Home | History | Annotate | Download | only in congestion_control
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/quic/congestion_control/cubic.h"
      6 
      7 #include "base/basictypes.h"
      8 #include "base/logging.h"
      9 #include "base/time/time.h"
     10 
     11 namespace net {
     12 
     13 // Constants based on TCP defaults.
     14 // The following constants are in 2^10 fractions of a second instead of ms to
     15 // allow a 10 shift right to divide.
     16 const int kCubeScale = 40;  // 1024*1024^3 (first 1024 is from 0.100^3)
     17                             // where 0.100 is 100 ms which is the scaling
     18                             // round trip time.
     19 const int kCubeCongestionWindowScale = 410;
     20 const uint64 kCubeFactor = (1ull << kCubeScale) / kCubeCongestionWindowScale;
     21 const uint32 kBeta = 717;  // Back off factor after loss.
     22 const uint32 kBetaLastMax = 871;  // Additional back off factor after loss for
     23                                   // the stored max value.
     24 
     25 namespace {
     26 // Find last bit in a 64-bit word.
     27 int FindMostSignificantBit(uint64 x) {
     28   if (!x) {
     29     return 0;
     30   }
     31   int r = 0;
     32   if (x & 0xffffffff00000000ull) {
     33     x >>= 32;
     34     r += 32;
     35   }
     36   if (x & 0xffff0000u) {
     37     x >>= 16;
     38     r += 16;
     39   }
     40   if (x & 0xff00u) {
     41     x >>= 8;
     42     r += 8;
     43   }
     44   if (x & 0xf0u) {
     45     x >>= 4;
     46     r += 4;
     47   }
     48   if (x & 0xcu) {
     49     x >>= 2;
     50     r += 2;
     51   }
     52   if (x & 0x02u) {
     53     x >>= 1;
     54     r++;
     55   }
     56   if (x & 0x01u) {
     57     r++;
     58   }
     59   return r;
     60 }
     61 
     62 // 6 bits table [0..63]
     63 const uint32 cube_root_table[] = {
     64     0,  54,  54,  54, 118, 118, 118, 118, 123, 129, 134, 138, 143, 147, 151,
     65   156, 157, 161, 164, 168, 170, 173, 176, 179, 181, 185, 187, 190, 192, 194,
     66   197, 199, 200, 202, 204, 206, 209, 211, 213, 215, 217, 219, 221, 222, 224,
     67   225, 227, 229, 231, 232, 234, 236, 237, 239, 240, 242, 244, 245, 246, 248,
     68   250, 251, 252, 254
     69 };
     70 }  // namespace
     71 
     72 Cubic::Cubic(const QuicClock* clock)
     73     : clock_(clock),
     74       epoch_(QuicTime::Zero()),
     75       last_update_time_(QuicTime::Zero()) {
     76   Reset();
     77 }
     78 
     79 // Calculate the cube root using a table lookup followed by one Newton-Raphson
     80 // iteration.
     81 uint32 Cubic::CubeRoot(uint64 a) {
     82   uint32 msb = FindMostSignificantBit(a);
     83   DCHECK_LE(msb, 64u);
     84 
     85   if (msb < 7) {
     86     // MSB in our table.
     87     return ((cube_root_table[static_cast<uint32>(a)]) + 31) >> 6;
     88   }
     89   // MSB          7,  8,  9, 10, 11, 12, 13, 14, 15, 16, ...
     90   // cubic_shift  1,  1,  1,  2,  2,  2,  3,  3,  3,  4, ...
     91   uint32 cubic_shift = (msb - 4);
     92   cubic_shift = ((cubic_shift * 342) >> 10);  // Div by 3, biased high.
     93 
     94   // 4 to 6 bits accuracy depending on MSB.
     95   uint32 down_shifted_to_6bit = (a >> (cubic_shift * 3));
     96   uint64 root = ((cube_root_table[down_shifted_to_6bit] + 10) << cubic_shift)
     97       >> 6;
     98 
     99   // Make one Newton-Raphson iteration.
    100   // Since x has an error (inaccuracy due to the use of fix point) we get a
    101   // more accurate result by doing x * (x - 1) instead of x * x.
    102   root = 2 * root + (a / (root * (root - 1)));
    103   root = ((root * 341) >> 10);  // Div by 3, biased low.
