1 //===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is dual licensed under the MIT and the University of Illinois Open 6 // Source Licenses. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the following soft-fp_t comparison routines: 11 // 12 // __eqsf2 __gesf2 __unordsf2 13 // __lesf2 __gtsf2 14 // __ltsf2 15 // __nesf2 16 // 17 // The semantics of the routines grouped in each column are identical, so there 18 // is a single implementation for each, and wrappers to provide the other names. 19 // 20 // The main routines behave as follows: 21 // 22 // __lesf2(a,b) returns -1 if a < b 23 // 0 if a == b 24 // 1 if a > b 25 // 1 if either a or b is NaN 26 // 27 // __gesf2(a,b) returns -1 if a < b 28 // 0 if a == b 29 // 1 if a > b 30 // -1 if either a or b is NaN 31 // 32 // __unordsf2(a,b) returns 0 if both a and b are numbers 33 // 1 if either a or b is NaN 34 // 35 // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of 36 // NaN values. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define SINGLE_PRECISION 41 #include "fp_lib.h" 42 43 enum LE_RESULT { 44 LE_LESS = -1, 45 LE_EQUAL = 0, 46 LE_GREATER = 1, 47 LE_UNORDERED = 1 48 }; 49 50 enum LE_RESULT __lesf2(fp_t a, fp_t b) { 51 52 const srep_t aInt = toRep(a); 53 const srep_t bInt = toRep(b); 54 const rep_t aAbs = aInt & absMask; 55 const rep_t bAbs = bInt & absMask; 56 57 // If either a or b is NaN, they are unordered. 58 if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; 59 60 // If a and b are both zeros, they are equal. 61 if ((aAbs | bAbs) == 0) return LE_EQUAL; 62 63 // If at least one of a and b is positive, we get the same result comparing 64 // a and b as signed integers as we would with a fp_ting-point compare. 65 if ((aInt & bInt) >= 0) { 66 if (aInt < bInt) return LE_LESS; 67 else if (aInt == bInt) return LE_EQUAL; 68 else return LE_GREATER; 69 } 70 71 // Otherwise, both are negative, so we need to flip the sense of the 72 // comparison to get the correct result. (This assumes a twos- or ones- 73 // complement integer representation; if integers are represented in a 74 // sign-magnitude representation, then this flip is incorrect). 75 else { 76 if (aInt > bInt) return LE_LESS; 77 else if (aInt == bInt) return LE_EQUAL; 78 else return LE_GREATER; 79 } 80 } 81 82 enum GE_RESULT { 83 GE_LESS = -1, 84 GE_EQUAL = 0, 85 GE_GREATER = 1, 86 GE_UNORDERED = -1 // Note: different from LE_UNORDERED 87 }; 88 89 enum GE_RESULT __gesf2(fp_t a, fp_t b) { 90 91 const srep_t aInt = toRep(a); 92 const srep_t bInt = toRep(b); 93 const rep_t aAbs = aInt & absMask; 94 const rep_t bAbs = bInt & absMask; 95 96 if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; 97 if ((aAbs | bAbs) == 0) return GE_EQUAL; 98 if ((aInt & bInt) >= 0) { 99 if (aInt < bInt) return GE_LESS; 100 else if (aInt == bInt) return GE_EQUAL; 101 else return GE_GREATER; 102 } else { 103 if (aInt > bInt) return GE_LESS; 104 else if (aInt == bInt) return GE_EQUAL; 105 else return GE_GREATER; 106 } 107 } 108 109 ARM_EABI_FNALIAS(fcmpun, unordsf2) 110 111 int __unordsf2(fp_t a, fp_t b) { 112 const rep_t aAbs = toRep(a) & absMask; 113 const rep_t bAbs = toRep(b) & absMask; 114 return aAbs > infRep || bAbs > infRep; 115 } 116 117 // The following are alternative names for the preceeding routines. 118 119 enum LE_RESULT __eqsf2(fp_t a, fp_t b) { 120 return __lesf2(a, b); 121 } 122 123 enum LE_RESULT __ltsf2(fp_t a, fp_t b) { 124 return __lesf2(a, b); 125 } 126 127 enum LE_RESULT __nesf2(fp_t a, fp_t b) { 128 return __lesf2(a, b); 129 } 130 131 enum GE_RESULT __gtsf2(fp_t a, fp_t b) { 132 return __gesf2(a, b); 133 } 134