Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if V8_TARGET_ARCH_X64
     31 
     32 #include "cpu-profiler.h"
     33 #include "serialize.h"
     34 #include "unicode.h"
     35 #include "log.h"
     36 #include "regexp-stack.h"
     37 #include "macro-assembler.h"
     38 #include "regexp-macro-assembler.h"
     39 #include "x64/regexp-macro-assembler-x64.h"
     40 
     41 namespace v8 {
     42 namespace internal {
     43 
     44 #ifndef V8_INTERPRETED_REGEXP
     45 
     46 /*
     47  * This assembler uses the following register assignment convention
     48  * - rdx : Currently loaded character(s) as ASCII or UC16.  Must be loaded
     49  *         using LoadCurrentCharacter before using any of the dispatch methods.
     50  *         Temporarily stores the index of capture start after a matching pass
     51  *         for a global regexp.
     52  * - rdi : Current position in input, as negative offset from end of string.
     53  *         Please notice that this is the byte offset, not the character
     54  *         offset!  Is always a 32-bit signed (negative) offset, but must be
     55  *         maintained sign-extended to 64 bits, since it is used as index.
     56  * - rsi : End of input (points to byte after last character in input),
     57  *         so that rsi+rdi points to the current character.
     58  * - rbp : Frame pointer.  Used to access arguments, local variables and
     59  *         RegExp registers.
     60  * - rsp : Points to tip of C stack.
     61  * - rcx : Points to tip of backtrack stack.  The backtrack stack contains
     62  *         only 32-bit values.  Most are offsets from some base (e.g., character
     63  *         positions from end of string or code location from Code* pointer).
     64  * - r8  : Code object pointer.  Used to convert between absolute and
     65  *         code-object-relative addresses.
     66  *
     67  * The registers rax, rbx, r9 and r11 are free to use for computations.
     68  * If changed to use r12+, they should be saved as callee-save registers.
     69  * The macro assembler special registers r12 and r13 (kSmiConstantRegister,
     70  * kRootRegister) aren't special during execution of RegExp code (they don't
     71  * hold the values assumed when creating JS code), so no Smi or Root related
     72  * macro operations can be used.
     73  *
     74  * Each call to a C++ method should retain these registers.
     75  *
     76  * The stack will have the following content, in some order, indexable from the
     77  * frame pointer (see, e.g., kStackHighEnd):
     78  *    - Isolate* isolate     (address of the current isolate)
     79  *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
     80  *                            through the runtime system)
     81  *    - stack_area_base      (high end of the memory area to use as
     82  *                            backtracking stack)
     83  *    - capture array size   (may fit multiple sets of matches)
     84  *    - int* capture_array   (int[num_saved_registers_], for output).
     85  *    - end of input         (address of end of string)
     86  *    - start of input       (address of first character in string)
     87  *    - start index          (character index of start)
     88  *    - String* input_string (input string)
     89  *    - return address
     90  *    - backup of callee save registers (rbx, possibly rsi and rdi).
     91  *    - success counter      (only useful for global regexp to count matches)
     92  *    - Offset of location before start of input (effectively character
     93  *      position -1).  Used to initialize capture registers to a non-position.
     94  *    - At start of string (if 1, we are starting at the start of the
     95  *      string, otherwise 0)
     96  *    - register 0  rbp[-n]   (Only positions must be stored in the first
     97  *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
     98  *    - ...
     99  *
    100  * The first num_saved_registers_ registers are initialized to point to
    101  * "character -1" in the string (i.e., char_size() bytes before the first
    102  * character of the string).  The remaining registers starts out uninitialized.
    103  *
    104  * The first seven values must be provided by the calling code by
    105  * calling the code's entry address cast to a function pointer with the
    106  * following signature:
    107  * int (*match)(String* input_string,
    108  *              int start_index,
    109  *              Address start,
    110  *              Address end,
    111  *              int* capture_output_array,
    112  *              bool at_start,
    113  *              byte* stack_area_base,
    114  *              bool direct_call)
    115  */
    116 
    117 #define __ ACCESS_MASM((&masm_))
    118 
    119 RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(
    120     Mode mode,
    121     int registers_to_save,
    122     Zone* zone)
    123     : NativeRegExpMacroAssembler(zone),
    124       masm_(zone->isolate(), NULL, kRegExpCodeSize),
    125       no_root_array_scope_(&masm_),
    126       code_relative_fixup_positions_(4, zone),
    127       mode_(mode),
    128       num_registers_(registers_to_save),
    129       num_saved_registers_(registers_to_save),
    130       entry_label_(),
    131       start_label_(),
    132       success_label_(),
    133       backtrack_label_(),
    134       exit_label_() {
    135   ASSERT_EQ(0, registers_to_save % 2);
    136   __ jmp(&entry_label_);   // We'll write the entry code when we know more.
    137   __ bind(&start_label_);  // And then continue from here.
    138 }
    139 
    140 
    141 RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
    142   // Unuse labels in case we throw away the assembler without calling GetCode.
    143   entry_label_.Unuse();
    144   start_label_.Unuse();
    145   success_label_.Unuse();
    146   backtrack_label_.Unuse();
    147   exit_label_.Unuse();
    148   check_preempt_label_.Unuse();
    149   stack_overflow_label_.Unuse();
    150 }
    151 
    152 
    153 int RegExpMacroAssemblerX64::stack_limit_slack()  {
    154   return RegExpStack::kStackLimitSlack;
    155 }
    156 
    157 
    158 void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
    159   if (by != 0) {
    160     __ addq(rdi, Immediate(by * char_size()));
    161   }
    162 }
    163 
    164 
    165 void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
    166   ASSERT(reg >= 0);
    167   ASSERT(reg < num_registers_);
    168   if (by != 0) {
    169     __ addq(register_location(reg), Immediate(by));
    170   }
    171 }
    172 
    173 
    174 void RegExpMacroAssemblerX64::Backtrack() {
    175   CheckPreemption();
    176   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    177   Pop(rbx);
    178   __ addq(rbx, code_object_pointer());
    179   __ jmp(rbx);
    180 }
    181 
    182 
    183 void RegExpMacroAssemblerX64::Bind(Label* label) {
    184   __ bind(label);
    185 }
    186 
    187 
    188 void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
    189   __ cmpl(current_character(), Immediate(c));
    190   BranchOrBacktrack(equal, on_equal);
    191 }
    192 
    193 
    194 void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
    195   __ cmpl(current_character(), Immediate(limit));
    196   BranchOrBacktrack(greater, on_greater);
    197 }
    198 
    199 
    200 void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
    201   Label not_at_start;
    202   // Did we start the match at the start of the string at all?
