Home | History | Annotate | Download | only in threading
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/threading/thread_local_storage.h"
      6 
      7 #include <windows.h>
      8 
      9 #include "base/logging.h"
     10 
     11 
     12 namespace {
     13 // In order to make TLS destructors work, we need to keep function
     14 // pointers to the destructor for each TLS that we allocate.
     15 // We make this work by allocating a single OS-level TLS, which
     16 // contains an array of slots for the application to use.  In
     17 // parallel, we also allocate an array of destructors, which we
     18 // keep track of and call when threads terminate.
     19 
     20 // g_native_tls_key is the one native TLS that we use.  It stores our table.
     21 long g_native_tls_key = TLS_OUT_OF_INDEXES;
     22 
     23 // g_last_used_tls_key is the high-water-mark of allocated thread local storage.
     24 // Each allocation is an index into our g_tls_destructors[].  Each such index is
     25 // assigned to the instance variable slot_ in a ThreadLocalStorage::Slot
     26 // instance.  We reserve the value slot_ == 0 to indicate that the corresponding
     27 // instance of ThreadLocalStorage::Slot has been freed (i.e., destructor called,
     28 // etc.).  This reserved use of 0 is then stated as the initial value of
     29 // g_last_used_tls_key, so that the first issued index will be 1.
     30 long g_last_used_tls_key = 0;
     31 
     32 // The maximum number of 'slots' in our thread local storage stack.
     33 const int kThreadLocalStorageSize = 64;
     34 
     35 // The maximum number of times to try to clear slots by calling destructors.
     36 // Use pthread naming convention for clarity.
     37 const int kMaxDestructorIterations = kThreadLocalStorageSize;
     38 
     39 // An array of destructor function pointers for the slots.  If a slot has a
     40 // destructor, it will be stored in its corresponding entry in this array.
     41 // The elements are volatile to ensure that when the compiler reads the value
     42 // to potentially call the destructor, it does so once, and that value is tested
     43 // for null-ness and then used. Yes, that would be a weird de-optimization,
     44 // but I can imagine some register machines where it was just as easy to
     45 // re-fetch an array element, and I want to be sure a call to free the key
     46 // (i.e., null out the destructor entry) that happens on a separate thread can't
     47 // hurt the racy calls to the destructors on another thread.
     48 volatile base::ThreadLocalStorage::TLSDestructorFunc
     49     g_tls_destructors[kThreadLocalStorageSize];
     50 
     51 void** ConstructTlsVector() {
     52   if (g_native_tls_key == TLS_OUT_OF_INDEXES) {
     53     long value = TlsAlloc();
     54     DCHECK(value != TLS_OUT_OF_INDEXES);
     55 
     56     // Atomically test-and-set the tls_key.  If the key is TLS_OUT_OF_INDEXES,
     57     // go ahead and set it.  Otherwise, do nothing, as another
     58     // thread already did our dirty work.
     59     if (TLS_OUT_OF_INDEXES != InterlockedCompareExchange(
     60             &g_native_tls_key, value, TLS_OUT_OF_INDEXES)) {
     61       // We've been shortcut. Another thread replaced g_native_tls_key first so
     62       // we need to destroy our index and use the one the other thread got
     63       // first.
     64       TlsFree(value);
     65     }
     66   }
     67   DCHECK(!TlsGetValue(g_native_tls_key));
     68 
     69   // Some allocators, such as TCMalloc, make use of thread local storage.
     70   // As a result, any attempt to call new (or malloc) will lazily cause such a
     71   // system to initialize, which will include registering for a TLS key.  If we
     72   // are not careful here, then that request to create a key will call new back,
     73   // and we'll have an infinite loop.  We avoid that as follows:
     74   // Use a stack allocated vector, so that we don't have dependence on our
     75   // allocator until our service is in place.  (i.e., don't even call new until
     76   // after we're setup)
     77   void* stack_allocated_tls_data[kThreadLocalStorageSize];
     78   memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
     79   // Ensure that any rentrant calls change the temp version.
     80   TlsSetValue(g_native_tls_key, stack_allocated_tls_data);
     81 
     82   // Allocate an array to store our data.
