1 /* 2 ******************************************************************************* 3 * 4 * Copyright (C) 2003-2007, International Business Machines 5 * Corporation and others. All Rights Reserved. 6 * 7 ******************************************************************************* 8 * file name: gencnvex.c 9 * encoding: US-ASCII 10 * tab size: 8 (not used) 11 * indentation:4 12 * 13 * created on: 2003oct12 14 * created by: Markus W. Scherer 15 */ 16 17 #include <stdio.h> 18 #include "unicode/utypes.h" 19 #include "unicode/ustring.h" 20 #include "cstring.h" 21 #include "cmemory.h" 22 #include "ucnv_cnv.h" 23 #include "ucnvmbcs.h" 24 #include "toolutil.h" 25 #include "unewdata.h" 26 #include "ucm.h" 27 #include "makeconv.h" 28 #include "genmbcs.h" 29 30 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) 31 32 33 static void 34 CnvExtClose(NewConverter *cnvData); 35 36 static UBool 37 CnvExtIsValid(NewConverter *cnvData, 38 const uint8_t *bytes, int32_t length); 39 40 static UBool 41 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); 42 43 static uint32_t 44 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, 45 UNewDataMemory *pData, int32_t tableType); 46 47 typedef struct CnvExtData { 48 NewConverter newConverter; 49 50 UCMFile *ucm; 51 52 /* toUnicode (state table in ucm->states) */ 53 UToolMemory *toUTable, *toUUChars; 54 55 /* fromUnicode */ 56 UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; 57 58 uint16_t stage1[MBCS_STAGE_1_SIZE]; 59 uint16_t stage2[MBCS_STAGE_2_SIZE]; 60 uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ 61 uint32_t stage3b[0x10000]; 62 63 int32_t stage1Top, stage2Top, stage3Top, stage3bTop; 64 65 /* for stage3 compaction of <subchar1> |2 mappings */ 66 uint16_t stage3Sub1Block; 67 68 /* statistics */ 69 int32_t 70 maxInBytes, maxOutBytes, maxBytesPerUChar, 71 maxInUChars, maxOutUChars, maxUCharsPerByte; 72 } CnvExtData; 73 74 NewConverter * 75 CnvExtOpen(UCMFile *ucm) { 76 CnvExtData *extData; 77 78 extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); 79 if(extData==NULL) { 80 printf("out of memory\n"); 81 exit(U_MEMORY_ALLOCATION_ERROR); 82 } 83 uprv_memset(extData, 0, sizeof(CnvExtData)); 84 85 extData->ucm=ucm; /* aliased, not owned */ 86 87 extData->newConverter.close=CnvExtClose; 88 extData->newConverter.isValid=CnvExtIsValid; 89 extData->newConverter.addTable=CnvExtAddTable; 90 extData->newConverter.write=CnvExtWrite; 91 return &extData->newConverter; 92 } 93 94 static void 95 CnvExtClose(NewConverter *cnvData) { 96 CnvExtData *extData=(CnvExtData *)cnvData; 97 if(extData!=NULL) { 98 utm_close(extData->toUTable); 99 utm_close(extData->toUUChars); 100 utm_close(extData->fromUTableUChars); 101 utm_close(extData->fromUTableValues); 102 utm_close(extData->fromUBytes); 103 } 104 } 105 106 /* we do not expect this to be called */ 107 static UBool 108 CnvExtIsValid(NewConverter *cnvData, 109 const uint8_t *bytes, int32_t length) { 110 return FALSE; 111 } 112 113 static uint32_t 114 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, 115 UNewDataMemory *pData, int32_t tableType) { 116 CnvExtData *extData=(CnvExtData *)cnvData; 117 int32_t length, top, headerSize; 118 119 int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; 120 121 if(tableType&TABLE_BASE) { 122 headerSize=0; 123 } else { 124 _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; 125 126 /* write the header and base table name for an extension-only table */ 127 length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; 128 while(length&3) { 129 /* add padding */ 130 extData->ucm->baseName[length++]=0; 131 } 132 133 headerSize=MBCS_HEADER_V4_LENGTH*4+length; 134 135 /* fill the header */ 136 header.version[0]=4; 137 header.version[1]=2; 138 header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); 139 140 /* write the header and the base table name */ 141 udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); 142 udata_writeBlock(pData, extData->ucm->baseName, length); 143 } 144 145 /* fill