    203   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    204   BranchOrBacktrack(not_equal, &not_at_start);
    205   // If we did, are we still at the start of the input?
    206   __ lea(rax, Operand(rsi, rdi, times_1, 0));
    207   __ cmpq(rax, Operand(rbp, kInputStart));
    208   BranchOrBacktrack(equal, on_at_start);
    209   __ bind(&not_at_start);
    210 }
    211 
    212 
    213 void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
    214   // Did we start the match at the start of the string at all?
    215   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    216   BranchOrBacktrack(not_equal, on_not_at_start);
    217   // If we did, are we still at the start of the input?
    218   __ lea(rax, Operand(rsi, rdi, times_1, 0));
    219   __ cmpq(rax, Operand(rbp, kInputStart));
    220   BranchOrBacktrack(not_equal, on_not_at_start);
    221 }
    222 
    223 
    224 void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
    225   __ cmpl(current_character(), Immediate(limit));
    226   BranchOrBacktrack(less, on_less);
    227 }
    228 
    229 
    230 void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
    231   Label fallthrough;
    232   __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
    233   __ j(not_equal, &fallthrough);
    234   Drop();
    235   BranchOrBacktrack(no_condition, on_equal);
    236   __ bind(&fallthrough);
    237 }
    238 
    239 
    240 void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
    241     int start_reg,
    242     Label* on_no_match) {
    243   Label fallthrough;
    244   __ movq(rdx, register_location(start_reg));  // Offset of start of capture
    245   __ movq(rbx, register_location(start_reg + 1));  // Offset of end of capture
    246   __ subq(rbx, rdx);  // Length of capture.
    247 
    248   // -----------------------
    249   // rdx  = Start offset of capture.
    250   // rbx = Length of capture
    251 
    252   // If length is negative, this code will fail (it's a symptom of a partial or
    253   // illegal capture where start of capture after end of capture).
    254   // This must not happen (no back-reference can reference a capture that wasn't
    255   // closed before in the reg-exp, and we must not generate code that can cause
    256   // this condition).
    257 
    258   // If length is zero, either the capture is empty or it is nonparticipating.
    259   // In either case succeed immediately.
    260   __ j(equal, &fallthrough);
    261 
    262   // -----------------------
    263   // rdx - Start of capture
    264   // rbx - length of capture
    265   // Check that there are sufficient characters left in the input.
    266   __ movl(rax, rdi);
    267   __ addl(rax, rbx);
    268   BranchOrBacktrack(greater, on_no_match);
    269 
    270   if (mode_ == ASCII) {
    271     Label loop_increment;
    272     if (on_no_match == NULL) {
    273       on_no_match = &backtrack_label_;
    274     }
    275 
    276     __ lea(r9, Operand(rsi, rdx, times_1, 0));
    277     __ lea(r11, Operand(rsi, rdi, times_1, 0));
    278     __ addq(rbx, r9);  // End of capture
    279     // ---------------------
    280     // r11 - current input character address
    281     // r9 - current capture character address
    282     // rbx - end of capture
    283 
    284     Label loop;
    285     __ bind(&loop);
    286     __ movzxbl(rdx, Operand(r9, 0));
    287     __ movzxbl(rax, Operand(r11, 0));
    288     // al - input character
    289     // dl - capture character
    290     __ cmpb(rax, rdx);
    291     __ j(equal, &loop_increment);
    292 
    293     // Mismatch, try case-insensitive match (converting letters to lower-case).
    294     // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
    295     // a match.
    296     __ or_(rax, Immediate(0x20));  // Convert match character to lower-case.
    297     __ or_(rdx, Immediate(0x20));  // Convert capture character to lower-case.
    298     __ cmpb(rax, rdx);
    299     __ j(not_equal, on_no_match);  // Definitely not equal.
    300     __ subb(rax, Immediate('a'));
    301     __ cmpb(rax, Immediate('z' - 'a'));
    302     __ j(below_equal, &loop_increment);  // In range 'a'-'z'.
    303     // Latin-1: Check for values in range [224,254] but not 247.
    304     __ subb(rax, Immediate(224 - 'a'));
    305     __ cmpb(rax, Immediate(254 - 224));
    306     __ j(above, on_no_match);  // Weren't Latin-1 letters.
    307     __ cmpb(rax, Immediate(247 - 224));  // Check for 247.
    308     __ j(equal, on_no_match);
    309     __ bind(&loop_increment);
    310     // Increment pointers into match and capture strings.
    311     __ addq(r11, Immediate(1));
    312     __ addq(r9, Immediate(1));
    313     // Compare to end of capture, and loop if not done.
    314     __ cmpq(r9, rbx);
    315     __ j(below, &loop);
    316 
    317     // Compute new value of character position after the matched part.
    318     __ movq(rdi, r11);
    319     __ subq(rdi, rsi);
    320   } else {
    321     ASSERT(mode_ == UC16);
    322     // Save important/volatile registers before calling C function.
    323 #ifndef _WIN64
    324     // Caller save on Linux and callee save in Windows.
    325     __ push(rsi);
    326     __ push(rdi);
    327 #endif
    328     __ push(backtrack_stackpointer());
    329 
    330     static const int num_arguments = 4;
    331     __ PrepareCallCFunction(num_arguments);
    332 
    333     // Put arguments into parameter registers. Parameters are
    334     //   Address byte_offset1 - Address captured substring's start.
    335     //   Address byte_offset2 - Address of current character position.
    336     //   size_t byte_length - length of capture in bytes(!)
    337     //   Isolate* isolate
    338 #ifdef _WIN64
    339     // Compute and set byte_offset1 (start of capture).
    340     __ lea(rcx, Operand(rsi, rdx, times_1, 0));
    341     // Set byte_offset2.
    342     __ lea(rdx, Operand(rsi, rdi, times_1, 0));
    343     // Set byte_length.
    344     __ movq(r8, rbx);
    345     // Isolate.
    346     __ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
    347 #else  // AMD64 calling convention
    348     // Compute byte_offset2 (current position = rsi+rdi).
    349     __ lea(rax, Operand(rsi, rdi, times_1, 0));
    350     // Compute and set byte_offset1 (start of capture).
    351     __ lea(rdi, Operand(rsi, rdx, times_1, 0));
    352     // Set byte_offset2.
    353     __ movq(rsi, rax);
    354     // Set byte_length.
    355     __ movq(rdx, rbx);
    356     // Isolate.
    357     __ LoadAddress(rcx, ExternalReference::isolate_address(isolate()));
    358 #endif
    359 
    360     { // NOLINT: Can't find a way to open this scope without confusing the
    361       // linter.
