Home | History | Annotate | Download | only in stubs
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // http://code.google.com/p/protobuf/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // from google3/strings/strutil.cc
     32 
     33 #include <google/protobuf/stubs/strutil.h>
     34 #include <errno.h>
     35 #include <float.h>    // FLT_DIG and DBL_DIG
     36 #include <limits>
     37 #include <limits.h>
     38 #include <stdio.h>
     39 #include <iterator>
     40 
     41 #ifdef _WIN32
     42 // MSVC has only _snprintf, not snprintf.
     43 //
     44 // MinGW has both snprintf and _snprintf, but they appear to be different
     45 // functions.  The former is buggy.  When invoked like so:
     46 //   char buffer[32];
     47 //   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
     48 // it prints "1.23000e+10".  This is plainly wrong:  %g should never print
     49 // trailing zeros after the decimal point.  For some reason this bug only
     50 // occurs with some input values, not all.  In any case, _snprintf does the
     51 // right thing, so we use it.
     52 #define snprintf _snprintf
     53 #endif
     54 
     55 namespace google {
     56 namespace protobuf {
     57 
     58 inline bool IsNaN(double value) {
     59   // NaN is never equal to anything, even itself.
     60   return value != value;
     61 }
     62 
     63 // These are defined as macros on some platforms.  #undef them so that we can
     64 // redefine them.
     65 #undef isxdigit
     66 #undef isprint
     67 
     68 // The definitions of these in ctype.h change based on locale.  Since our
     69 // string manipulation is all in relation to the protocol buffer and C++
     70 // languages, we always want to use the C locale.  So, we re-define these
     71 // exactly as we want them.
     72 inline bool isxdigit(char c) {
     73   return ('0' <= c && c <= '9') ||
     74          ('a' <= c && c <= 'f') ||
     75          ('A' <= c && c <= 'F');
     76 }
     77 
     78 inline bool isprint(char c) {
     79   return c >= 0x20 && c <= 0x7E;
     80 }
     81 
     82 // ----------------------------------------------------------------------
     83 // StripString
     84 //    Replaces any occurrence of the character 'remove' (or the characters
     85 //    in 'remove') with the character 'replacewith'.
     86 // ----------------------------------------------------------------------
     87 void StripString(string* s, const char* remove, char replacewith) {
     88   const char * str_start = s->c_str();
     89   const char * str = str_start;
     90   for (str = strpbrk(str, remove);
     91        str != NULL;
     92        str = strpbrk(str + 1, remove)) {
     93     (*s)[str - str_start] = replacewith;
     94   }
     95 }
     96 
     97 // ----------------------------------------------------------------------
     98 // StringReplace()
     99 //    Replace the "old" pattern with the "new" pattern in a string,
    100 //    and append the result to "res".  If replace_all is false,
    101 //    it only replaces the first instance of "old."
    102 // ----------------------------------------------------------------------
    103 
    104 void StringReplace(const string& s, const string& oldsub,
    105                    const string& newsub, bool replace_all,
    106                    string* res) {
    107   if (oldsub.empty()) {
    108     res->append(s);  // if empty, append the given string.
    109     return;
    110   }
    111 
    112   string::size_type start_pos = 0;
    113   string::size_type pos;
    114   do {
    115     pos = s.find(oldsub, start_pos);
    116     if (pos == string::npos) {
    117       break;
    118     }
    119     res->append(s, start_pos, pos - start_pos);
    120     res->append(newsub);
    121     start_pos = pos + oldsub.size();  // start searching again after the "old"
    122   } while (replace_all);
    123   res->append(s, start_pos, s.length() - start_pos);
    124 }
    125 
    126 // ----------------------------------------------------------------------
    127 // StringReplace()
    128 //    Give me a string and two patterns "old" and "new", and I replace
    129 //    the first instance of "old" in the string with "new", if it
    130 //    exists.  If "global" is true; call this repeatedly until it
    131 //    fails.  RETURN a new string, regardless of whether the replacement
    132 //    happened or not.
    133 // ----------------------------------------------------------------------
    134 
    135 string StringReplace(const string& s, const string& oldsub,
    136                      const string& newsub, bool replace_all) {
    137   string ret;
    138   StringReplace(s, oldsub, newsub, replace_all, &ret);
    139   return ret;
    140 }
    141 
    142 // ----------------------------------------------------------------------
    143 // SplitStringUsing()
    144 //    Split a string using a character delimiter. Append the components
    145 //    to 'result'.
    146 //
    147 // Note: For multi-character delimiters, this routine will split on *ANY* of
    148 // the characters in the string, not the entire string as a single delimiter.
    149 // ----------------------------------------------------------------------
    150 template <typename ITR>
    151 static inline
    152 void SplitStringToIteratorUsing(const string& full,
    153                                 const char* delim,
    154                                 ITR& result) {
    155   // Optimize the common case where delim is a single character.