indexes[] - offsets/indexes are in units of the target array */ 146 top=0; 147 148 indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; 149 top+=length*4; 150 151 indexes[UCNV_EXT_TO_U_INDEX]=top; 152 indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); 153 top+=length*4; 154 155 indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; 156 indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); 157 top+=length*2; 158 159 indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; 160 length=utm_countItems(extData->fromUTableUChars); 161 top+=length*2; 162 163 if(top&3) { 164 /* add padding */ 165 *((UChar *)utm_alloc(extData->fromUTableUChars))=0; 166 *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; 167 ++length; 168 top+=2; 169 } 170 indexes[UCNV_EXT_FROM_U_LENGTH]=length; 171 172 indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; 173 top+=length*4; 174 175 indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; 176 length=utm_countItems(extData->fromUBytes); 177 top+=length; 178 179 if(top&1) { 180 /* add padding */ 181 *((uint8_t *)utm_alloc(extData->fromUBytes))=0; 182 ++length; 183 ++top; 184 } 185 indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; 186 187 indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; 188 indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; 189 indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; 190 top+=length*2; 191 192 indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; 193 length=extData->stage3Top; 194 top+=length*2; 195 196 if(top&3) { 197 /* add padding */ 198 extData->stage3[extData->stage3Top++]=0; 199 ++length; 200 top+=2; 201 } 202 indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; 203 204 indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; 205 indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; 206 top+=length*4; 207 208 indexes[UCNV_EXT_SIZE]=top; 209 210 /* statistics */ 211 indexes[UCNV_EXT_COUNT_BYTES]= 212 (extData->maxInBytes<<16)| 213 (extData->maxOutBytes<<8)| 214 extData->maxBytesPerUChar; 215 indexes[UCNV_EXT_COUNT_UCHARS]= 216 (extData->maxInUChars<<16)| 217 (extData->maxOutUChars<<8)| 218 extData->maxUCharsPerByte; 219 220 indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; 221 222 /* write the extension data */ 223 udata_writeBlock(pData, indexes, sizeof(indexes)); 224 udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); 225 udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); 226 227 udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); 228 udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); 229 udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); 230 231 udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); 232 udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); 233 udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); 234 udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); 235 236 #if 0 237 { 238 int32_t i, j; 239 240 length=extData->stage1Top; 241 printf("\nstage1[%x]:\n", length); 242 243 for(i=0; i<length; ++i) { 244 if(extData->stage1[i]!=length) { 245 printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); 246 } 247 } 248 249 j=length; 250 length=extData->stage2Top; 251 printf("\nstage2[%x]:\n", length); 252 253 for(i=0; i<length; ++j, ++i) { 254 if(extData->stage2[i]!=0) { 255 printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); 256 } 257 } 258 259 length=extData->stage3Top; 260 printf("\nstage3[%x]:\n", length); 261 262 for(i=0; i<length; ++i) { 263 if(extData->stage3[i]!=0) { 264 printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); 265 } 266 } 267 268 length=extData->stage3bTop; 269 printf("\nstage3b[%x]:\n", length); 270 271 for(i=0; i<length; ++i) { 272 if(extData->stage3b[i]!=0) { 273 printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); 274 } 275 } 276 } 277 #endif 278 279 if(VERBOSE) { 280 printf("size of extension data: %ld\n", (long)top); 281 } 282 283 /* return the number of bytes that should have been written */ 284 return (uint32_t)(headerSize+top); 285 } 286 287 /* to Unicode --------------------------------------------------------------- */ 288 289 /* 290 * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for 291 * the toUnicode table. 