    362       AllowExternalCallThatCantCauseGC scope(&masm_);
    363       ExternalReference compare =
    364           ExternalReference::re_case_insensitive_compare_uc16(isolate());
    365       __ CallCFunction(compare, num_arguments);
    366     }
    367 
    368     // Restore original values before reacting on result value.
    369     __ Move(code_object_pointer(), masm_.CodeObject());
    370     __ pop(backtrack_stackpointer());
    371 #ifndef _WIN64
    372     __ pop(rdi);
    373     __ pop(rsi);
    374 #endif
    375 
    376     // Check if function returned non-zero for success or zero for failure.
    377     __ testq(rax, rax);
    378     BranchOrBacktrack(zero, on_no_match);
    379     // On success, increment position by length of capture.
    380     // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
    381     __ addq(rdi, rbx);
    382   }
    383   __ bind(&fallthrough);
    384 }
    385 
    386 
    387 void RegExpMacroAssemblerX64::CheckNotBackReference(
    388     int start_reg,
    389     Label* on_no_match) {
    390   Label fallthrough;
    391 
    392   // Find length of back-referenced capture.
    393   __ movq(rdx, register_location(start_reg));
    394   __ movq(rax, register_location(start_reg + 1));
    395   __ subq(rax, rdx);  // Length to check.
    396 
    397   // Fail on partial or illegal capture (start of capture after end of capture).
    398   // This must not happen (no back-reference can reference a capture that wasn't
    399   // closed before in the reg-exp).
    400   __ Check(greater_equal, kInvalidCaptureReferenced);
    401 
    402   // Succeed on empty capture (including non-participating capture)
    403   __ j(equal, &fallthrough);
    404 
    405   // -----------------------
    406   // rdx - Start of capture
    407   // rax - length of capture
    408 
    409   // Check that there are sufficient characters left in the input.
    410   __ movl(rbx, rdi);
    411   __ addl(rbx, rax);
    412   BranchOrBacktrack(greater, on_no_match);
    413 
    414   // Compute pointers to match string and capture string
    415   __ lea(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
    416   __ addq(rdx, rsi);  // Start of capture.
    417   __ lea(r9, Operand(rdx, rax, times_1, 0));  // End of capture
    418 
    419   // -----------------------
    420   // rbx - current capture character address.
    421   // rbx - current input character address .
    422   // r9 - end of input to match (capture length after rbx).
    423 
    424   Label loop;
    425   __ bind(&loop);
    426   if (mode_ == ASCII) {
    427     __ movzxbl(rax, Operand(rdx, 0));
    428     __ cmpb(rax, Operand(rbx, 0));
    429   } else {
    430     ASSERT(mode_ == UC16);
    431     __ movzxwl(rax, Operand(rdx, 0));
    432     __ cmpw(rax, Operand(rbx, 0));
    433   }
    434   BranchOrBacktrack(not_equal, on_no_match);
    435   // Increment pointers into capture and match string.
    436   __ addq(rbx, Immediate(char_size()));
    437   __ addq(rdx, Immediate(char_size()));
    438   // Check if we have reached end of match area.
    439   __ cmpq(rdx, r9);
    440   __ j(below, &loop);
    441 
    442   // Success.
    443   // Set current character position to position after match.
    444   __ movq(rdi, rbx);
    445   __ subq(rdi, rsi);
    446 
    447   __ bind(&fallthrough);
    448 }
    449 
    450 
    451 void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
    452                                                 Label* on_not_equal) {
    453   __ cmpl(current_character(), Immediate(c));
    454   BranchOrBacktrack(not_equal, on_not_equal);
    455 }
    456 
    457 
    458 void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
    459                                                      uint32_t mask,
    460                                                      Label* on_equal) {
    461   if (c == 0) {
    462     __ testl(current_character(), Immediate(mask));
    463   } else {
    464     __ movl(rax, Immediate(mask));
    465     __ and_(rax, current_character());
    466     __ cmpl(rax, Immediate(c));
    467   }
    468   BranchOrBacktrack(equal, on_equal);
    469 }
    470 
    471 
    472 void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
    473                                                         uint32_t mask,
    474                                                         Label* on_not_equal) {
    475   if (c == 0) {
    476     __ testl(current_character(), Immediate(mask));
    477   } else {
    478     __ movl(rax, Immediate(mask));
    479     __ and_(rax, current_character());
    480     __ cmpl(rax, Immediate(c));
    481   }
    482   BranchOrBacktrack(not_equal, on_not_equal);
    483 }
    484 
    485 
    486 void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
    487     uc16 c,
    488     uc16 minus,
    489     uc16 mask,
    490     Label* on_not_equal) {
    491   ASSERT(minus < String::kMaxUtf16CodeUnit);
    492   __ lea(rax, Operand(current_character(), -minus));
    493   __ and_(rax, Immediate(mask));
    494   __ cmpl(rax, Immediate(c));
    495   BranchOrBacktrack(not_equal, on_not_equal);
    496 }
    497 
    498 
    499 void RegExpMacroAssemblerX64::CheckCharacterInRange(
    500     uc16 from,
    501     uc16 to,
    502     Label* on_in_range) {
    503   __ leal(rax, Operand(current_character(), -from));
    504   __ cmpl(rax, Immediate(to - from));
    505   BranchOrBacktrack(below_equal, on_in_range);
    506 }
    507 
    508 
    509 void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
    510     uc16 from,
    511     uc16 to,
    512     Label* on_not_in_range) {
    513   __ leal(rax, Operand(current_character(), -from));
    514   __ cmpl(rax, Immediate(to - from));
    515   BranchOrBacktrack(above, on_not_in_range);
    516 }
    517 
    518 
    519 void RegExpMacroAssemblerX64::CheckBitInTable(
    520     Handle<ByteArray> table,
    521     Label* on_bit_set) {
    522   __ Move(rax, table);
    523   Register index = current_character();
    524   if (mode_ != ASCII || kTableMask != String::kMaxOneByteCharCode) {
    525     __ movq(rbx, current_character());
    526     __ and_(rbx, Immediate(kTableMask));
    527     index = rbx;
    528   }
    529   __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
    530           Immediate(0));
    531   BranchOrBacktrack(not_equal, on_bit_set);
    532 }
    533 
    534 
    535 bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
    536                                                          Label* on_no_match) {
    537   // Range checks (c in min..max) are generally implemented by an unsigned
    538   // (c - min) <= (max - min) check, using the sequence:
    539   //   lea(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
    540   //   cmp(rax, Immediate(max - min))
    541   switch (type) {
    542   case 's':
    543     // Match space-characters
    544     if (mode_ == ASCII) {
    545       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
    546       Label success;
    547       __ cmpl(current_character(), Immediate(' '));
    548       __ j(equal, &success, Label::kNear);
    549       // Check range 0x09..0x0d
    550       __ lea(rax, Operand(current_character(), -'\t'));
    551       __ cmpl(rax, Immediate('\r' - '\t'));
    552       __ j(below_equal, &success, Label::kNear);
    553       // \u00a0 (NBSP).