    156   if (delim[0] != '\0' && delim[1] == '\0') {
    157     char c = delim[0];
    158     const char* p = full.data();
    159     const char* end = p + full.size();
    160     while (p != end) {
    161       if (*p == c) {
    162         ++p;
    163       } else {
    164         const char* start = p;
    165         while (++p != end && *p != c);
    166         *result++ = string(start, p - start);
    167       }
    168     }
    169     return;
    170   }
    171 
    172   string::size_type begin_index, end_index;
    173   begin_index = full.find_first_not_of(delim);
    174   while (begin_index != string::npos) {
    175     end_index = full.find_first_of(delim, begin_index);
    176     if (end_index == string::npos) {
    177       *result++ = full.substr(begin_index);
    178       return;
    179     }
    180     *result++ = full.substr(begin_index, (end_index - begin_index));
    181     begin_index = full.find_first_not_of(delim, end_index);
    182   }
    183 }
    184 
    185 void SplitStringUsing(const string& full,
    186                       const char* delim,
    187                       vector<string>* result) {
    188   back_insert_iterator< vector<string> > it(*result);
    189   SplitStringToIteratorUsing(full, delim, it);
    190 }
    191 
    192 // Split a string using a character delimiter. Append the components
    193 // to 'result'.  If there are consecutive delimiters, this function
    194 // will return corresponding empty strings. The string is split into
    195 // at most the specified number of pieces greedily. This means that the
    196 // last piece may possibly be split further. To split into as many pieces
    197 // as possible, specify 0 as the number of pieces.
    198 //
    199 // If "full" is the empty string, yields an empty string as the only value.
    200 //
    201 // If "pieces" is negative for some reason, it returns the whole string
    202 // ----------------------------------------------------------------------
    203 template <typename StringType, typename ITR>
    204 static inline
    205 void SplitStringToIteratorAllowEmpty(const StringType& full,
    206                                      const char* delim,
    207                                      int pieces,
    208                                      ITR& result) {
    209   string::size_type begin_index, end_index;
    210   begin_index = 0;
    211 
    212   for (int i = 0; (i < pieces-1) || (pieces == 0); i++) {
    213     end_index = full.find_first_of(delim, begin_index);
    214     if (end_index == string::npos) {
    215       *result++ = full.substr(begin_index);
    216       return;
    217     }
    218     *result++ = full.substr(begin_index, (end_index - begin_index));
    219     begin_index = end_index + 1;
    220   }
    221   *result++ = full.substr(begin_index);
    222 }
    223 
    224 void SplitStringAllowEmpty(const string& full, const char* delim,
    225                            vector<string>* result) {
    226   back_insert_iterator<vector<string> > it(*result);
    227   SplitStringToIteratorAllowEmpty(full, delim, 0, it);
    228 }
    229 
    230 // ----------------------------------------------------------------------
    231 // JoinStrings()
    232 //    This merges a vector of string components with delim inserted
    233 //    as separaters between components.
    234 //
    235 // ----------------------------------------------------------------------
    236 template <class ITERATOR>
    237 static void JoinStringsIterator(const ITERATOR& start,
    238                                 const ITERATOR& end,
    239                                 const char* delim,
    240                                 string* result) {
    241   GOOGLE_CHECK(result != NULL);
    242   result->clear();
    243   int delim_length = strlen(delim);
    244 
    245   // Precompute resulting length so we can reserve() memory in one shot.
    246   int length = 0;
    247   for (ITERATOR iter = start; iter != end; ++iter) {
    248     if (iter != start) {
    249       length += delim_length;
    250     }
    251     length += iter->size();
    252   }
    253   result->reserve(length);
    254 
    255   // Now combine everything.
    256   for (ITERATOR iter = start; iter != end; ++iter) {
    257     if (iter != start) {
    258       result->append(delim, delim_length);
    259     }
    260     result->append(iter->data(), iter->size());
    261   }
    262 }
    263 
    264 void JoinStrings(const vector<string>& components,
    265                  const char* delim,
    266                  string * result) {
    267   JoinStringsIterator(components.begin(), components.end(), delim, result);
    268 }
    269 
    270 // ----------------------------------------------------------------------
    271 // UnescapeCEscapeSequences()
    272 //    This does all the unescaping that C does: \ooo, \r, \n, etc
    273 //    Returns length of resulting string.
    274 //    The implementation of \x parses any positive number of hex digits,
    275 //    but it is an error if the value requires more than 8 bits, and the
    276 //    result is truncated to 8 bits.
    277 //
    278 //    The second call stores its errors in a supplied string vector.
    279 //    If the string vector pointer is NULL, it reports the errors with LOG().
    280 // ----------------------------------------------------------------------
    281 
    282 #define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
    283 
    284 inline int hex_digit_to_int(char c) {
    285   /* Assume ASCII. */
    286   assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61);
    287   assert(isxdigit(c));
    288   int x = static_cast<unsigned char>(c);
    289   if (x > '9') {
    290     x += 9;
    291   }
    292   return x & 0xf;
    293 }
    294 
    295 // Protocol buffers doesn't ever care about errors, but I don't want to remove
    296 // the code.
    297 #define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
    298 
    299 int UnescapeCEscapeSequences(const char* source, char* dest) {
    300   return UnescapeCEscapeSequences(source, dest, NULL);
    301 }
    302 
    303 int UnescapeCEscapeSequences(const char* source, char* dest,
    304                              vector<string> *errors) {
    305   GOOGLE_DCHECK(errors == NULL) << "Error reporting not implemented.";
    306 
    307   char* d = dest;
    308   const char* p = source;
    309 
    310   // Small optimization for case where source = dest and there's no escaping
    311   while ( p == d && *p != '\0' && *p != '\\' )
    312     p++, d++;
    313 
    314   while (*p != '\0') {
    315     if (*p != '\\') {
    316       *d++ = *p++;
    317     } else {
    318       switch ( *++p ) {                    // skip past the '\\'
    319         case '\0':
    320           LOG_STRING(ERROR, errors) << "String cannot end with \\";
    321           *d = '\0';
    322           return d - dest;   // we're done with p
    323         case 'a':  *d++ = '\a';  break;
    324         case 'b':  *d++ = '\b';  break;
    325         case 'f':  *d++ = '\f';  break;
    326         case 'n':  *d++ = '\n';  break;
    327         case 'r':  *d++ = '\r';  break;
    328         case 't':  *d++ = '\t';  break;
    329         case 'v':  *d++ = '\v';  break;
    330         case '\\': *d++ = '\\';  break;
    331         case '?':  *d++ = '\?';  break;    // \?  Who knew?