292 * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable 293 * for the base toUnicode table but not for the base fromUnicode table. 294 * The table must be sorted. 295 * Modifies previous data in the reverseMap. 296 */ 297 static int32_t 298 reduceToUMappings(UCMTable *table) { 299 UCMapping *mappings; 300 int32_t *map; 301 int32_t i, j, count; 302 int8_t flag; 303 304 mappings=table->mappings; 305 map=table->reverseMap; 306 count=table->mappingsLength; 307 308 /* leave the map alone for the initial mappings with desired flags */ 309 for(i=j=0; i<count; ++i) { 310 flag=mappings[map[i]].f; 311 if(flag!=0 && flag!=3) { 312 break; 313 } 314 } 315 316 /* reduce from here to the rest */ 317 for(j=i; i<count; ++i) { 318 flag=mappings[map[i]].f; 319 if(flag==0 || flag==3) { 320 map[j++]=map[i]; 321 } 322 } 323 324 return j; 325 } 326 327 static uint32_t 328 getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { 329 UChar32 *u32; 330 UChar *u; 331 uint32_t value; 332 int32_t u16Length, ratio; 333 UErrorCode errorCode; 334 335 /* write the Unicode result code point or string index */ 336 if(m->uLen==1) { 337 u16Length=U16_LENGTH(m->u); 338 value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); 339 } else { 340 /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ 341 342 /* get the result code point string and its 16-bit string length */ 343 u32=UCM_GET_CODE_POINTS(table, m); 344 errorCode=U_ZERO_ERROR; 345 u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); 346 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { 347 exit(errorCode); 348 } 349 350 /* allocate it and put its length and index into the value */ 351 value= 352 (((uint32_t)m->uLen+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| 353 ((uint32_t)utm_countItems(extData->toUUChars)); 354 u=utm_allocN(extData->toUUChars, u16Length); 355 356 /* write the result 16-bit string */ 357 errorCode=U_ZERO_ERROR; 358 u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); 359 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { 360 exit(errorCode); 361 } 362 } 363 if(m->f==0) { 364 value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; 365 } 366 367 /* update statistics */ 368 if(m->bLen>extData->maxInBytes) { 369 extData->maxInBytes=m->bLen; 370 } 371 if(u16Length>extData->maxOutUChars) { 372 extData->maxOutUChars=u16Length; 373 } 374 375 ratio=(u16Length+(m->bLen-1))/m->bLen; 376 if(ratio>extData->maxUCharsPerByte) { 377 extData->maxUCharsPerByte=ratio; 378 } 379 380 return value; 381 } 382 383 /* 384 * Recursive toUTable generator core function. 385 * Preconditions: 386 * - start<limit (There is at least one mapping.) 387 * - The mappings are sorted lexically. (Access is through the reverseMap.) 388 * - All mappings between start and limit have input sequences that share 389 * the same prefix of unitIndex length, and therefore all of these sequences 390 * are at least unitIndex+1 long. 391 * - There are only relevant mappings available through the reverseMap, 392 * see reduceToUMappings(). 393 * 394 * One function invocation generates one section table. 395 * 396 * Steps: 397 * 1. Count the number of unique unit values and get the low/high unit values 398 * that occur at unitIndex. 399 * 2. Allocate the section table with possible optimization for linear access. 400 * 3. Write temporary version of the section table with start indexes of 401 * subsections, each corresponding to one unit value at unitIndex. 