    554       __ cmpl(rax, Immediate(0x00a0 - '\t'));
    555       BranchOrBacktrack(not_equal, on_no_match);
    556       __ bind(&success);
    557       return true;
    558     }
    559     return false;
    560   case 'S':
    561     // The emitted code for generic character classes is good enough.
    562     return false;
    563   case 'd':
    564     // Match ASCII digits ('0'..'9')
    565     __ lea(rax, Operand(current_character(), -'0'));
    566     __ cmpl(rax, Immediate('9' - '0'));
    567     BranchOrBacktrack(above, on_no_match);
    568     return true;
    569   case 'D':
    570     // Match non ASCII-digits
    571     __ lea(rax, Operand(current_character(), -'0'));
    572     __ cmpl(rax, Immediate('9' - '0'));
    573     BranchOrBacktrack(below_equal, on_no_match);
    574     return true;
    575   case '.': {
    576     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    577     __ movl(rax, current_character());
    578     __ xor_(rax, Immediate(0x01));
    579     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    580     __ subl(rax, Immediate(0x0b));
    581     __ cmpl(rax, Immediate(0x0c - 0x0b));
    582     BranchOrBacktrack(below_equal, on_no_match);
    583     if (mode_ == UC16) {
    584       // Compare original value to 0x2028 and 0x2029, using the already
    585       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    586       // 0x201d (0x2028 - 0x0b) or 0x201e.
    587       __ subl(rax, Immediate(0x2028 - 0x0b));
    588       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    589       BranchOrBacktrack(below_equal, on_no_match);
    590     }
    591     return true;
    592   }
    593   case 'n': {
    594     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    595     __ movl(rax, current_character());
    596     __ xor_(rax, Immediate(0x01));
    597     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    598     __ subl(rax, Immediate(0x0b));
    599     __ cmpl(rax, Immediate(0x0c - 0x0b));
    600     if (mode_ == ASCII) {
    601       BranchOrBacktrack(above, on_no_match);
    602     } else {
    603       Label done;
    604       BranchOrBacktrack(below_equal, &done);
    605       // Compare original value to 0x2028 and 0x2029, using the already
    606       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    607       // 0x201d (0x2028 - 0x0b) or 0x201e.
    608       __ subl(rax, Immediate(0x2028 - 0x0b));
    609       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    610       BranchOrBacktrack(above, on_no_match);
    611       __ bind(&done);
    612     }
    613     return true;
    614   }
    615   case 'w': {
    616     if (mode_ != ASCII) {
    617       // Table is 128 entries, so all ASCII characters can be tested.
    618       __ cmpl(current_character(), Immediate('z'));
    619       BranchOrBacktrack(above, on_no_match);
    620     }
    621     __ movq(rbx, ExternalReference::re_word_character_map());
    622     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    623     __ testb(Operand(rbx, current_character(), times_1, 0),
    624              current_character());
    625     BranchOrBacktrack(zero, on_no_match);
    626     return true;
    627   }
    628   case 'W': {
    629     Label done;
    630     if (mode_ != ASCII) {
    631       // Table is 128 entries, so all ASCII characters can be tested.
    632       __ cmpl(current_character(), Immediate('z'));
    633       __ j(above, &done);
    634     }
    635     __ movq(rbx, ExternalReference::re_word_character_map());
    636     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    637     __ testb(Operand(rbx, current_character(), times_1, 0),
    638              current_character());
    639     BranchOrBacktrack(not_zero, on_no_match);
    640     if (mode_ != ASCII) {
    641       __ bind(&done);
    642     }
    643     return true;
    644   }
    645 
    646   case '*':
    647     // Match any character.
    648     return true;
    649   // No custom implementation (yet): s(UC16), S(UC16).
    650   default:
    651     return false;
    652   }
    653 }
    654 
    655 
    656 void RegExpMacroAssemblerX64::Fail() {
    657   STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
    658   if (!global()) {
    659     __ Set(rax, FAILURE);
    660   }
    661   __ jmp(&exit_label_);
    662 }
    663 
    664 
    665 Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
    666   Label return_rax;
    667   // Finalize code - write the entry point code now we know how many
    668   // registers we need.
    669   // Entry code:
    670   __ bind(&entry_label_);
    671 
    672   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
    673   // is generated.
    674   FrameScope scope(&masm_, StackFrame::MANUAL);
    675 
    676   // Actually emit code to start a new stack frame.
    677   __ push(rbp);
    678   __ movq(rbp, rsp);
    679   // Save parameters and callee-save registers. Order here should correspond
    680   //  to order of kBackup_ebx etc.
    681 #ifdef _WIN64
    682   // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
    683   // Store register parameters in pre-allocated stack slots,
    684   __ movq(Operand(rbp, kInputString), rcx);
    685   __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
    686   __ movq(Operand(rbp, kInputStart), r8);
    687   __ movq(Operand(rbp, kInputEnd), r9);
    688   // Callee-save on Win64.
    689   __ push(rsi);
    690   __ push(rdi);
    691   __ push(rbx);
    692 #else
    693   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
    694   // Push register parameters on stack for reference.
    695   ASSERT_EQ(kInputString, -1 * kPointerSize);
    696   ASSERT_EQ(kStartIndex, -2 * kPointerSize);
    697   ASSERT_EQ(kInputStart, -3 * kPointerSize);
    698   ASSERT_EQ(kInputEnd, -4 * kPointerSize);
    699   ASSERT_EQ(kRegisterOutput, -5 * kPointerSize);
    700   ASSERT_EQ(kNumOutputRegisters, -6 * kPointerSize);
    701   __ push(rdi);
    702   __ push(rsi);
    703   __ push(rdx);
    704   __ push(rcx);
    705   __ push(r8);
    706   __ push(r9);
    707 
    708   __ push(rbx);  // Callee-save
    709 #endif
    710 
    711   __ push(Immediate(0));  // Number of successful matches in a global regexp.
    712   __ push(Immediate(0));  // Make room for "input start - 1" constant.
    713 
    714   // Check if we have space on the stack for registers.
    715   Label stack_limit_hit;
    716   Label stack_ok;
    717 
    718   ExternalReference stack_limit =
    719       ExternalReference::address_of_stack_limit(isolate());
    720   __ movq(rcx, rsp);
    721   __ movq(kScratchRegister, stack_limit);
    722   __ subq(rcx, Operand(kScratchRegister, 0));
    723   // Handle it if the stack pointer is already below the stack limit.
