Home | History | Annotate | Download | only in dtoa
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_
     29 #define DOUBLE_CONVERSION_DOUBLE_H_
     30 
     31 #include "diy-fp.h"
     32 
     33 namespace WTF {
     34 
     35 namespace double_conversion {
     36 
     37     // We assume that doubles and uint64_t have the same endianness.
     38     static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
     39     static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
     40 
     41     // Helper functions for doubles.
     42     class Double {
     43     public:
     44         static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
     45         static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
     46         static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
     47         static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
     48         static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
     49         static const int kSignificandSize = 53;
     50 
     51         Double() : d64_(0) {}
     52         explicit Double(double d) : d64_(double_to_uint64(d)) {}
     53         explicit Double(uint64_t d64) : d64_(d64) {}
     54         explicit Double(DiyFp diy_fp)
     55         : d64_(DiyFpToUint64(diy_fp)) {}
     56 
     57         // The value encoded by this Double must be greater or equal to +0.0.
     58         // It must not be special (infinity, or NaN).
     59         DiyFp AsDiyFp() const {
     60             ASSERT(Sign() > 0);
     61             ASSERT(!IsSpecial());
     62             return DiyFp(Significand(), Exponent());
     63         }
     64 
     65         // The value encoded by this Double must be strictly greater than 0.
     66         DiyFp AsNormalizedDiyFp() const {
     67             ASSERT(value() > 0.0);
     68             uint64_t f = Significand();
     69             int e = Exponent();
     70 
     71             // The current double could be a denormal.
     72             while ((f & kHiddenBit) == 0) {
     73                 f <<= 1;
     74                 e--;
     75             }
     76             // Do the final shifts in one go.
     77             f <<= DiyFp::kSignificandSize - kSignificandSize;
     78             e -= DiyFp::kSignificandSize - kSignificandSize;
     79             return DiyFp(f, e);
     80         }
     81 
     82         // Returns the double's bit as uint64.
     83         uint64_t AsUint64() const {
     84             return d64_;
     85         }
     86 
     87         // Returns the next greater double. Returns +infinity on input +infinity.
     88         double NextDouble() const {
     89             if (d64_ == kInfinity) return Double(kInfinity).value();
     90             if (Sign() < 0 && Significand() == 0) {
     91                 // -0.0
     92                 return 0.0;
     93             }
     94             if (Sign() < 0) {
     95                 return Double(d64_ - 1).value();
     96             } else {
     97                 return Double(d64_ + 1).value();
     98             }
     99         }
    100 
    101         int Exponent() const {
    102             if (IsDenormal()) return kDenormalExponent;
    103 
    104             uint64_t d64 = AsUint64();
    105             int biased_e =
    106             static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
    107             return biased_e - kExponentBias;
    108         }
    109 
    110         uint64_t Significand() const {
    111             uint64_t d64 = AsUint64();
    112             uint64_t significand = d64 & kSignificandMask;
    113             if (!IsDenormal()) {
    114                 return significand + kHiddenBit;
    115             } else {
    116                 return significand;
    117             }
    118         }
    119 
    120         // Returns true if the double is a denormal.
    121         bool IsDenormal() const {
    122             uint64_t d64 = AsUint64();
    123             return (d64 & kExponentMask) == 0;
    124         }
    125 
    126         // We consider denormals not to be special.
    127         // Hence only Infinity and NaN are special.
    128         bool IsSpecial() const {
    129             uint64_t d64 = AsUint64();
    130             return (d64 & kExponentMask) == kExponentMask;
    131         }
    132 
    133         bool IsNan() const {
    134             uint64_t d64 = AsUint64();
    135             return ((d64 & kExponentMask) == kExponentMask) &&
    136             ((d64 & kSignificandMask) != 0);
    137         }
    138 
    139         bool IsInfinite() const {
    140             uint64_t d64 = AsUint64();
    141             return ((d64 & kExponentMask) == kExponentMask) &&
    142             ((d64 & kSignificandMask) == 0);
    143         }
    144 
    145         int Sign() const {
    146             uint64_t d64 = AsUint64();
    147             return (d64 & kSignMask) == 0? 1: -1;
    148         }
    149 
    150         // Precondition: the value encoded by this Double must be greater or equal
    151         // than +0.0.
    152         DiyFp UpperBoundary() const {
    153             ASSERT(Sign() > 0);
    154             return DiyFp(Significand() * 2 + 1, Exponent() - 1);
    155         }
    156 
    157         // Computes the two boundaries of this.
    158         // The bigger boundary (m_plus) is normalized. The lower boundary has the same
    159         // exponent as m_plus.
    160         // Precondition: the value encoded by this Double must be greater than 0.
    161         void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
    162             ASSERT(value() > 0.0);
    163             DiyFp v = this->AsDiyFp();
    164             bool significand_is_zero = (v.f() == kHiddenBit);
    165             DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
    166             DiyFp m_minus;
    167             if (significand_is_zero && v.e() != kDenormalExponent) {
    168                 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
    169                 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
    170                 // at a distance of 1e8.
    171                 // The only exception is for the smallest normal: the largest denormal is
    172                 // at the same distance as its successor.
    173                 // Note: denormals have the same exponent as the smallest normals.
    174                 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
    175             } else {
    176                 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
    177             }
    178             m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
    179             m_minus.set_e(m_plus.e());
    180             *out_m_plus = m_plus;
    181             *out_m_minus = m_minus;
    182         }
    183 
    184         double value() const { return uint64_to_double(d64_); }
    185 
    186         // Returns the significand size for a given order of magnitude.
    187         // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
    188         // This function returns the number of significant binary digits v will have
    189         // once it's encoded into a double. In almost all cases this is equal to
    190         // kSignificandSize. The only exceptions are denormals. They start with
    191         // leading zeroes and their effective significand-size is hence smaller.
    192         static int SignificandSizeForOrderOfMagnitude(int order) {
    193             if (order >= (kDenormalExponent + kSignificandSize)) {
    194                 return kSignificandSize;
    195             }
    196             if (order <= kDenormalExponent) return 0;
    197             return order - kDenormalExponent;
    198         }
    199 
    200         static double Infinity() {
    201             return Double(kInfinity).value();
    202         }
    203 
    204         static double NaN() {
    205             return Double(kNaN).value();
    206         }
    207 
    208     private:
    209         static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
    210         static const int kDenormalExponent = -kExponentBias + 1;
    211         static const int kMaxExponent = 0x7FF - kExponentBias;
    212         static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
    213         static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
    214 
    215         const uint64_t d64_;
    216 
    217         static uint64_t DiyFpToUint64(DiyFp diy_fp) {
    218             uint64_t significand = diy_fp.f();
    219             int exponent = diy_fp.e();
    220             while (significand > kHiddenBit + kSignificandMask) {
    221                 significand >>= 1;
    222                 exponent++;
    223             }
    224             if (exponent >= kMaxExponent) {
    225                 return kInfinity;
    226             }
    227             if (exponent < kDenormalExponent) {
    228                 return 0;
    229             }
    230             while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
    231                 significand <<= 1;
    232                 exponent--;
    233             }
    234             uint64_t biased_exponent;
    235             if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
    236                 biased_exponent = 0;
    237             } else {
    238                 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
    239             }
    240             return (significand & kSignificandMask) |
    241             (biased_exponent << kPhysicalSignificandSize);
    242         }
    243     };
    244 
    245 }  // namespace double_conversion
    246 
    247 } // namespace WTF
    248 
    249 #endif  // DOUBLE_CONVERSION_DOUBLE_H_
    250