402 * 4. Iterate through the table once more, and depending on the subsection length: 403 * 0: write 0 as a result value (unused byte in linear-access section table) 404 * >0: if there is one mapping with an input unit sequence of unitIndex+1 405 * then defaultValue=compute the mapping result for this whole sequence 406 * else defaultValue=0 407 * 408 * recurse into the subsection 409 */ 410 static UBool 411 generateToUTable(CnvExtData *extData, UCMTable *table, 412 int32_t start, int32_t limit, int32_t unitIndex, 413 uint32_t defaultValue) { 414 UCMapping *mappings, *m; 415 int32_t *map; 416 int32_t i, j, uniqueCount, count, subStart, subLimit; 417 418 uint8_t *bytes; 419 int32_t low, high, prev; 420 421 uint32_t *section; 422 423 mappings=table->mappings; 424 map=table->reverseMap; 425 426 /* step 1: examine the input units; set low, high, uniqueCount */ 427 m=mappings+map[start]; 428 bytes=UCM_GET_BYTES(table, m); 429 low=bytes[unitIndex]; 430 uniqueCount=1; 431 432 prev=high=low; 433 for(i=start+1; i<limit; ++i) { 434 m=mappings+map[i]; 435 bytes=UCM_GET_BYTES(table, m); 436 high=bytes[unitIndex]; 437 438 if(high!=prev) { 439 prev=high; 440 ++uniqueCount; 441 } 442 } 443 444 /* step 2: allocate the section; set count, section */ 445 count=(high-low)+1; 446 if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { 447 /* 448 * for the root table and for fairly full tables: 449 * allocate for direct, linear array access 450 * by keeping count, to write an entry for each unit value 451 * from low to high 452 * exception: use a compact table if count==0x100 because 453 * that cannot be encoded in the length byte 454 */ 455 } else { 456 count=uniqueCount; 457 } 458 459 if(count>=0x100) { 460 fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); 461 return FALSE; 462 } 463 464 /* allocate the section: 1 entry for the header + count for the items */ 465 section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); 466 467 /* write the section header */ 468 *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; 469 470 /* step 3: write temporary section table with subsection starts */ 471 prev=low-1; /* just before low to prevent empty subsections before low */ 472 j=0; /* section table index */ 473 for(i=start; i<limit; ++i) { 474 m=mappings+map[i]; 475 bytes=UCM_GET_BYTES(table, m); 476 high=bytes[unitIndex]; 477 478 if(high!=prev) { 479 /* start of a new subsection for unit high */ 480 if(count>uniqueCount) { 481 /* write empty subsections for unused units in a linear table */ 482 while(++prev<high) { 483 section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; 484 } 485 } else { 486 prev=high; 487 } 488 489 /* write the entry with the subsection start */ 490 section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; 491 } 492 } 493 /* assert(j==count) */ 494 495 /* step 4: recurse and write results */ 496 subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); 497 for(j=0; j<count; ++j) { 498 subStart=subLimit; 499 subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; 500 501 /* remove the subStart temporary value */ 502 section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; 503 504 if(subStart==subLimit) { 505 /* leave the value zero: empty subsection for unused unit in a linear table */ 506 continue; 507 } 508 509 /* see if there is exactly one input unit sequence of length unitIndex+1 */ 510 defaultValue=0; 511 m=mappings+map[subStart]; 512 if(m->bLen==unitIndex+1) { 513 /* do not include this in generateToUTable() */ 514 ++subStart; 515 516 if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { 517 /* print error for multiple same-input-sequence mappings */ 518 fprintf(stderr, "error: multiple mappings from same bytes\n"); 519 ucm_printMapping(table, m, stderr); 520 ucm_printMapping(table, mappings+map[subStart], stderr); 521 return FALSE; 522 } 523 524 defaultValue=getToUnicodeValue(extData, table, m); 525 } 526 527 if(subStart==subLimit) { 528 /* write the result for the input sequence ending here */ 529 section[j]|=defaultValue; 530 } else { 531 /* write the index to the subsection table */ 532 section[j]|=(uint32_t)utm_countItems(extData->toUTable); 533 534 /* recurse */ 535 if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { 536 return FALSE; 537 } 538 } 539 } 540 return TRUE; 541 } 542 543 /* 544 * Generate the toUTable and toUUChars from the input table. 