    724   __ j(below_equal, &stack_limit_hit);
    725   // Check if there is room for the variable number of registers above
    726   // the stack limit.
    727   __ cmpq(rcx, Immediate(num_registers_ * kPointerSize));
    728   __ j(above_equal, &stack_ok);
    729   // Exit with OutOfMemory exception. There is not enough space on the stack
    730   // for our working registers.
    731   __ Set(rax, EXCEPTION);
    732   __ jmp(&return_rax);
    733 
    734   __ bind(&stack_limit_hit);
    735   __ Move(code_object_pointer(), masm_.CodeObject());
    736   CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
    737   __ testq(rax, rax);
    738   // If returned value is non-zero, we exit with the returned value as result.
    739   __ j(not_zero, &return_rax);
    740 
    741   __ bind(&stack_ok);
    742 
    743   // Allocate space on stack for registers.
    744   __ subq(rsp, Immediate(num_registers_ * kPointerSize));
    745   // Load string length.
    746   __ movq(rsi, Operand(rbp, kInputEnd));
    747   // Load input position.
    748   __ movq(rdi, Operand(rbp, kInputStart));
    749   // Set up rdi to be negative offset from string end.
    750   __ subq(rdi, rsi);
    751   // Set rax to address of char before start of the string
    752   // (effectively string position -1).
    753   __ movq(rbx, Operand(rbp, kStartIndex));
    754   __ neg(rbx);
    755   if (mode_ == UC16) {
    756     __ lea(rax, Operand(rdi, rbx, times_2, -char_size()));
    757   } else {
    758     __ lea(rax, Operand(rdi, rbx, times_1, -char_size()));
    759   }
    760   // Store this value in a local variable, for use when clearing
    761   // position registers.
    762   __ movq(Operand(rbp, kInputStartMinusOne), rax);
    763 
    764 #ifdef WIN32
    765   // Ensure that we have written to each stack page, in order. Skipping a page
    766   // on Windows can cause segmentation faults. Assuming page size is 4k.
    767   const int kPageSize = 4096;
    768   const int kRegistersPerPage = kPageSize / kPointerSize;
    769   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
    770       i < num_registers_;
    771       i += kRegistersPerPage) {
    772     __ movq(register_location(i), rax);  // One write every page.
    773   }
    774 #endif  // WIN32
    775 
    776   // Initialize code object pointer.
    777   __ Move(code_object_pointer(), masm_.CodeObject());
    778 
    779   Label load_char_start_regexp, start_regexp;
    780   // Load newline if index is at start, previous character otherwise.
    781   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    782   __ j(not_equal, &load_char_start_regexp, Label::kNear);
    783   __ Set(current_character(), '\n');
    784   __ jmp(&start_regexp, Label::kNear);
    785 
    786   // Global regexp restarts matching here.
    787   __ bind(&load_char_start_regexp);
    788   // Load previous char as initial value of current character register.
    789   LoadCurrentCharacterUnchecked(-1, 1);
    790   __ bind(&start_regexp);
    791 
    792   // Initialize on-stack registers.
    793   if (num_saved_registers_ > 0) {
    794     // Fill saved registers with initial value = start offset - 1
    795     // Fill in stack push order, to avoid accessing across an unwritten
    796     // page (a problem on Windows).
    797     if (num_saved_registers_ > 8) {
    798       __ Set(rcx, kRegisterZero);
    799       Label init_loop;
    800       __ bind(&init_loop);
    801       __ movq(Operand(rbp, rcx, times_1, 0), rax);
    802       __ subq(rcx, Immediate(kPointerSize));
    803       __ cmpq(rcx,
    804               Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
    805       __ j(greater, &init_loop);
    806     } else {  // Unroll the loop.
    807       for (int i = 0; i < num_saved_registers_; i++) {
    808         __ movq(register_location(i), rax);
    809       }
    810     }
    811   }
    812 
    813   // Initialize backtrack stack pointer.
    814   __ movq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
    815 
    816   __ jmp(&start_label_);
    817 
    818   // Exit code:
    819   if (success_label_.is_linked()) {
    820     // Save captures when successful.
    821     __ bind(&success_label_);
    822     if (num_saved_registers_ > 0) {
    823       // copy captures to output
    824       __ movq(rdx, Operand(rbp, kStartIndex));
    825       __ movq(rbx, Operand(rbp, kRegisterOutput));
    826       __ movq(rcx, Operand(rbp, kInputEnd));
    827       __ subq(rcx, Operand(rbp, kInputStart));
    828       if (mode_ == UC16) {
    829         __ lea(rcx, Operand(rcx, rdx, times_2, 0));
    830       } else {
    831         __ addq(rcx, rdx);
    832       }
    833       for (int i = 0; i < num_saved_registers_; i++) {
    834         __ movq(rax, register_location(i));
    835         if (i == 0 && global_with_zero_length_check()) {
    836           // Keep capture start in rdx for the zero-length check later.
    837           __ movq(rdx, rax);
    838         }
    839         __ addq(rax, rcx);  // Convert to index from start, not end.
    840         if (mode_ == UC16) {
    841           __ sar(rax, Immediate(1));  // Convert byte index to character index.
    842         }
    843         __ movl(Operand(rbx, i * kIntSize), rax);
    844       }
    845     }
    846 
    847     if (global()) {
    848       // Restart matching if the regular expression is flagged as global.
    849       // Increment success counter.
    850       __ incq(Operand(rbp, kSuccessfulCaptures));
    851       // Capture results have been stored, so the number of remaining global
    852       // output registers is reduced by the number of stored captures.
    853       __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
    854       __ subq(rcx, Immediate(num_saved_registers_));
    855       // Check whether we have enough room for another set of capture results.
    856       __ cmpq(rcx, Immediate(num_saved_registers_));
    857       __ j(less, &exit_label_);
    858 
    859       __ movq(Operand(rbp, kNumOutputRegisters), rcx);
    860       // Advance the location for output.
    861       __ addq(Operand(rbp, kRegisterOutput),
    862               Immediate(num_saved_registers_ * kIntSize));
    863 
    864       // Prepare rax to initialize registers with its value in the next run.
    865       __ movq(rax, Operand(rbp, kInputStartMinusOne));
    866 
    867       if (global_with_zero_length_check()) {
    868         // Special case for zero-length matches.
    869         // rdx: capture start index
    870         __ cmpq(rdi, rdx);
    871         // Not a zero-length match, restart.
    872         __ j(not_equal, &load_char_start_regexp);
    873         // rdi (offset from the end) is zero if we already reached the end.
    874         __ testq(rdi, rdi);
    875         __ j(zero, &exit_label_, Label::kNear);
    876         // Advance current position after a zero-length match.