    332         case '\'': *d++ = '\'';  break;
    333         case '"':  *d++ = '\"';  break;
    334         case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
    335         case '4': case '5': case '6': case '7': {
    336           char ch = *p - '0';
    337           if ( IS_OCTAL_DIGIT(p[1]) )
    338             ch = ch * 8 + *++p - '0';
    339           if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
    340             ch = ch * 8 + *++p - '0';      // now points at last digit
    341           *d++ = ch;
    342           break;
    343         }
    344         case 'x': case 'X': {
    345           if (!isxdigit(p[1])) {
    346             if (p[1] == '\0') {
    347               LOG_STRING(ERROR, errors) << "String cannot end with \\x";
    348             } else {
    349               LOG_STRING(ERROR, errors) <<
    350                 "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
    351             }
    352             break;
    353           }
    354           unsigned int ch = 0;
    355           const char *hex_start = p;
    356           while (isxdigit(p[1]))  // arbitrarily many hex digits
    357             ch = (ch << 4) + hex_digit_to_int(*++p);
    358           if (ch > 0xFF)
    359             LOG_STRING(ERROR, errors) << "Value of " <<
    360               "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
    361           *d++ = ch;
    362           break;
    363         }
    364 #if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
    365         case 'u': {
    366           // \uhhhh => convert 4 hex digits to UTF-8
    367           char32 rune = 0;
    368           const char *hex_start = p;
    369           for (int i = 0; i < 4; ++i) {
    370             if (isxdigit(p[1])) {  // Look one char ahead.
    371               rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
    372             } else {
    373               LOG_STRING(ERROR, errors)
    374                 << "\\u must be followed by 4 hex digits: \\"
    375                 <<  string(hex_start, p+1-hex_start);
    376               break;
    377             }
    378           }
    379           d += runetochar(d, &rune);
    380           break;
    381         }
    382         case 'U': {
    383           // \Uhhhhhhhh => convert 8 hex digits to UTF-8
    384           char32 rune = 0;
    385           const char *hex_start = p;
    386           for (int i = 0; i < 8; ++i) {
    387             if (isxdigit(p[1])) {  // Look one char ahead.
    388               // Don't change rune until we're sure this
    389               // is within the Unicode limit, but do advance p.
    390               char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
    391               if (newrune > 0x10FFFF) {
    392                 LOG_STRING(ERROR, errors)
    393                   << "Value of \\"
    394                   << string(hex_start, p + 1 - hex_start)
    395                   << " exceeds Unicode limit (0x10FFFF)";
    396                 break;
    397               } else {
    398                 rune = newrune;
    399               }
    400             } else {
    401               LOG_STRING(ERROR, errors)
    402                 << "\\U must be followed by 8 hex digits: \\"
    403                 <<  string(hex_start, p+1-hex_start);
    404               break;
    405             }
    406           }
    407           d += runetochar(d, &rune);
    408           break;
    409         }
    410 #endif
    411         default:
    412           LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
    413       }
    414       p++;                                 // read past letter we escaped
    415     }
    416   }
    417   *d = '\0';
    418   return d - dest;
    419 }
    420 
    421 // ----------------------------------------------------------------------
    422 // UnescapeCEscapeString()
    423 //    This does the same thing as UnescapeCEscapeSequences, but creates
    424 //    a new string. The caller does not need to worry about allocating
    425 //    a dest buffer. This should be used for non performance critical
    426 //    tasks such as printing debug messages. It is safe for src and dest
    427 //    to be the same.
    428 //
    429 //    The second call stores its errors in a supplied string vector.
    430 //    If the string vector pointer is NULL, it reports the errors with LOG().
    431 //
    432 //    In the first and second calls, the length of dest is returned. In the
    433 //    the third call, the new string is returned.
    434 // ----------------------------------------------------------------------
    435 int UnescapeCEscapeString(const string& src, string* dest) {
    436   return UnescapeCEscapeString(src, dest, NULL);
    437 }
    438 
    439 int UnescapeCEscapeString(const string& src, string* dest,
    440                           vector<string> *errors) {
    441   scoped_array<char> unescaped(new char[src.size() + 1]);
    442   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
    443   GOOGLE_CHECK(dest);
    444   dest->assign(unescaped.get(), len);
    445   return len;
    446 }
    447 
    448 string UnescapeCEscapeString(const string& src) {
    449   scoped_array<char> unescaped(new char[src.size() + 1]);
    450   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), NULL);
    451   return string(unescaped.get(), len);
    452 }
    453 
    454 // ----------------------------------------------------------------------
    455 // CEscapeString()
    456 // CHexEscapeString()
    457 //    Copies 'src' to 'dest', escaping dangerous characters using
    458 //    C-style escape sequences. This is very useful for preparing query
    459 //    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
    460 //    hexadecimal rather than octal sequences.
    461 //    Returns the number of bytes written to 'dest' (not including the \0)
    462 //    or -1 if there was insufficient space.
    463 //
    464 //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
    465 // ----------------------------------------------------------------------
    466 int CEscapeInternal(const char* src, int src_len, char* dest,
    467                     int dest_len, bool use_hex, bool utf8_safe) {
    468   const char* src_end = src + src_len;
    469   int used = 0;
    470   bool last_hex_escape = false; // true if last output char was \xNN
    471 
    472   for (; src < src_end; src++) {
    473     if (dest_len - used < 2)   // Need space for two letter escape
    474       return -1;
    475 
    476     bool is_hex_escape = false;
    477     switch (*src) {
    478       case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
    479       case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
    480       case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
    481       case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
    482       case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
    483       case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
    484       default:
    485         // Note that if we emit \xNN and the src character after that is a hex
    486         // digit then that digit must be escaped too to prevent it being
    487         // interpreted as part of the character code by C.