545 * The input table must be sorted, and all precision flags must be 0..3. 546 * This function will modify the table's reverseMap. 547 */ 548 static UBool 549 makeToUTable(CnvExtData *extData, UCMTable *table) { 550 int32_t toUCount; 551 552 toUCount=reduceToUMappings(table); 553 554 extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); 555 extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); 556 557 return generateToUTable(extData, table, 0, toUCount, 0, 0); 558 } 559 560 /* from Unicode ------------------------------------------------------------- */ 561 562 /* 563 * preprocessing: 564 * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode 565 * change each Unicode string to encode all but the first code point in 16-bit form 566 * 567 * generation: 568 * for each unique code point 569 * write an entry in the 3-stage trie 570 * check that there is only one single-code point sequence 571 * start recursion for following 16-bit input units 572 */ 573 574 /* 575 * Remove toUnicode fallbacks and non-<subchar1> SUB mappings 576 * which are irrelevant for the fromUnicode extension table. 577 * Remove MBCS_FROM_U_EXT_FLAG bits. 578 * Overwrite the reverseMap with an index array to the relevant mappings. 579 * Modify the code point sequences to a generator-friendly format where 580 * the first code points remains unchanged but the following are recoded 581 * into 16-bit Unicode string form. 582 * The table must be sorted. 583 * Destroys previous data in the reverseMap. 584 */ 585 static int32_t 586 prepareFromUMappings(UCMTable *table) { 587 UCMapping *mappings, *m; 588 int32_t *map; 589 int32_t i, j, count; 590 int8_t flag; 591 592 mappings=table->mappings; 593 map=table->reverseMap; 594 count=table->mappingsLength; 595 596 /* 597 * we do not go through the map on input because the mappings are 598 * sorted lexically 599 */ 600 m=mappings; 601 602 for(i=j=0; i<count; ++m, ++i) { 603 flag=m->f; 604 if(flag>=0) { 605 flag&=MBCS_FROM_U_EXT_MASK; 606 m->f=flag; 607 } 608 if(flag==0 || flag==1 || (flag==2 && m->bLen==1)) { 609 map[j++]=i; 610 611 if(m->uLen>1) { 612 /* recode all but the first code point to 16-bit Unicode */ 613 UChar32 *u32; 614 UChar *u; 615 UChar32 c; 616 int32_t q, r; 617 618 u32=UCM_GET_CODE_POINTS(table, m); 619 u=(UChar *)u32; /* destructive in-place recoding */ 620 for(r=2, q=1; q<m->uLen; ++q) { 621 c=u32[q]; 622 U16_APPEND_UNSAFE(u, r, c); 623 } 624 625 /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ 626 m->uLen=(int8_t)r; 627 } 628 } 629 } 630 631 return j; 632 } 633 634 static uint32_t 635 getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { 636 uint8_t *bytes, *resultBytes; 637 uint32_t value; 638 int32_t u16Length, ratio; 639 640 if(m->f==2) { 641 /* 642 * no mapping, <subchar1> preferred 643 * 644 * no need to count in statistics because the subchars are already 645 * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, 646 * and this non-mapping does not count for maxInUChars which are always 647 * trivially at least two if counting unmappable supplementary code points 648 */ 649 return UCNV_EXT_FROM_U_SUBCHAR1; 650 } 651 652 bytes=UCM_GET_BYTES(table, m); 653 value=0; 654 switch(m->bLen) { 655 /* 1..3: store the bytes in the value word */ 656 case 3: 657 value=((uint32_t)*bytes++)<<16; 658 case 2: 659 value|=((uint32_t)*bytes++)<<8; 660 case 1: 661 value|=*bytes; 662 break; 663 default: 664 /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ 665 /* store the bytes in fromUBytes[] and the index in the value word */ 666 value=(uint32_t)utm_countItems(extData->fromUBytes); 667 resultBytes=utm_allocN(extData->fromUBytes, m->bLen); 668 uprv_memcpy(resultBytes, bytes, m->bLen); 669 break; 670 } 671 value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; 672 if(m->f==0) { 673 value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; 674 } 675 676 /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ 677 if(m->uLen==1) { 678 