    877         if (mode_ == UC16) {
    878           __ addq(rdi, Immediate(2));
    879         } else {
    880           __ incq(rdi);
    881         }
    882       }
    883 
    884       __ jmp(&load_char_start_regexp);
    885     } else {
    886       __ movq(rax, Immediate(SUCCESS));
    887     }
    888   }
    889 
    890   __ bind(&exit_label_);
    891   if (global()) {
    892     // Return the number of successful captures.
    893     __ movq(rax, Operand(rbp, kSuccessfulCaptures));
    894   }
    895 
    896   __ bind(&return_rax);
    897 #ifdef _WIN64
    898   // Restore callee save registers.
    899   __ lea(rsp, Operand(rbp, kLastCalleeSaveRegister));
    900   __ pop(rbx);
    901   __ pop(rdi);
    902   __ pop(rsi);
    903   // Stack now at rbp.
    904 #else
    905   // Restore callee save register.
    906   __ movq(rbx, Operand(rbp, kBackup_rbx));
    907   // Skip rsp to rbp.
    908   __ movq(rsp, rbp);
    909 #endif
    910   // Exit function frame, restore previous one.
    911   __ pop(rbp);
    912   __ ret(0);
    913 
    914   // Backtrack code (branch target for conditional backtracks).
    915   if (backtrack_label_.is_linked()) {
    916     __ bind(&backtrack_label_);
    917     Backtrack();
    918   }
    919 
    920   Label exit_with_exception;
    921 
    922   // Preempt-code
    923   if (check_preempt_label_.is_linked()) {
    924     SafeCallTarget(&check_preempt_label_);
    925 
    926     __ push(backtrack_stackpointer());
    927     __ push(rdi);
    928 
    929     CallCheckStackGuardState();
    930     __ testq(rax, rax);
    931     // If returning non-zero, we should end execution with the given
    932     // result as return value.
    933     __ j(not_zero, &return_rax);
    934 
    935     // Restore registers.
    936     __ Move(code_object_pointer(), masm_.CodeObject());
    937     __ pop(rdi);
    938     __ pop(backtrack_stackpointer());
    939     // String might have moved: Reload esi from frame.
    940     __ movq(rsi, Operand(rbp, kInputEnd));
    941     SafeReturn();
    942   }
    943 
    944   // Backtrack stack overflow code.
    945   if (stack_overflow_label_.is_linked()) {
    946     SafeCallTarget(&stack_overflow_label_);
    947     // Reached if the backtrack-stack limit has been hit.
    948 
    949     Label grow_failed;
    950     // Save registers before calling C function
    951 #ifndef _WIN64
    952     // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
    953     __ push(rsi);
    954     __ push(rdi);
    955 #endif
    956 
    957     // Call GrowStack(backtrack_stackpointer())
    958     static const int num_arguments = 3;
    959     __ PrepareCallCFunction(num_arguments);
    960 #ifdef _WIN64
    961     // Microsoft passes parameters in rcx, rdx, r8.
    962     // First argument, backtrack stackpointer, is already in rcx.
    963     __ lea(rdx, Operand(rbp, kStackHighEnd));  // Second argument
    964     __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
    965 #else
    966     // AMD64 ABI passes parameters in rdi, rsi, rdx.
    967     __ movq(rdi, backtrack_stackpointer());   // First argument.
    968     __ lea(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
    969     __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
    970 #endif
    971     ExternalReference grow_stack =
    972         ExternalReference::re_grow_stack(isolate());
    973     __ CallCFunction(grow_stack, num_arguments);
    974     // If return NULL, we have failed to grow the stack, and
    975     // must exit with a stack-overflow exception.
    976     __ testq(rax, rax);
    977     __ j(equal, &exit_with_exception);
    978     // Otherwise use return value as new stack pointer.
    979     __ movq(backtrack_stackpointer(), rax);
    980     // Restore saved registers and continue.
    981     __ Move(code_object_pointer(), masm_.CodeObject());
    982 #ifndef _WIN64
    983     __ pop(rdi);
    984     __ pop(rsi);
    985 #endif
    986     SafeReturn();
    987   }
    988 
    989   if (exit_with_exception.is_linked()) {
    990     // If any of the code above needed to exit with an exception.
    991     __ bind(&exit_with_exception);
    992     // Exit with Result EXCEPTION(-1) to signal thrown exception.
    993     __ Set(rax, EXCEPTION);
    994     __ jmp(&return_rax);
    995   }
    996 
    997   FixupCodeRelativePositions();
    998 
    999   CodeDesc code_desc;
   1000   masm_.GetCode(&code_desc);
   1001   Isolate* isolate = ISOLATE;
   1002   Handle<Code> code = isolate->factory()->NewCode(
   1003       code_desc, Code::ComputeFlags(Code::REGEXP),
   1004       masm_.CodeObject());
   1005   PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
   1006   return Handle<HeapObject>::cast(code);
   1007 }
   1008 
   1009 
   1010 void RegExpMacroAssemblerX64::GoTo(Label* to) {
   1011   BranchOrBacktrack(no_condition, to);
   1012 }
   1013 
   1014 
   1015 void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
   1016                                            int comparand,
   1017                                            Label* if_ge) {
   1018   __ cmpq(register_location(reg), Immediate(comparand));
   1019   BranchOrBacktrack(greater_equal, if_ge);
   1020 }
   1021 
   1022 
   1023 void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
   1024                                            int comparand,
   1025                                            Label* if_lt) {
   1026   __ cmpq(register_location(reg), Immediate(comparand));
   1027   BranchOrBacktrack(less, if_lt);
   1028 }
   1029 
   1030 
   1031 void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
   1032                                               Label* if_eq) {
   1033   __ cmpq(rdi, register_location(reg));
   1034   BranchOrBacktrack(equal, if_eq);
   1035 }
   1036 
   1037 
   1038 RegExpMacroAssembler::IrregexpImplementation
   1039     RegExpMacroAssemblerX64::Implementation() {
   1040   return kX64Implementation;
   1041 }
   1042 
   1043 
   1044 void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
   1045                                                    Label* on_end_of_input,
   1046                                                    bool check_bounds,
   1047                                                    int characters) {
   1048   ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
   1049   ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
   1050   if (check_bounds) {
   1051     CheckPosition(cp_offset + characters - 1, on_end_of_input);
   1052   }
   1053   LoadCurrentCharacterUnchecked(cp_offset, characters);
   1054 }
   1055 
   1056 
   1057 void RegExpMacroAssemblerX64::PopCurrentPosition() {
   1058   Pop(rdi);
   1059 }
   1060 
   1061 
   1062 void RegExpMacroAssemblerX64::PopRegister(int register_index) {
   1063   Pop(rax);
   1064   __ movq(register_location(register_index), rax);
   1065 }
   1066 
   1067 
   1068 void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
   1069   Push(label);
   1070   CheckStackLimit();
   1071 }
   1072 
   1073 
   1074 void RegExpMacroAssemblerX64::PushCurrentPosition() {
   1075   Push(rdi);
   1076 }
   1077 
   1078 
   1079 void RegExpMacroAssemblerX64::PushRegister(int register_index,
   1080                                            StackCheckFlag check_stack_limit) {
   1081   __ movq(rax, register_location(register_index));
   1082   Push(rax);
   1083   if (check_stack_limit) CheckStackLimit();
   1084 }
   1085 
   1086 
   1087 void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
   1088   __ movq(rdi, register_location(reg));
   1089 }
   1090 
   1091 
   1092 void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
   1093   __ movq(backtrack_stackpointer(), register_location(reg));
   1094   __ addq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
   1095 }
   1096 
   1097 
   1098 void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
   1099   Label after_position;
   1100   __ cmpq(rdi, Immediate(-by * char_size()));
   1101   __ j(greater_equal, &after_position, Label::kNear);
   1102   __ movq(rdi, Immediate(-by * char_size()));
   1103   // On RegExp code entry (where this operation is used), the character before
   1104   // the current position is expected to be already loaded.