    104   return static_cast<uint32>(root);
    105 }
    106 
    107 void Cubic::Reset() {
    108   epoch_ = QuicTime::Zero();  // Reset time.
    109   last_update_time_ = QuicTime::Zero();  // Reset time.
    110   last_congestion_window_ = 0;
    111   last_max_congestion_window_ = 0;
    112   acked_packets_count_ = 0;
    113   estimated_tcp_congestion_window_ = 0;
    114   origin_point_congestion_window_ = 0;
    115   time_to_origin_point_ = 0;
    116   last_target_congestion_window_ = 0;
    117 }
    118 
    119 QuicTcpCongestionWindow Cubic::CongestionWindowAfterPacketLoss(
    120     QuicTcpCongestionWindow current_congestion_window) {
    121   if (current_congestion_window < last_max_congestion_window_) {
    122     // We never reached the old max, so assume we are competing with another
    123     // flow. Use our extra back off factor to allow the other flow to go up.
    124     last_max_congestion_window_ =
    125         (kBetaLastMax * current_congestion_window) >> 10;
    126   } else {
    127     last_max_congestion_window_ = current_congestion_window;
    128   }
    129   epoch_ = QuicTime::Zero();  // Reset time.
    130   return (current_congestion_window * kBeta) >> 10;
    131 }
    132 
    133 QuicTcpCongestionWindow Cubic::CongestionWindowAfterAck(
    134     QuicTcpCongestionWindow current_congestion_window,
    135     QuicTime::Delta delay_min) {
    136   acked_packets_count_ += 1;  // Packets acked.
    137   QuicTime current_time = clock_->ApproximateNow();
    138 
    139   // Cubic is "independent" of RTT, the update is limited by the time elapsed.
    140   if (last_congestion_window_ == current_congestion_window &&
    141       (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
    142     return std::max(last_target_congestion_window_,
    143                     estimated_tcp_congestion_window_);
    144   }
    145   last_congestion_window_ = current_congestion_window;
    146   last_update_time_ = current_time;
    147 
    148   if (!epoch_.IsInitialized()) {
    149     // First ACK after a loss event.
    150     DLOG(INFO) << "Start of epoch";
    151     epoch_ = current_time;  // Start of epoch.
    152     acked_packets_count_ = 1;  // Reset count.
    153     // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
    154     estimated_tcp_congestion_window_ = current_congestion_window;
    155     if (last_max_congestion_window_ <= current_congestion_window) {
    156       time_to_origin_point_ = 0;
    157       origin_point_congestion_window_ = current_congestion_window;
    158     } else {
    159       time_to_origin_point_ = CubeRoot(kCubeFactor *
    160           (last_max_congestion_window_ - current_congestion_window));
    161       origin_point_congestion_window_ =
    162           last_max_congestion_window_;
    163     }
    164   }
    165   // Change the time unit from microseconds to 2^10 fractions per second. Take
    166   // the round trip time in account. This is done to allow us to use shift as a
    167   // divide operator.
    168   int64 elapsed_time =
    169       (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
    170       base::Time::kMicrosecondsPerSecond;
    171 
    172   int64 offset = time_to_origin_point_ - elapsed_time;
    173   QuicTcpCongestionWindow delta_congestion_window = (kCubeCongestionWindowScale
    174       * offset * offset * offset) >> kCubeScale;
    175 
    176   QuicTcpCongestionWindow target_congestion_window =
    177       origin_point_congestion_window_ - delta_congestion_window;
    178 
    179   // We have a new cubic congestion window.
    180   last_target_congestion_window_ = target_congestion_window;
    181 
    182   // Update estimated TCP congestion_window.
    183   // Note: we do a normal Reno congestion avoidance calculation not the
    184   // calculation described in section 3.3 TCP-friendly region of the document.
    185   while (acked_packets_count_ >= estimated_tcp_congestion_window_) {
    186     acked_packets_count_ -= estimated_tcp_congestion_window_;
    187     estimated_tcp_congestion_window_++;
    188   }
    189   // Compute target congestion_window based on cubic target and estimated TCP
    190   // congestion_window, use highest (fastest).
    191   if (target_congestion_window < estimated_tcp_congestion_window_) {
    192     target_congestion_window = estimated_tcp_congestion_window_;
    193   }
    194   DLOG(INFO) << "Target congestion_window:" << target_congestion_window;
    195   return target_congestion_window;
    196 }
    197 
    198 }  // namespace net
    199