u16Length=U16_LENGTH(m->u); 679 } else { 680 u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); 681 } 682 683 /* update statistics */ 684 if(u16Length>extData->maxInUChars) { 685 extData->maxInUChars=u16Length; 686 } 687 if(m->bLen>extData->maxOutBytes) { 688 extData->maxOutBytes=m->bLen; 689 } 690 691 ratio=(m->bLen+(u16Length-1))/u16Length; 692 if(ratio>extData->maxBytesPerUChar) { 693 extData->maxBytesPerUChar=ratio; 694 } 695 696 return value; 697 } 698 699 /* 700 * works like generateToUTable(), except that the 701 * output section consists of two arrays, one for input UChars and one 702 * for result values 703 * 704 * also, fromUTable sections are always stored in a compact form for 705 * access via binary search 706 */ 707 static UBool 708 generateFromUTable(CnvExtData *extData, UCMTable *table, 709 int32_t start, int32_t limit, int32_t unitIndex, 710 uint32_t defaultValue) { 711 UCMapping *mappings, *m; 712 int32_t *map; 713 int32_t i, j, uniqueCount, count, subStart, subLimit; 714 715 UChar *uchars; 716 UChar32 low, high, prev; 717 718 UChar *sectionUChars; 719 uint32_t *sectionValues; 720 721 mappings=table->mappings; 722 map=table->reverseMap; 723 724 /* step 1: examine the input units; set low, high, uniqueCount */ 725 m=mappings+map[start]; 726 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); 727 low=uchars[unitIndex]; 728 uniqueCount=1; 729 730 prev=high=low; 731 for(i=start+1; i<limit; ++i) { 732 m=mappings+map[i]; 733 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); 734 high=uchars[unitIndex]; 735 736 if(high!=prev) { 737 prev=high; 738 ++uniqueCount; 739 } 740 } 741 742 /* step 2: allocate the section; set count, section */ 743 /* the fromUTable always stores for access via binary search */ 744 count=uniqueCount; 745 746 /* allocate the section: 1 entry for the header + count for the items */ 747 sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); 748 sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); 749 750 /* write the section header */ 751 *sectionUChars++=(UChar)count; 752 *sectionValues++=defaultValue; 753 754 /* step 3: write temporary section table with subsection starts */ 755 prev=low-1; /* just before low to prevent empty subsections before low */ 756 j=0; /* section table index */ 757 for(i=start; i<limit; ++i) { 758 m=mappings+map[i]; 759 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); 760 high=uchars[unitIndex]; 761 762 if(high!=prev) { 763 /* start of a new subsection for unit high */ 764 prev=high; 765 766 /* write the entry with the subsection start */ 767 sectionUChars[j]=(UChar)high; 768 sectionValues[j]=(uint32_t)i; 769 ++j; 770 } 771 } 772 /* assert(j==count) */ 773 774 /* step 4: recurse and write results */ 775 subLimit=(int32_t)(sectionValues[0]); 776 for(j=0; j<count; ++j) { 777 subStart=subLimit; 778 subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; 779 780 /* see if there is exactly one input unit sequence of length unitIndex+1 */ 781 defaultValue=0; 782 m=mappings+map[subStart]; 783 if(m->uLen==unitIndex+1) { 784 /* do not include this in generateToUTable() */ 785 ++subStart; 786 787 if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { 788 /* print error for multiple same-input-sequence mappings */ 789 fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); 790 ucm_printMapping(table, m, stderr); 791 ucm_printMapping(table, mappings+map[subStart], stderr); 792 return FALSE; 793 } 794 795 defaultValue=getFromUBytesValue(extData, table, m); 796 } 797 798 if(subStart==subLimit) { 799 /* write the result for the input sequence ending here */ 800 sectionValues[j]=defaultValue; 801 } else { 802 /* write the index to the subsection table */ 803 sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); 804 805 /* recurse */ 806 if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { 807 return FALSE; 808 } 809 } 810 } 811 return TRUE; 812 } 813 814 /* 815 * add entries to the fromUnicode trie, 816 * assume to be called with code points in ascending order 817 * and use that to build the trie in precompacted form 818 */ 819 static void 820 addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { 821 int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; 822 823 if(value==0) { 824 return; 825 } 826 827 /* 828 * compute the index for each stage, 829 * allocate a stage block if necessary, 830 * and write the stage value 831 */ 832 i1=c>>10; 833 if(i1>=extData->stage1Top) { 834 extData->stage1Top=i1+1; 835 } 836 837 nextOffset=(c>>4)&0x3f; 838 839 if(extData->stage1[i1]==0) { 840 /* allocate another block in stage 2; overlap with the previous block */ 841 newBlock=extData->stage2Top; 842 min=newBlock-nextOffset; /* minimum block start with overlap */ 843 while(min<newBlock && extData->stage2[newBlock-1]==0) { 844 --newBlock; 845 } 846 847 extData->stage1[i1]=(uint16_t)newBlock; 848 extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; 849 if(extData->stage2Top>LENGTHOF(extData->stage2)) { 850 fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); 851 exit(U_MEMORY_ALLOCATION_ERROR); 852 } 853 } 854 855 i2=extData->stage1[i1]+nextOffset; 856 nextOffset=c&0xf; 857 858 if(extData->stage2[i2]==0) { 859 /* allocate another block in stage 3; overlap with the previous block */ 860 newBlock=extData->stage3Top; 861 min=newBlock-nextOffset; /* minimum block start with overlap */ 862 while(min<newBlock && extData->stage3[newBlock-1]==0) { 863 --newBlock; 864 } 865 866 /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ 867 newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); 868 extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); 869 870 extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; 871 if(extData->stage3Top>LENGTHOF(extData->stage3)) { 872 fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); 873 exit(U_MEMORY_ALLOCATION_ERROR); 874 } 875 } 876 877 i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; 878 /* 879 * assume extData->stage3[i3]==0 because we get 880 * code points in strictly ascending order 881 */ 882 883 if(value==UCNV_EXT_FROM_U_SUBCHAR1) { 884 /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ 885 extData->stage3[i3]=1; 886 887 /* 888 * precompaction is not optimal for <subchar1> |2 mappings because 889 * stage3 values for them are all the same, unlike for other mappings 890 * which all have unique values; 891 * use a simple compaction of reusing a whole block filled with these 892 * mappings 893 */ 894 895 /* is the entire block filled with <subchar1> |2 mappings? */ 896 if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { 897 for(min=i3-nextOffset; 898 min<i3 && extData->stage3[min]==1; 899 ++min) {} 900 901 if(min==i3) { 902 /* the entire block is filled with these mappings */ 903 if(extData->stage3Sub1Block!=0) { 904 /* point to the previous such block and remove this block from stage3 */ 905 extData->stage2[i2]=extData->stage3Sub1Block; 906 extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; 907 uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); 908 } else { 909 /* remember this block's stage2 entry */ 910 extData->stage3Sub1Block=extData->stage2[i2]; 911 } 912 } 913 } 914 } else { 915 if((i3b=extData->stage3bTop++)>=LENGTHOF(extData->stage3b)) { 916 fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); 917 exit(U_MEMORY_ALLOCATION_ERROR); 918 } 919 920 /* roundtrip or fallback mapping */ 921 extData->stage3[i3]=(uint16_t)i3b; 922 extData->stage3b[i3b]=value; 923 } 924 } 925 926 static UBool 927 generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { 928 UCMapping *mappings, *m; 929 int32_t *map; 930 uint32_t value; 931 int32_t subStart, subLimit; 932 933 UChar32 *codePoints; 934 UChar32 c, next; 935 936 if(mapLength==0) { 937 return TRUE; 938 } 939 940 mappings=table->mappings; 941 map=table->reverseMap; 942 943 /* 944 * iterate over same-initial-code point mappings, 945 * enter the initial code point into the trie, 946 * and start a recursion on the corresponding mappings section 947 * with generateFromUTable() 