   1105   // We have advanced the position, so it's safe to read backwards.
   1106   LoadCurrentCharacterUnchecked(-1, 1);
   1107   __ bind(&after_position);
   1108 }
   1109 
   1110 
   1111 void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
   1112   ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
   1113   __ movq(register_location(register_index), Immediate(to));
   1114 }
   1115 
   1116 
   1117 bool RegExpMacroAssemblerX64::Succeed() {
   1118   __ jmp(&success_label_);
   1119   return global();
   1120 }
   1121 
   1122 
   1123 void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
   1124                                                              int cp_offset) {
   1125   if (cp_offset == 0) {
   1126     __ movq(register_location(reg), rdi);
   1127   } else {
   1128     __ lea(rax, Operand(rdi, cp_offset * char_size()));
   1129     __ movq(register_location(reg), rax);
   1130   }
   1131 }
   1132 
   1133 
   1134 void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
   1135   ASSERT(reg_from <= reg_to);
   1136   __ movq(rax, Operand(rbp, kInputStartMinusOne));
   1137   for (int reg = reg_from; reg <= reg_to; reg++) {
   1138     __ movq(register_location(reg), rax);
   1139   }
   1140 }
   1141 
   1142 
   1143 void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
   1144   __ movq(rax, backtrack_stackpointer());
   1145   __ subq(rax, Operand(rbp, kStackHighEnd));
   1146   __ movq(register_location(reg), rax);
   1147 }
   1148 
   1149 
   1150 // Private methods:
   1151 
   1152 void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
   1153   // This function call preserves no register values. Caller should
   1154   // store anything volatile in a C call or overwritten by this function.
   1155   static const int num_arguments = 3;
   1156   __ PrepareCallCFunction(num_arguments);
   1157 #ifdef _WIN64
   1158   // Second argument: Code* of self. (Do this before overwriting r8).
   1159   __ movq(rdx, code_object_pointer());
   1160   // Third argument: RegExp code frame pointer.
   1161   __ movq(r8, rbp);
   1162   // First argument: Next address on the stack (will be address of
   1163   // return address).
   1164   __ lea(rcx, Operand(rsp, -kPointerSize));
   1165 #else
   1166   // Third argument: RegExp code frame pointer.
   1167   __ movq(rdx, rbp);
   1168   // Second argument: Code* of self.
   1169   __ movq(rsi, code_object_pointer());
   1170   // First argument: Next address on the stack (will be address of
   1171   // return address).
   1172   __ lea(rdi, Operand(rsp, -kPointerSize));
   1173 #endif
   1174   ExternalReference stack_check =
   1175       ExternalReference::re_check_stack_guard_state(isolate());
   1176   __ CallCFunction(stack_check, num_arguments);
   1177 }
   1178 
   1179 
   1180 // Helper function for reading a value out of a stack frame.
   1181 template <typename T>
   1182 static T& frame_entry(Address re_frame, int frame_offset) {
   1183   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
   1184 }
   1185 
   1186 
   1187 int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
   1188                                                   Code* re_code,
   1189                                                   Address re_frame) {
   1190   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
   1191   ASSERT(isolate == Isolate::Current());
   1192   if (isolate->stack_guard()->IsStackOverflow()) {
   1193     isolate->StackOverflow();
   1194     return EXCEPTION;
   1195   }
   1196 
   1197   // If not real stack overflow the stack guard was used to interrupt
   1198   // execution for another purpose.
   1199 
   1200   // If this is a direct call from JavaScript retry the RegExp forcing the call
   1201   // through the runtime system. Currently the direct call cannot handle a GC.
   1202   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
   1203     return RETRY;
   1204   }
   1205 
   1206   // Prepare for possible GC.
   1207   HandleScope handles(isolate);
   1208   Handle<Code> code_handle(re_code);
   1209 
   1210   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
   1211 
   1212   // Current string.
   1213   bool is_ascii = subject->IsOneByteRepresentationUnderneath();
   1214 
   1215   ASSERT(re_code->instruction_start() <= *return_address);
   1216   ASSERT(*return_address <=
   1217       re_code->instruction_start() + re_code->instruction_size());
   1218 
   1219   MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate);
   1220 
   1221   if (*code_handle != re_code) {  // Return address no longer valid
   1222     intptr_t delta = code_handle->address() - re_code->address();
   1223     // Overwrite the return address on the stack.
   1224     *return_address += delta;
   1225   }
   1226 
   1227   if (result->IsException()) {
   1228     return EXCEPTION;
   1229   }
   1230 
   1231   Handle<String> subject_tmp = subject;
   1232   int slice_offset = 0;
   1233 
   1234   // Extract the underlying string and the slice offset.
   1235   if (StringShape(*subject_tmp).IsCons()) {
   1236     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
   1237   } else if (StringShape(*subject_tmp).IsSliced()) {
   1238     SlicedString* slice = SlicedString::cast(*subject_tmp);
   1239     subject_tmp = Handle<String>(slice->parent());
   1240     slice_offset = slice->offset();
   1241   }
   1242 
   1243   // String might have changed.
   1244   if (subject_tmp->IsOneByteRepresentation() != is_ascii) {
   1245     // If we changed between an ASCII and an UC16 string, the specialized
   1246     // code cannot be used, and we need to restart regexp matching from
   1247     // scratch (including, potentially, compiling a new version of the code).
   1248     return RETRY;
   1249   }
   1250 
   1251   // Otherwise, the content of the string might have moved. It must still
   1252   // be a sequential or external string with the same content.