    488         if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
    489             (!isprint(*src) ||
    490              (last_hex_escape && isxdigit(*src)))) {
    491           if (dest_len - used < 4) // need space for 4 letter escape
    492             return -1;
    493           sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
    494                   static_cast<uint8>(*src));
    495           is_hex_escape = use_hex;
    496           used += 4;
    497         } else {
    498           dest[used++] = *src; break;
    499         }
    500     }
    501     last_hex_escape = is_hex_escape;
    502   }
    503 
    504   if (dest_len - used < 1)   // make sure that there is room for \0
    505     return -1;
    506 
    507   dest[used] = '\0';   // doesn't count towards return value though
    508   return used;
    509 }
    510 
    511 int CEscapeString(const char* src, int src_len, char* dest, int dest_len) {
    512   return CEscapeInternal(src, src_len, dest, dest_len, false, false);
    513 }
    514 
    515 // ----------------------------------------------------------------------
    516 // CEscape()
    517 // CHexEscape()
    518 //    Copies 'src' to result, escaping dangerous characters using
    519 //    C-style escape sequences. This is very useful for preparing query
    520 //    flags. 'src' and 'dest' should not overlap. The 'Hex' version
    521 //    hexadecimal rather than octal sequences.
    522 //
    523 //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
    524 // ----------------------------------------------------------------------
    525 string CEscape(const string& src) {
    526   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
    527   scoped_array<char> dest(new char[dest_length]);
    528   const int len = CEscapeInternal(src.data(), src.size(),
    529                                   dest.get(), dest_length, false, false);
    530   GOOGLE_DCHECK_GE(len, 0);
    531   return string(dest.get(), len);
    532 }
    533 
    534 namespace strings {
    535 
    536 string Utf8SafeCEscape(const string& src) {
    537   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
    538   scoped_array<char> dest(new char[dest_length]);
    539   const int len = CEscapeInternal(src.data(), src.size(),
    540                                   dest.get(), dest_length, false, true);
    541   GOOGLE_DCHECK_GE(len, 0);
    542   return string(dest.get(), len);
    543 }
    544 
    545 string CHexEscape(const string& src) {
    546   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
    547   scoped_array<char> dest(new char[dest_length]);
    548   const int len = CEscapeInternal(src.data(), src.size(),
    549                                   dest.get(), dest_length, true, false);
    550   GOOGLE_DCHECK_GE(len, 0);
    551   return string(dest.get(), len);
    552 }
    553 
    554 }  // namespace strings
    555 
    556 // ----------------------------------------------------------------------
    557 // strto32_adaptor()
    558 // strtou32_adaptor()
    559 //    Implementation of strto[u]l replacements that have identical
    560 //    overflow and underflow characteristics for both ILP-32 and LP-64
    561 //    platforms, including errno preservation in error-free calls.
    562 // ----------------------------------------------------------------------
    563 
    564 int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
    565   const int saved_errno = errno;
    566   errno = 0;
    567   const long result = strtol(nptr, endptr, base);
    568   if (errno == ERANGE && result == LONG_MIN) {
    569     return kint32min;
    570   } else if (errno == ERANGE && result == LONG_MAX) {
    571     return kint32max;
    572   } else if (errno == 0 && result < kint32min) {
    573     errno = ERANGE;
    574     return kint32min;
    575   } else if (errno == 0 && result > kint32max) {
    576     errno = ERANGE;
    577     return kint32max;
    578   }
    579   if (errno == 0)
    580     errno = saved_errno;
    581   return static_cast<int32>(result);
    582 }
    583 
    584 uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
    585   const int saved_errno = errno;
    586   errno = 0;
    587   const unsigned long result = strtoul(nptr, endptr, base);
    588   if (errno == ERANGE && result == ULONG_MAX) {
    589     return kuint32max;
    590   } else if (errno == 0 && result > kuint32max) {
    591     errno = ERANGE;
    592     return kuint32max;
    593   }
    594   if (errno == 0)
    595     errno = saved_errno;
    596   return static_cast<uint32>(result);
    597 }
    598 
    599 // ----------------------------------------------------------------------
    600 // FastIntToBuffer()
    601 // FastInt64ToBuffer()
    602 // FastHexToBuffer()
    603 // FastHex64ToBuffer()
    604 // FastHex32ToBuffer()
    605 // ----------------------------------------------------------------------
    606 
    607 // Offset into buffer where FastInt64ToBuffer places the end of string
    608 // null character.  Also used by FastInt64ToBufferLeft.
    609 static const int kFastInt64ToBufferOffset = 21;
    610 
    611 char *FastInt64ToBuffer(int64 i, char* buffer) {
    612   // We could collapse the positive and negative sections, but that
    613   // would be slightly slower for positive numbers...
    614   // 22 bytes is enough to store -2**64, -18446744073709551616.
    615   char* p = buffer + kFastInt64ToBufferOffset;
    616   *p-- = '\0';
    617   if (i >= 0) {
    618     do {
    619       *p-- = '0' + i % 10;
    620       i /= 10;
    621     } while (i > 0);
    622     return p + 1;
    623   } else {
    624     // On different platforms, % and / have different behaviors for
    625     // negative numbers, so we need to jump through hoops to make sure
    626     // we don't divide negative numbers.