948 */ 949 m=mappings+map[0]; 950 codePoints=UCM_GET_CODE_POINTS(table, m); 951 next=codePoints[0]; 952 subLimit=0; 953 while(subLimit<mapLength) { 954 /* get a new subsection of mappings starting with the same code point */ 955 subStart=subLimit; 956 c=next; 957 while(next==c && ++subLimit<mapLength) { 958 m=mappings+map[subLimit]; 959 codePoints=UCM_GET_CODE_POINTS(table, m); 960 next=codePoints[0]; 961 } 962 963 /* 964 * compute the value for this code point; 965 * if there is a mapping for this code point alone, it is at subStart 966 * because the table is sorted lexically 967 */ 968 value=0; 969 m=mappings+map[subStart]; 970 codePoints=UCM_GET_CODE_POINTS(table, m); 971 if(m->uLen==1) { 972 /* do not include this in generateFromUTable() */ 973 ++subStart; 974 975 if(subStart<subLimit && mappings[map[subStart]].uLen==1) { 976 /* print error for multiple same-input-sequence mappings */ 977 fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); 978 ucm_printMapping(table, m, stderr); 979 ucm_printMapping(table, mappings+map[subStart], stderr); 980 return FALSE; 981 } 982 983 value=getFromUBytesValue(extData, table, m); 984 } 985 986 if(subStart==subLimit) { 987 /* write the result for this one code point */ 988 addFromUTrieEntry(extData, c, value); 989 } else { 990 /* write the index to the subsection table */ 991 addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); 992 993 /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ 994 if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { 995 return FALSE; 996 } 997 } 998 } 999 return TRUE; 1000 } 1001 1002 /* 1003 * Generate the fromU data structures from the input table. 1004 * The input table must be sorted, and all precision flags must be 0..3. 1005 * This function will modify the table's reverseMap. 1006 */ 1007 static UBool 1008 makeFromUTable(CnvExtData *extData, UCMTable *table) { 1009 uint16_t *stage1; 1010 int32_t i, stage1Top, fromUCount; 1011 1012 fromUCount=prepareFromUMappings(table); 1013 1014 extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); 1015 extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); 1016 extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); 1017 1018 /* allocate all-unassigned stage blocks */ 1019 extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; 1020 extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; 1021 1022 /* 1023 * stage 3b stores only unique values, and in 1024 * index 0: 0 for "no mapping" 1025 * index 1: "no mapping" with preference for <subchar1> rather than <subchar> 1026 */ 1027 extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; 1028 extData->stage3bTop=2; 1029 1030 /* allocate the first entry in the fromUTable because index 0 means "no result" */ 1031 utm_alloc(extData->fromUTableUChars); 1032 utm_alloc(extData->fromUTableValues); 1033 1034 if(!generateFromUTrie(extData, table, fromUCount)) { 1035 return FALSE; 1036 } 1037 1038 /* 1039 * offset the stage 1 trie entries by stage1Top because they will 1040 * be stored in a single array 1041 */ 1042 stage1=extData->stage1; 1043 stage1Top=extData->stage1Top; 1044 for(i=0; i<stage1Top; ++i) { 1045 stage1[i]=(uint16_t)(stage1[i]+stage1Top); 1046 } 1047 1048 return TRUE; 1049 } 1050 1051 /* -------------------------------------------------------------------------- */ 1052 1053 static UBool 1054 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { 1055 CnvExtData *extData; 1056 1057 if(table->unicodeMask&UCNV_HAS_SURROGATES) { 1058 fprintf(stderr, "error: contains mappings for surrogate code points\n"); 1059 return FALSE; 1060 } 1061 1062 staticData->conversionType=UCNV_MBCS; 1063 1064 extData=(CnvExtData *)cnvData; 1065 1066 /* 1067 * assume that the table is sorted 1068 * 1069 * call the functions in this order because 1070 * makeToUTable() modifies the original reverseMap, 1071 * makeFromUTable() writes a whole new mapping into reverseMap 1072 */ 1073 return 1074 makeToUTable(extData, table) && 1075 makeFromUTable(extData, table); 1076 } 1077