     83   void** tls_data = new void*[kThreadLocalStorageSize];
     84   memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
     85   TlsSetValue(g_native_tls_key, tls_data);
     86   return tls_data;
     87 }
     88 
     89 // Called when we terminate a thread, this function calls any TLS destructors
     90 // that are pending for this thread.
     91 void WinThreadExit() {
     92   if (g_native_tls_key == TLS_OUT_OF_INDEXES)
     93     return;
     94 
     95   void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key));
     96   // Maybe we have never initialized TLS for this thread.
     97   if (!tls_data)
     98     return;
     99 
    100   // Some allocators, such as TCMalloc, use TLS.  As a result, when a thread
    101   // terminates, one of the destructor calls we make may be to shut down an
    102   // allocator.  We have to be careful that after we've shutdown all of the
    103   // known destructors (perchance including an allocator), that we don't call
    104   // the allocator and cause it to resurrect itself (with no possibly destructor
    105   // call to follow).  We handle this problem as follows:
    106   // Switch to using a stack allocated vector, so that we don't have dependence
    107   // on our allocator after we have called all g_tls_destructors.  (i.e., don't
    108   // even call delete[] after we're done with destructors.)
    109   void* stack_allocated_tls_data[kThreadLocalStorageSize];
    110   memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
    111   // Ensure that any re-entrant calls change the temp version.
    112   TlsSetValue(g_native_tls_key, stack_allocated_tls_data);
    113   delete[] tls_data;  // Our last dependence on an allocator.
    114 
    115   int remaining_attempts = kMaxDestructorIterations;
    116   bool need_to_scan_destructors = true;
    117   while (need_to_scan_destructors) {
    118     need_to_scan_destructors = false;
    119     // Try to destroy the first-created-slot (which is slot 1) in our last
    120     // destructor call.  That user was able to function, and define a slot with
    121     // no other services running, so perhaps it is a basic service (like an
    122     // allocator) and should also be destroyed last.  If we get the order wrong,
    123     // then we'll itterate several more times, so it is really not that
    124     // critical (but it might help).
    125     for (int slot = g_last_used_tls_key; slot > 0; --slot) {
    126       void* value = stack_allocated_tls_data[slot];
    127       if (value == NULL)
    128         continue;
    129       base::ThreadLocalStorage::TLSDestructorFunc destructor =
    130           g_tls_destructors[slot];
    131       if (destructor == NULL)
    132         continue;
    133       stack_allocated_tls_data[slot] = NULL;  // pre-clear the slot.
    134       destructor(value);
    135       // Any destructor might have called a different service, which then set
    136       // a different slot to a non-NULL value.  Hence we need to check
    137       // the whole vector again.  This is a pthread standard.
    138       need_to_scan_destructors = true;
    139     }
    140     if (--remaining_attempts <= 0) {
    141       NOTREACHED();  // Destructors might not have been called.
    142       break;
    143     }
    144   }
    145 
    146   // Remove our stack allocated vector.
    147   TlsSetValue(g_native_tls_key, NULL);
    148 }
    149 
    150 }  // namespace
    151 
    152 namespace base {
    153 
    154 ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) {
    155   initialized_ = false;
    156   slot_ = 0;
    157   Initialize(destructor);
    158 }
    159 
    160 bool ThreadLocalStorage::StaticSlot::Initialize(TLSDestructorFunc destructor) {
    161   if (g_native_tls_key == TLS_OUT_OF_INDEXES || !TlsGetValue(g_native_tls_key))
    162     ConstructTlsVector();
    163 
    164   // Grab a new slot.
    165   slot_ = InterlockedIncrement(&g_last_used_tls_key);
    166   DCHECK_GT(slot_, 0);
    167   if (slot_ >= kThreadLocalStorageSize) {
    168     NOTREACHED();
    169     return false;
    170   }
    171 
    172   // Setup our destructor.
    173   g_tls_destructors[slot_] = destructor;
    174   initialized_ = true;
    175   return true;
    176 }
    177 
    178 void ThreadLocalStorage::StaticSlot::Free() {
    179   // At this time, we don't reclaim old indices for TLS slots.
    180   // So all we need to do is wipe the destructor.
