1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis 2 * 3 * LibTomCrypt is a library that provides various cryptographic 4 * algorithms in a highly modular and flexible manner. 5 * 6 * The library is free for all purposes without any express 7 * guarantee it works. 8 * 9 * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com 10 */ 11 #include "tomcrypt.h" 12 13 /** 14 @file sha256.c 15 SHA256 by Tom St Denis 16 */ 17 18 #ifdef SHA256 19 20 const struct ltc_hash_descriptor sha256_desc = 21 { 22 "sha256", 23 0, 24 32, 25 64, 26 27 /* OID */ 28 { 2, 16, 840, 1, 101, 3, 4, 2, 1, }, 29 9, 30 31 &sha256_init, 32 &sha256_process, 33 &sha256_done, 34 &sha256_test, 35 NULL 36 }; 37 38 #ifdef LTC_SMALL_CODE 39 /* the K array */ 40 static const ulong32 K[64] = { 41 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 42 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 43 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 44 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 45 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 46 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 47 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 48 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 49 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 50 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 51 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 52 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 53 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 54 }; 55 #endif 56 57 /* Various logical functions */ 58 #define Ch(x,y,z) (z ^ (x & (y ^ z))) 59 #define Maj(x,y,z) (((x | y) & z) | (x & y)) 60 #define S(x, n) RORc((x),(n)) 61 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) 62 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) 63 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) 64 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) 65 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) 66 67 /* compress 512-bits */ 68 #ifdef LTC_CLEAN_STACK 69 static int _sha256_compress(hash_state * md, unsigned char *buf) 70 #else 71 static int sha256_compress(hash_state * md, unsigned char *buf) 72 #endif 73 { 74 ulong32 S[8], W[64], t0, t1; 75 #ifdef LTC_SMALL_CODE 76 ulong32 t; 77 #endif 78 int i; 79 80 /* copy state into S */ 81 for (i = 0; i < 8; i++) { 82 S[i] = md->sha256.state[i]; 83 } 84 85 /* copy the state into 512-bits into W[0..15] */ 86 for (i = 0; i < 16; i++) { 87 LOAD32H(W[i], buf + (4*i)); 88 } 89 90 /* fill W[16..63] */ 91 for (i = 16; i < 64; i++) { 92 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; 93 } 94 95 /* Compress */ 96 #ifdef LTC_SMALL_CODE 97 #define RND(a,b,c,d,e,f,g,h,i) \ 98 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ 99 t1 = Sigma0(a) + Maj(a, b, c); \ 100 d += t0; \ 101 h = t0 + t1; 102 103 for (i = 0; i < 64; ++i) { 104 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); 105 t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; 106 S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; 107 } 108 #else 109 #define RND(a,b,c,d,e,f,g,h,i,ki) \ 110 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \ 111 t1 = Sigma0(a) + Maj(a, b, c); \ 112 d += t0; \ 113 h = t0 + t1; 114 115 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98); 116 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491); 117 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf); 118 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5); 119 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b); 120 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1); 121 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4); 122 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5); 123 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98); 124 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01); 125 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be); 126 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3); 127 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74); 128 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe); 129 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7); 130 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174); 131 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1); 132 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786); 133 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6); 134 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc); 135 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f); 136 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa); 137 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc); 138 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da); 139 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152); 140 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d); 141 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8); 142 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7); 143 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3); 144 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147); 145 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351); 146 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967); 147 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85); 148 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138); 149 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc); 150 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13); 151 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354); 152 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb); 153 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e); 154 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85); 