_slot;
    525 }
    526 
    527 int StatsTable::AddCounter(const std::string& name) {
    528   if (!impl_)
    529     return 0;
    530 
    531   int counter_id = 0;
    532   {
    533     // To add a counter to the shared memory, we need the
    534     // shared memory lock.
    535     SharedMemoryAutoLock lock(impl_->shared_memory());
    536 
    537     // We have space, so create a new counter.
    538     counter_id = FindCounterOrEmptyRow(name);
    539     if (!counter_id)
    540       return 0;
    541 
    542     std::string counter_name = name;
    543     if (name.empty())
    544       counter_name = kUnknownName;
    545     strlcpy(impl_->counter_name(counter_id), counter_name.c_str(),
    546             kMaxCounterNameLength);
    547   }
    548 
    549   // now add to our in-memory cache
    550   {
    551     AutoLock lock(counters_lock_);
    552     counters_[name] = counter_id;
    553   }
    554   return counter_id;
    555 }
    556 
    557 StatsTable::TLSData* StatsTable::GetTLSData() const {
    558   TLSData* data =
    559     static_cast<TLSData*>(tls_index_.Get());
    560   if (!data)
    561     return NULL;
    562 
    563   DCHECK(data->slot);
    564   DCHECK_EQ(data->table, this);
    565   return data;
    566 }
    567 
    568 }  // namespace base
    569