    181   DCHECK_GT(slot_, 0);
    182   DCHECK_LT(slot_, kThreadLocalStorageSize);
    183   g_tls_destructors[slot_] = NULL;
    184   slot_ = 0;
    185   initialized_ = false;
    186 }
    187 
    188 void* ThreadLocalStorage::StaticSlot::Get() const {
    189   void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key));
    190   if (!tls_data)
    191     tls_data = ConstructTlsVector();
    192   DCHECK_GT(slot_, 0);
    193   DCHECK_LT(slot_, kThreadLocalStorageSize);
    194   return tls_data[slot_];
    195 }
    196 
    197 void ThreadLocalStorage::StaticSlot::Set(void* value) {
    198   void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key));
    199   if (!tls_data)
    200     tls_data = ConstructTlsVector();
    201   DCHECK_GT(slot_, 0);
    202   DCHECK_LT(slot_, kThreadLocalStorageSize);
    203   tls_data[slot_] = value;
    204 }
    205 
    206 }  // namespace base
    207 
    208 // Thread Termination Callbacks.
    209 // Windows doesn't support a per-thread destructor with its
    210 // TLS primitives.  So, we build it manually by inserting a
    211 // function to be called on each thread's exit.
    212 // This magic is from http://www.codeproject.com/threads/tls.asp
    213 // and it works for VC++ 7.0 and later.
    214 
    215 // Force a reference to _tls_used to make the linker create the TLS directory
    216 // if it's not already there.  (e.g. if __declspec(thread) is not used).
    217 // Force a reference to p_thread_callback_base to prevent whole program
    218 // optimization from discarding the variable.
    219 #ifdef _WIN64
    220 
    221 #pragma comment(linker, "/INCLUDE:_tls_used")
    222 #pragma comment(linker, "/INCLUDE:p_thread_callback_base")
    223 
    224 #else  // _WIN64
    225 
    226 #pragma comment(linker, "/INCLUDE:__tls_used")
    227 #pragma comment(linker, "/INCLUDE:_p_thread_callback_base")
    228 
    229 #endif  // _WIN64
    230 
    231 // Static callback function to call with each thread termination.
    232 void NTAPI OnThreadExit(PVOID module, DWORD reason, PVOID reserved) {
    233   // On XP SP0 & SP1, the DLL_PROCESS_ATTACH is never seen. It is sent on SP2+
    234   // and on W2K and W2K3. So don't assume it is sent.
    235   if (DLL_THREAD_DETACH == reason || DLL_PROCESS_DETACH == reason)
    236     WinThreadExit();
    237 }
    238 
    239 // .CRT$XLA to .CRT$XLZ is an array of PIMAGE_TLS_CALLBACK pointers that are
    240 // called automatically by the OS loader code (not the CRT) when the module is
    241 // loaded and on thread creation. They are NOT called if the module has been
    242 // loaded by a LoadLibrary() call. It must have implicitly been loaded at
    243 // process startup.
    244 // By implicitly loaded, I mean that it is directly referenced by the main EXE
    245 // or by one of its dependent DLLs. Delay-loaded DLL doesn't count as being
    246 // implicitly loaded.
    247 //
    248 // See VC\crt\src\tlssup.c for reference.
    249 
    250 // extern "C" suppresses C++ name mangling so we know the symbol name for the
    251 // linker /INCLUDE:symbol pragma above.
    252 extern "C" {
    253 // The linker must not discard p_thread_callback_base.  (We force a reference
    254 // to this variable with a linker /INCLUDE:symbol pragma to ensure that.) If
    255 // this variable is discarded, the OnThreadExit function will never be called.
    256 #ifdef _WIN64
    257 
    258 // .CRT section is merged with .rdata on x64 so it must be constant data.
    259 #pragma const_seg(".CRT$XLB")
    260 // When defining a const variable, it must have external linkage to be sure the
    261 // linker doesn't discard it.
    262 extern const PIMAGE_TLS_CALLBACK p_thread_callback_base;
    263 const PIMAGE_TLS_CALLBACK p_thread_callback_base = OnThreadExit;
    264 
    265 // Reset the default section.
    266 #pragma const_seg()
    267 
    268 #else  // _WIN64
    269 
    270 #pragma data_seg(".CRT$XLB")
    271 PIMAGE_TLS_CALLBACK p_thread_callback_base = OnThreadExit;
    272 
    273 // Reset the default section.
    274 #pragma data_seg()
    275 
    276 #endif  // _WIN64
    277 }  // extern "C"
    278