    627     if (i > -10) {
    628       i = -i;
    629       *p-- = '0' + i;
    630       *p = '-';
    631       return p;
    632     } else {
    633       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
    634       i = i + 10;
    635       i = -i;
    636       *p-- = '0' + i % 10;
    637       // Undo what we did a moment ago
    638       i = i / 10 + 1;
    639       do {
    640         *p-- = '0' + i % 10;
    641         i /= 10;
    642       } while (i > 0);
    643       *p = '-';
    644       return p;
    645     }
    646   }
    647 }
    648 
    649 // Offset into buffer where FastInt32ToBuffer places the end of string
    650 // null character.  Also used by FastInt32ToBufferLeft
    651 static const int kFastInt32ToBufferOffset = 11;
    652 
    653 // Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
    654 // compiler to generate 32 bit arithmetic instructions.  It's much faster, at
    655 // least with 32 bit binaries.
    656 char *FastInt32ToBuffer(int32 i, char* buffer) {
    657   // We could collapse the positive and negative sections, but that
    658   // would be slightly slower for positive numbers...
    659   // 12 bytes is enough to store -2**32, -4294967296.
    660   char* p = buffer + kFastInt32ToBufferOffset;
    661   *p-- = '\0';
    662   if (i >= 0) {
    663     do {
    664       *p-- = '0' + i % 10;
    665       i /= 10;
    666     } while (i > 0);
    667     return p + 1;
    668   } else {
    669     // On different platforms, % and / have different behaviors for
    670     // negative numbers, so we need to jump through hoops to make sure
    671     // we don't divide negative numbers.
    672     if (i > -10) {
    673       i = -i;
    674       *p-- = '0' + i;
    675       *p = '-';
    676       return p;
    677     } else {
    678       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
    679       i = i + 10;
    680       i = -i;
    681       *p-- = '0' + i % 10;
    682       // Undo what we did a moment ago
    683       i = i / 10 + 1;
    684       do {
    685         *p-- = '0' + i % 10;
    686         i /= 10;
    687       } while (i > 0);
    688       *p = '-';
    689       return p;
    690     }
    691   }
    692 }
    693 
    694 char *FastHexToBuffer(int i, char* buffer) {
    695   GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
    696 
    697   static const char *hexdigits = "0123456789abcdef";
    698   char *p = buffer + 21;
    699   *p-- = '\0';
    700   do {
    701     *p-- = hexdigits[i & 15];   // mod by 16
    702     i >>= 4;                    // divide by 16
    703   } while (i > 0);
    704   return p + 1;
    705 }
    706 
    707 char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
    708   static const char *hexdigits = "0123456789abcdef";
    709   buffer[num_byte] = '\0';
    710   for (int i = num_byte - 1; i >= 0; i--) {
    711 #ifdef _M_X64
    712     // MSVC x64 platform has a bug optimizing the uint32(value) in the #else
    713     // block. Given that the uint32 cast was to improve performance on 32-bit
    714     // platforms, we use 64-bit '&' directly.
    715     buffer[i] = hexdigits[value & 0xf];
    716 #else
    717     buffer[i] = hexdigits[uint32(value) & 0xf];
    718 #endif
    719     value >>= 4;
    720   }
    721   return buffer;
    722 }
    723 
    724 char *FastHex64ToBuffer(uint64 value, char* buffer) {
    725   return InternalFastHexToBuffer(value, buffer, 16);
    726 }
    727 
    728 char *FastHex32ToBuffer(uint32 value, char* buffer) {
    729   return InternalFastHexToBuffer(value, buffer, 8);
    730 }
    731 
    732 static inline char* PlaceNum(char* p, int num, char prev_sep) {
    733    *p-- = '0' + num % 10;
    734    *p-- = '0' + num / 10;
    735    *p-- = prev_sep;
    736    return p;
    737 }
    738 
    739 // ----------------------------------------------------------------------
    740 // FastInt32ToBufferLeft()
    741 // FastUInt32ToBufferLeft()
    742 // FastInt64ToBufferLeft()
    743 // FastUInt64ToBufferLeft()
    744 //
    745 // Like the Fast*ToBuffer() functions above, these are intended for speed.
    746 // Unlike the Fast*ToBuffer() functions, however, these functions write
    747 // their output to the beginning of the buffer (hence the name, as the
    748 // output is left-aligned).  The caller is responsible for ensuring that
    749 // the buffer has enough space to hold the output.
    750 //
    751 // Returns a pointer to the end of the string (i.e. the null character
    752 // terminating the string).
    753 // ----------------------------------------------------------------------
    754 
    755 static const char two_ASCII_digits[100][2] = {
    756   {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
    757   {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
    758   {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
    759   {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
    760   {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
    761   {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
    762   {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
    763   {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
    764   {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
    765   {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
    766   {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
    767   {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
    768   {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
    769   {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
    770   {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
    771   {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
    772   {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
    773   {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
    774   {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
    775   {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
    776 };
    777 
    778 char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
    779   int digits;
    780   const char *ASCII_digits = NULL;
    781   // The idea of this implementation is to trim the number of divides to as few
    782   // as possible by using multiplication and subtraction rather than mod (%),
    783   // and by outputting two digits at a time rather than one.
    784   // The huge-number case is first, in the hopes that the compiler will output
    785   // that case in one branch-free block of code, and only output conditional
    786   // branches into it from below.