   1253   // Update the start and end pointers in the stack frame to the current
   1254   // location (whether it has actually moved or not).
   1255   ASSERT(StringShape(*subject_tmp).IsSequential() ||
   1256       StringShape(*subject_tmp).IsExternal());
   1257 
   1258   // The original start address of the characters to match.
   1259   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
   1260 
   1261   // Find the current start address of the same character at the current string
   1262   // position.
   1263   int start_index = frame_entry<int>(re_frame, kStartIndex);
   1264   const byte* new_address = StringCharacterPosition(*subject_tmp,
   1265                                                     start_index + slice_offset);
   1266 
   1267   if (start_address != new_address) {
   1268     // If there is a difference, update the object pointer and start and end
   1269     // addresses in the RegExp stack frame to match the new value.
   1270     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
   1271     int byte_length = static_cast<int>(end_address - start_address);
   1272     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1273     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
   1274     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
   1275   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
   1276     // Subject string might have been a ConsString that underwent
   1277     // short-circuiting during GC. That will not change start_address but
   1278     // will change pointer inside the subject handle.
   1279     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1280   }
   1281 
   1282   return 0;
   1283 }
   1284 
   1285 
   1286 Operand RegExpMacroAssemblerX64::register_location(int register_index) {
   1287   ASSERT(register_index < (1<<30));
   1288   if (num_registers_ <= register_index) {
   1289     num_registers_ = register_index + 1;
   1290   }
   1291   return Operand(rbp, kRegisterZero - register_index * kPointerSize);
   1292 }
   1293 
   1294 
   1295 void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
   1296                                             Label* on_outside_input) {
   1297   __ cmpl(rdi, Immediate(-cp_offset * char_size()));
   1298   BranchOrBacktrack(greater_equal, on_outside_input);
   1299 }
   1300 
   1301 
   1302 void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
   1303                                                 Label* to) {
   1304   if (condition < 0) {  // No condition
   1305     if (to == NULL) {
   1306       Backtrack();
   1307       return;
   1308     }
   1309     __ jmp(to);
   1310     return;
   1311   }
   1312   if (to == NULL) {
   1313     __ j(condition, &backtrack_label_);
   1314     return;
   1315   }
   1316   __ j(condition, to);
   1317 }
   1318 
   1319 
   1320 void RegExpMacroAssemblerX64::SafeCall(Label* to) {
   1321   __ call(to);
   1322 }
   1323 
   1324 
   1325 void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
   1326   __ bind(label);
   1327   __ subq(Operand(rsp, 0), code_object_pointer());
   1328 }
   1329 
   1330 
   1331 void RegExpMacroAssemblerX64::SafeReturn() {
   1332   __ addq(Operand(rsp, 0), code_object_pointer());
   1333   __ ret(0);
   1334 }
   1335 
   1336 
   1337 void RegExpMacroAssemblerX64::Push(Register source) {
   1338   ASSERT(!source.is(backtrack_stackpointer()));
   1339   // Notice: This updates flags, unlike normal Push.
   1340   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
   1341   __ movl(Operand(backtrack_stackpointer(), 0), source);
   1342 }
   1343 
   1344 
   1345 void RegExpMacroAssemblerX64::Push(Immediate value) {
   1346   // Notice: This updates flags, unlike normal Push.
   1347   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
   1348   __ movl(Operand(backtrack_stackpointer(), 0), value);
   1349 }
   1350 
   1351 
   1352 void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
   1353   for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
   1354     int position = code_relative_fixup_positions_[i];
   1355     // The position succeeds a relative label offset from position.
   1356     // Patch the relative offset to be relative to the Code object pointer
   1357     // instead.
   1358     int patch_position = position - kIntSize;
   1359     int offset = masm_.long_at(patch_position);
   1360     masm_.long_at_put(patch_position,
   1361                        offset
   1362                        + position
   1363                        + Code::kHeaderSize
   1364                        - kHeapObjectTag);
   1365   }
   1366   code_relative_fixup_positions_.Clear();
   1367 }
   1368 
   1369 
   1370 void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
   1371   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
   1372   __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
   1373   MarkPositionForCodeRelativeFixup();
   1374 }
   1375 
   1376 
   1377 void RegExpMacroAssemblerX64::Pop(Register target) {
   1378   ASSERT(!target.is(backtrack_stackpointer()));
   1379   __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
   1380   // Notice: This updates flags, unlike normal Pop.
   1381   __ addq(backtrack_stackpointer(), Immediate(kIntSize));
   1382 }
   1383 
   1384 
   1385 void RegExpMacroAssemblerX64::Drop() {
   1386   __ addq(backtrack_stackpointer(), Immediate(kIntSize));
   1387 }
   1388 
   1389 
   1390 void RegExpMacroAssemblerX64::CheckPreemption() {
   1391   // Check for preemption.
   1392   Label no_preempt;
   1393   ExternalReference stack_limit =
   1394       ExternalReference::address_of_stack_limit(isolate());
   1395   __ load_rax(stack_limit);
   1396   __ cmpq(rsp, rax);
   1397   __ j(above, &no_preempt);
   1398 
   1399   SafeCall(&check_preempt_label_);
   1400 
   1401   __ bind(&no_preempt);
   1402 }
   1403 
   1404 
   1405 void RegExpMacroAssemblerX64::CheckStackLimit() {
   1406   Label no_stack_overflow;
   1407   ExternalReference stack_limit =
   1408       ExternalReference::address_of_regexp_stack_limit(isolate());
   1409   __ load_rax(stack_limit);
   1410   __ cmpq(backtrack_stackpointer(), rax);
   1411   __ j(above, &no_stack_overflow);
   1412 
   1413   SafeCall(&stack_overflow_label_);
   1414 
   1415   __ bind(&no_stack_overflow);
   1416 }
   1417 
   1418 
   1419 void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
   1420                                                             int characters) {
   1421   if (mode_ == ASCII) {
   1422     if (characters == 4) {
   1423       __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1424     } else if (characters == 2) {
   1425       __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1426     } else {
   1427       ASSERT(characters == 1);
   1428       __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1429     }
   1430   } else {
   1431     ASSERT(mode_ == UC16);
   1432     if (characters == 2) {
   1433       __ movl(current_character(),
   1434               Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1435     } else {
   1436       ASSERT(characters == 1);
   1437       __ movzxwl(current_character(),
   1438                  Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1439     }
   1440   }
   1441 }
   1442 
   1443 #undef __
   1444 
   1445 #endif  // V8_INTERPRETED_REGEXP
   1446 
   1447 }}  // namespace v8::internal
   1448 
   1449 #endif  // V8_TARGET_ARCH_X64
   1450