155 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1); 156 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b); 157 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70); 158 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3); 159 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819); 160 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624); 161 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585); 162 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070); 163 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116); 164 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08); 165 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c); 166 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5); 167 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3); 168 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a); 169 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f); 170 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3); 171 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee); 172 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f); 173 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814); 174 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208); 175 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa); 176 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb); 177 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7); 178 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2); 179 180 #undef RND 181 182 #endif 183 184 /* feedback */ 185 for (i = 0; i < 8; i++) { 186 md->sha256.state[i] = md->sha256.state[i] + S[i]; 187 } 188 return CRYPT_OK; 189 } 190 191 #ifdef LTC_CLEAN_STACK 192 static int sha256_compress(hash_state * md, unsigned char *buf) 193 { 194 int err; 195 err = _sha256_compress(md, buf); 196 burn_stack(sizeof(ulong32) * 74); 197 return err; 198 } 199 #endif 200 201 /** 202 Initialize the hash state 203 @param md The hash state you wish to initialize 204 @return CRYPT_OK if successful 205 */ 206 int sha256_init(hash_state * md) 207 { 208 LTC_ARGCHK(md != NULL); 209 210 md->sha256.curlen = 0; 211 md->sha256.length = 0; 212 md->sha256.state[0] = 0x6A09E667UL; 213 md->sha256.state[1] = 0xBB67AE85UL; 214 md->sha256.state[2] = 0x3C6EF372UL; 215 md->sha256.state[3] = 0xA54FF53AUL; 216 md->sha256.state[4] = 0x510E527FUL; 217 md->sha256.state[5] = 0x9B05688CUL; 218 md->sha256.state[6] = 0x1F83D9ABUL; 219 md->sha256.state[7] = 0x5BE0CD19UL; 220 return CRYPT_OK; 221 } 222 223 /** 224 Process a block of memory though the hash 225 @param md The hash state 226 @param in The data to hash 227 @param inlen The length of the data (octets) 228 @return CRYPT_OK if successful 229 */ 230 HASH_PROCESS(sha256_process, sha256_compress, sha256, 64) 231 232 /** 233 Terminate the hash to get the digest 234 @param md The hash state 235 @param out [out] The destination of the hash (32 bytes) 236 @return CRYPT_OK if successful 237 */ 238 int sha256_done(hash_state * md, unsigned char *out) 239 { 240 int i; 241 242 LTC_ARGCHK(md != NULL); 243 LTC_ARGCHK(out != NULL); 244 245 if (md->sha256.curlen >= sizeof(md->sha256.buf)) { 246 return CRYPT_INVALID_ARG; 247 } 248 249 250 /* increase the length of the message */ 251 md->sha256.length += md->sha256.curlen * 8; 252 253 /* append the '1' bit */ 254 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80; 255 256 /* if the length is currently above 56 bytes we append zeros 257 * then compress. Then we can fall back to padding zeros and length 258 * encoding like normal. 259 */ 260 if (md->sha256.curlen > 56) { 261 while (md->sha256.curlen < 64) { 262 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; 263 } 264 sha256_compress(md, md->sha256.buf); 265 md->sha256.curlen = 0; 266 } 267 268 /* pad upto 56 bytes of zeroes */ 269 while (md->sha256.curlen < 56) { 270 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; 271 } 272 273 /* store length */ 274 STORE64H(md->sha256.length, md->sha256.buf+56); 275 sha256_compress(md, md->sha256.buf); 276 277 /* copy output */ 278 for (i = 0; i < 8; i++) { 279 STORE32H(md->sha256.state[i], out+(4*i)); 280 } 281 #ifdef LTC_CLEAN_STACK 282 zeromem(md, sizeof(hash_state)); 283 #endif 284 return CRYPT_OK; 285 } 286 287 /** 288 Self-test the hash 289 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled 290 */ 291 int sha256_test(void) 292 { 293 #ifndef LTC_TEST 294 return CRYPT_NOP; 295 #else 296 static const struct { 297 char *msg; 298 unsigned char hash[32]; 299 } tests[] = { 300 { "abc", 301 { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 302 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 303 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 304 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad } 305 }, 306 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 307 { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 308 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 309 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 310 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 } 311 }, 312 }; 313 314 int i; 315 unsigned char tmp[32]; 316 hash_state md; 317 318 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { 319 sha256_init(&md); 320 sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg)); 321 sha256_done(&md, tmp); 322 if (XMEMCMP(tmp, tests[i].hash, 32) != 0) { 323 return CRYPT_FAIL_TESTVECTOR; 324 } 325 } 326 return CRYPT_OK; 327 #endif 328 } 329 330 #ifdef SHA224 331 #include "sha224.c" 332 #endif 333 334 #endif 335 336 337 338 /* $Source: /cvs/libtom/libtomcrypt/src/hashes/sha2/sha256.c,v $ */ 339 /* $Revision: 1.9 $ */ 340 /* $Date: 2006/11/01 09:28:17 $ */ 341