    787   if (u >= 1000000000) {  // >= 1,000,000,000
    788     digits = u / 100000000;  // 100,000,000
    789     ASCII_digits = two_ASCII_digits[digits];
    790     buffer[0] = ASCII_digits[0];
    791     buffer[1] = ASCII_digits[1];
    792     buffer += 2;
    793 sublt100_000_000:
    794     u -= digits * 100000000;  // 100,000,000
    795 lt100_000_000:
    796     digits = u / 1000000;  // 1,000,000
    797     ASCII_digits = two_ASCII_digits[digits];
    798     buffer[0] = ASCII_digits[0];
    799     buffer[1] = ASCII_digits[1];
    800     buffer += 2;
    801 sublt1_000_000:
    802     u -= digits * 1000000;  // 1,000,000
    803 lt1_000_000:
    804     digits = u / 10000;  // 10,000
    805     ASCII_digits = two_ASCII_digits[digits];
    806     buffer[0] = ASCII_digits[0];
    807     buffer[1] = ASCII_digits[1];
    808     buffer += 2;
    809 sublt10_000:
    810     u -= digits * 10000;  // 10,000
    811 lt10_000:
    812     digits = u / 100;
    813     ASCII_digits = two_ASCII_digits[digits];
    814     buffer[0] = ASCII_digits[0];
    815     buffer[1] = ASCII_digits[1];
    816     buffer += 2;
    817 sublt100:
    818     u -= digits * 100;
    819 lt100:
    820     digits = u;
    821     ASCII_digits = two_ASCII_digits[digits];
    822     buffer[0] = ASCII_digits[0];
    823     buffer[1] = ASCII_digits[1];
    824     buffer += 2;
    825 done:
    826     *buffer = 0;
    827     return buffer;
    828   }
    829 
    830   if (u < 100) {
    831     digits = u;
    832     if (u >= 10) goto lt100;
    833     *buffer++ = '0' + digits;
    834     goto done;
    835   }
    836   if (u  <  10000) {   // 10,000
    837     if (u >= 1000) goto lt10_000;
    838     digits = u / 100;
    839     *buffer++ = '0' + digits;
    840     goto sublt100;
    841   }
    842   if (u  <  1000000) {   // 1,000,000
    843     if (u >= 100000) goto lt1_000_000;
    844     digits = u / 10000;  //    10,000
    845     *buffer++ = '0' + digits;
    846     goto sublt10_000;
    847   }
    848   if (u  <  100000000) {   // 100,000,000
    849     if (u >= 10000000) goto lt100_000_000;
    850     digits = u / 1000000;  //   1,000,000
    851     *buffer++ = '0' + digits;
    852     goto sublt1_000_000;
    853   }
    854   // we already know that u < 1,000,000,000
    855   digits = u / 100000000;   // 100,000,000
    856   *buffer++ = '0' + digits;
    857   goto sublt100_000_000;
    858 }
    859 
    860 char* FastInt32ToBufferLeft(int32 i, char* buffer) {
    861   uint32 u = i;
    862   if (i < 0) {
    863     *buffer++ = '-';
    864     u = -i;
    865   }
    866   return FastUInt32ToBufferLeft(u, buffer);
    867 }
    868 
    869 char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
    870   int digits;
    871   const char *ASCII_digits = NULL;
    872 
    873   uint32 u = static_cast<uint32>(u64);
    874   if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
    875 
    876   uint64 top_11_digits = u64 / 1000000000;
    877   buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
    878   u = u64 - (top_11_digits * 1000000000);
    879 
    880   digits = u / 10000000;  // 10,000,000
    881   GOOGLE_DCHECK_LT(digits, 100);
    882   ASCII_digits = two_ASCII_digits[digits];
    883   buffer[0] = ASCII_digits[0];
    884   buffer[1] = ASCII_digits[1];
    885   buffer += 2;
    886   u -= digits * 10000000;  // 10,000,000
    887   digits = u / 100000;  // 100,000
    888   ASCII_digits = two_ASCII_digits[digits];
    889   buffer[0] = ASCII_digits[0];
    890   buffer[1] = ASCII_digits[1];
    891   buffer += 2;
    892   u -= digits * 100000;  // 100,000
    893   digits = u / 1000;  // 1,000
    894   ASCII_digits = two_ASCII_digits[digits];
    895   buffer[0] = ASCII_digits[0];
    896   buffer[1] = ASCII_digits[1];
    897   buffer += 2;
    898   u -= digits * 1000;  // 1,000
    899   digits = u / 10;
    900   ASCII_digits = two_ASCII_digits[digits];
    901   buffer[0] = ASCII_digits[0];
    902   buffer[1] = ASCII_digits[1];
    903   buffer += 2;
    904   u -= digits * 10;
    905   digits = u;
    906   *buffer++ = '0' + digits;
    907   *buffer = 0;
    908   return buffer;
    909 }
    910 
    911 char* FastInt64ToBufferLeft(int64 i, char* buffer) {
    912   uint64 u = i;
    913   if (i < 0) {
    914     *buffer++ = '-';
    915     u = -i;
    916   }
    917   return FastUInt64ToBufferLeft(u, buffer);
    918 }
    919 
    920 // ----------------------------------------------------------------------
    921 // SimpleItoa()
    922 //    Description: converts an integer to a string.
    923 //
    924 //    Return value: string
    925 // ----------------------------------------------------------------------
    926 
    927 string SimpleItoa(int i) {
    928   char buffer[kFastToBufferSize];
    929   return (sizeof(i) == 4) ?
    930     FastInt32ToBuffer(i, buffer) :
    931     FastInt64ToBuffer(i, buffer);
    932 }
    933 
    934 string SimpleItoa(unsigned int i) {
    935   char buffer[kFastToBufferSize];
    936   return string(buffer, (sizeof(i) == 4) ?
    937     FastUInt32ToBufferLeft(i, buffer) :
    938     FastUInt64ToBufferLeft(i, buffer));
    939 }
    940 
    941 string SimpleItoa(long i) {
    942   char buffer[kFastToBufferSize];
    943   return (sizeof(i) == 4) ?
    944     FastInt32ToBuffer(i, buffer) :
    945     FastInt64ToBuffer(i, buffer);
    946 }
    947 
    948 string SimpleItoa(unsigned long i) {
    949   char buffer[kFastToBufferSize];
    950   return string(buffer, (sizeof(i) == 4) ?
    951     FastUInt32ToBufferLeft(i, buffer) :
    952     FastUInt64ToBufferLeft(i, buffer));
    953 }
    954 
    955 string SimpleItoa(long long i) {
    956   char buffer[kFastToBufferSize];
    957   return (sizeof(i) == 4) ?
    958     FastInt32ToBuffer(i, buffer) :
    959     FastInt64ToBuffer(i, buffer);
    960 }
    961 
    962 string SimpleItoa(unsigned long long i) {
    963   char buffer[kFastToBufferSize];
    964   return string(buffer, (sizeof(i) == 4) ?
    965     FastUInt32ToBufferLeft(i, buffer) :
    966     FastUInt64ToBufferLeft(i, buffer));
    967 }
    968 
    969 // ----------------------------------------------------------------------
    970 // SimpleDtoa()
    971 // SimpleFtoa()
    972 // DoubleToBuffer()
    973 // FloatToBuffer()
    974 //    We want to print the value without losing precision, but we also do
    975 //    not want to print more digits than necessary.  This turns out to be
    976 //    trickier than it sounds.  Numbers like 0.2 cannot be represented
    977 //    exactly in binary.  If we print 0.2 with a very large precision,
    978 //    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
    979 //    On the other hand, if we set the precision too low, we lose
    980 //    significant digits when printing numbers that actually need them.
    981 //    It turns out there is no precision value that does the right thing
    982 //    for all numbers.
    983 //
    984 //    Our strategy is to first try printing with a precision that is never
    985 //    over-precise, then parse the result with strtod() to see if it
    986 //    matches.  If not, we print again with a precision that will always
    987 //    give a precise result, but may use more digits than necessary.
    988 //
    989 //    An arguably better strategy would be to use the algorithm described
    990 //    in "How to Print Floating-Point Numbers Accurately" by Steele &
    991 //    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
    992 //    however, that the following implementation is about as fast as
    993 //    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
    994 //    will not scale well on multi-core machines.  DMG's code is slightly
    995 //    more accurate (in that it will never use more digits than
    996 //    necessary), but this is probably irrelevant for most users.
    997 //
    998 //    Rob Pike and Ken Thompson also have an implementation of dtoa() in
    999 //    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
   1000 //    one in that it makes guesses and then uses strtod() to check them.
   1001 //    Their implementation is faster because they use their own code to
   1002 //    generate the digits in the first place rather than use snprintf(),
   1003 //    thus avoiding format string parsing overhead.  However, this makes
   1004 //    it considerably more complicated than the following implementation,
   1005 //    and it is embedded in a larger library.  If speed turns out to be
   1006 //    an issue, we could re-implement this in terms of their
   1007 //    implementation.
   1008 // ----------------------------------------------------------------------
   1009 
   1010 string SimpleDtoa(double value) {
   1011   char buffer[kDoubleToBufferSize];
   1012   return DoubleToBuffer(value, buffer);
   1013 }
   1014 
   1015 string SimpleFtoa(float value) {
   1016   char buffer[kFloatToBufferSize];
   1017   return FloatToBuffer(value, buffer);
   1018 }
   1019 
   1020 static inline bool IsValidFloatChar(char c) {
   1021   return ('0' <= c && c <= '9') ||
   1022          c == 'e' || c == 'E' ||
   1023          c == '+' || c == '-';
   1024 }
   1025 
   1026 void DelocalizeRadix(char* buffer) {
   1027   // Fast check:  if the buffer has a normal decimal point, assume no
   1028   // translation is needed.
   1029   if (strchr(buffer, '.') != NULL) return;
   1030 
   1031   // Find the first unknown character.
   1032   while (IsValidFloatChar(*buffer)) ++buffer;
   1033 
   1034   if (*buffer == '\0') {
   1035     // No radix character found.
   1036     return;
   1037   }
   1038 
   1039   // We are now pointing at the locale-specific radix character.  Replace it
   1040   // with '.'.
   1041   *buffer = '.';
   1042   ++buffer;
   1043 
   1044   if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
   1045     // It appears the radix was a multi-byte character.  We need to remove the
   1046     // extra bytes.
   1047     char* target = buffer;
   1048     do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
   1049     memmove(target, buffer, strlen(buffer) + 1);
   1050   }
   1051 }
   1052 
   1053 char* DoubleToBuffer(double value, char* buffer) {
   1054   // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
   1055   // platforms these days.  Just in case some system exists where DBL_DIG
   1056   // is significantly larger -- and risks overflowing our buffer -- we have
   1057   // this assert.
   1058   GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
   1059 
   1060   if (value == numeric_limits<double>::infinity()) {
   1061     strcpy(buffer, "inf");
   1062     return buffer;
   1063   } else if (value == -numeric_limits<double>::infinity()) {
   1064     strcpy(buffer, "-inf");
   1065     return buffer;
   1066   } else if (IsNaN(value)) {
   1067     strcpy(buffer, "nan");
   1068     return buffer;
   1069   }
   1070 
   1071   int snprintf_result =
   1072     snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
   1073 
   1074   // The snprintf should never overflow because the buffer is significantly
   1075   // larger than the precision we asked for.
   1076   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
   1077 
   1078   // We need to make parsed_value volatile in order to force the compiler to
   1079   // write it out to the stack.  Otherwise, it may keep the value in a
   1080   // register, and if it does that, it may keep it as a long double instead
   1081   // of a double.  This long double may have extra bits that make it compare
   1082   // unequal to "value" even though it would be exactly equal if it were
   1083   // truncated to a double.
   1084   volatile double parsed_value = strtod(buffer, NULL);
   1085   if (parsed_value != value) {
   1086     int snprintf_result =
   1087       snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
   1088 
   1089     // Should never overflow; see above.
   1090     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
   1091   }
   1092 
   1093   DelocalizeRadix(buffer);
   1094   return buffer;
   1095 }
   1096 
   1097 bool safe_strtof(const char* str, float* value) {
   1098   char* endptr;
   1099   errno = 0;  // errno only gets set on errors
   1100 #if defined(_WIN32) || defined (__hpux)  // has no strtof()
   1101   *value = strtod(str, &endptr);
   1102 #else
   1103   *value = strtof(str, &endptr);
   1104 #endif
   1105   return *str != 0 && *endptr == 0 && errno == 0;
   1106 }
   1107 
   1108 char* FloatToBuffer(float value, char* buffer) {
   1109   // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
   1110   // platforms these days.  Just in case some system exists where FLT_DIG
   1111   // is significantly larger -- and risks overflowing our buffer -- we have
   1112   // this assert.
   1113   GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
   1114 
   1115   if (value == numeric_limits<double>::infinity()) {
   1116     strcpy(buffer, "inf");
   1117     return buffer;
   1118   } else if (value == -numeric_limits<double>::infinity()) {
   1119     strcpy(buffer, "-inf");
   1120     return buffer;
   1121   } else if (IsNaN(value)) {
   1122     strcpy(buffer, "nan");
   1123     return buffer;
   1124   }
   1125 
   1126   int snprintf_result =
   1127     snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
   1128 
   1129   // The snprintf should never overflow because the buffer is significantly
   1130   // larger than the precision we asked for.
   1131   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
   1132 
   1133   float parsed_value;
   1134   if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
   1135     int snprintf_result =
   1136       snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);
   1137 
   1138     // Should never overflow; see above.
   1139     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
   1140   }
   1141 
   1142   DelocalizeRadix(buffer);
   1143   return buffer;
   1144 }
   1145 
   1146 // ----------------------------------------------------------------------
   1147 // NoLocaleStrtod()
   1148 //   This code will make you cry.
   1149 // ----------------------------------------------------------------------
   1150 
   1151 // Returns a string identical to *input except that the character pointed to
   1152 // by radix_pos (which should be '.') is replaced with the locale-specific
   1153 // radix character.
   1154 string LocalizeRadix(const char* input, const char* radix_pos) {
   1155   // Determine the locale-specific radix character by calling sprintf() to
   1156   // print the number 1.5, then stripping off the digits.  As far as I can
   1157   // tell, this is the only portable, thread-safe way to get the C library
   1158   // to divuldge the locale's radix character.  No, localeconv() is NOT
   1159   // thread-safe.
   1160   char temp[16];
   1161   int size = sprintf(temp, "%.1f", 1.5);
   1162   GOOGLE_CHECK_EQ(temp[0], '1');
   1163   GOOGLE_CHECK_EQ(temp[size-1], '5');
   1164   GOOGLE_CHECK_LE(size, 6);
   1165 
   1166   // Now replace the '.' in the input with it.
   1167   string result;
   1168   result.reserve(strlen(input) + size - 3);
   1169   result.append(input, radix_pos);
   1170   result.append(temp + 1, size - 2);
   1171   result.append(radix_pos + 1);
   1172   return result;
   1173 }
   1174 
   1175 double NoLocaleStrtod(const char* text, char** original_endptr) {
   1176   // We cannot simply set the locale to "C" temporarily with setlocale()
   1177   // as this is not thread-safe.  Instead, we try to parse in the current
   1178   // locale first.  If parsing stops at a '.' character, then this is a
   1179   // pretty good hint that we're actually in some other locale in which
   1180   // '.' is not the radix character.
   1181 
   1182   char* temp_endptr;
   1183   double result = strtod(text, &temp_endptr);
   1184   if (original_endptr != NULL) *original_endptr = temp_endptr;
   1185   if (*temp_endptr != '.') return result;
   1186 
   1187   // Parsing halted on a '.'.  Perhaps we're in a different locale?  Let's
   1188   // try to replace the '.' with a locale-specific radix character and
   1189   // try again.
   1190   string localized = LocalizeRadix(text, temp_endptr);
   1191   const char* localized_cstr = localized.c_str();
   1192   char* localized_endptr;
   1193   result = strtod(localized_cstr, &localized_endptr);
   1194   if ((localized_endptr - localized_cstr) >
   1195       (temp_endptr - text)) {
   1196     // This attempt got further, so replacing the decimal must have helped.
   1197     // Update original_endptr to point at the right location.
   1198     if (original_endptr != NULL) {
   1199       // size_diff is non-zero if the localized radix has multiple bytes.
   1200       int size_diff = localized.size() - strlen(text);
   1201       // const_cast is necessary to match the strtod() interface.
   1202       *original_endptr = const_cast<char*>(
   1203         text + (localized_endptr - localized_cstr - size_diff));
   1204     }
   1205   }
   1206 
   1207   return result;
   1208 }
   1209 
   1210 }  // namespace protobuf
   1211 }  // namespace google
   1212