Home | History | Annotate | Download | only in doc
      1 namespace Eigen {
      2 /** \page SparseQuickRefPage Quick reference guide for sparse matrices
      3 
      4 \b Table \b of \b contents
      5   - \ref Constructors
      6   - \ref SparseMatrixInsertion
      7   - \ref SparseBasicInfos
      8   - \ref SparseBasicOps
      9   - \ref SparseInterops
     10   - \ref sparsepermutation
     11   - \ref sparsesubmatrices
     12   - \ref sparseselfadjointview
     13 \n 
     14 
     15 <hr>
     16 
     17 In this page, we give a quick summary of the main operations available for sparse matrices in the class SparseMatrix. First, it is recommended to read first the introductory tutorial at \ref TutorialSparse. The important point to have in mind when working on sparse matrices is how they are stored : 
     18 i.e either row major or column major. The default is column major. Most arithmetic operations on sparse matrices will assert that they have the same storage order. Moreover, when interacting with external libraries that are not yet supported by Eigen, it is important to know how to send the required matrix pointers. 
     19 
     20 \section Constructors Constructors and assignments
     21 SparseMatrix is the core class to build and manipulate sparse matrices in Eigen. It takes as template parameters the Scalar type and the storage order, either RowMajor or ColumnMajor. The default is ColumnMajor.
     22 
     23 \code
     24   SparseMatrix<double> sm1(1000,1000);              // 1000x1000 compressed sparse matrix of double. 
     25   SparseMatrix<std::complex<double>,RowMajor> sm2; // Compressed row major matrix of complex double.
     26 \endcode
     27 The copy constructor and assignment can be used to convert matrices from a storage order to another
     28 \code 
     29   SparseMatrix<double,Colmajor> sm1;
     30   // Eventually fill the matrix sm1 ...
     31   SparseMatrix<double,Rowmajor> sm2(sm1), sm3;         // Initialize sm2 with sm1.
     32   sm3 = sm1; // Assignment and evaluations modify the storage order.
     33  \endcode
     34 
     35 \section SparseMatrixInsertion  Allocating and inserting values
     36 resize() and reserve() are used to set the size and allocate space for nonzero elements
     37  \code
     38     sm1.resize(m,n);      //Change sm to a mxn matrix. 
     39     sm1.reserve(nnz);     // Allocate  room for nnz nonzeros elements.   
     40   \endcode 
     41 Note that when calling reserve(), it is not required that nnz is the exact number of nonzero elements in the final matrix. However, an exact estimation will avoid multiple reallocations during the insertion phase. 
     42 
     43 Insertions of values in the sparse matrix can be done directly by looping over nonzero elements and use the insert() function
     44 \code 
     45 // Direct insertion of the value v_ij; 
     46   sm1.insert(i, j) = v_ij;   // It is assumed that v_ij does not already exist in the matrix. 
     47 \endcode
     48 
     49 After insertion, a value at (i,j) can be modified using coeffRef()
     50 \code
     51   // Update the value v_ij
     52   sm1.coeffRef(i,j) = v_ij;
     53   sm1.coeffRef(i,j) += v_ij;
     54   sm1.coeffRef(i,j) -= v_ij;
     55   ...
     56 \endcode
     57 
     58 The recommended way to insert values is to build a list of triplets (row, col, val) and then call setFromTriplets(). 
     59 \code
     60   sm1.setFromTriplets(TripletList.begin(), TripletList.end());
     61 \endcode
     62 A complete example is available at \ref TutorialSparseFilling.
     63 
     64 The following functions can be used to set constant or random values in the matrix.
     65 \code
     66   sm1.setZero(); // Reset the matrix with zero elements
     67   ...
     68 \endcode
     69 
     70 \section SparseBasicInfos Matrix properties
     71 Beyond the functions rows() and cols() that are used to get the number of rows and columns, there are some useful functions that are available to easily get some informations from the matrix. 
     72 <table class="manual">
     73 <tr>
     74   <td> \code
     75   sm1.rows();         // Number of rows
     76   sm1.cols();         // Number of columns 
     77   sm1.nonZeros();     // Number of non zero values   
     78   sm1.outerSize();    // Number of columns (resp. rows) for a column major (resp. row major )
     79   sm1.innerSize();    // Number of rows (resp. columns) for a row major (resp. column major)
     80   sm1.norm();         // (Euclidian ??) norm of the matrix
     81   sm1.squaredNorm();  // 
     82   sm1.isVector();     // Check if sm1 is a sparse vector or a sparse matrix
     83   ...
     84   \endcode </td>
     85 </tr>
     86 </table>
     87 
     88 \section SparseBasicOps Arithmetic operations
     89 It is easy to perform arithmetic operations on sparse matrices provided that the dimensions are adequate and that the matrices have the same storage order. Note that the evaluation can always be done in a matrix with a different storage order. 
     90 <table class="manual">
     91 <tr><th> Operations </th> <th> Code </th> <th> Notes </th></tr>
     92 
     93 <tr>
     94   <td> add subtract </td> 
     95   <td> \code
     96   sm3 = sm1 + sm2; 
     97   sm3 = sm1 - sm2;
     98   sm2 += sm1; 
     99   sm2 -= sm1; \endcode
    100   </td>
    101   <td> 
    102   sm1 and sm2 should have the same storage order
    103   </td> 
    104 </tr>
    105 
    106 <tr class="alt"><td>
    107   scalar product</td><td>\code
    108   sm3 = sm1 * s1;   sm3 *= s1; 
    109   sm3 = s1 * sm1 + s2 * sm2; sm3 /= s1;\endcode
    110   </td>
    111   <td>
    112     Many combinations are possible if the dimensions and the storage order agree.
    113 </tr>
    114 
    115 <tr>
    116   <td> Product </td>
    117   <td> \code
    118   sm3 = sm1 * sm2;
    119   dm2 = sm1 * dm1;
    120   dv2 = sm1 * dv1;
    121   \endcode </td>
    122   <td>
    123   </td>
    124 </tr> 
    125 
    126 <tr class='alt'>
    127   <td> transposition, adjoint</td>
    128   <td> \code
    129   sm2 = sm1.transpose();
    130   sm2 = sm1.adjoint();
    131   \endcode </td>
    132   <td>
    133   Note that the transposition change the storage order. There is no support for transposeInPlace().
    134   </td>
    135 </tr> 
    136 
    137 <tr>
    138   <td>
    139   Component-wise ops
    140   </td>
    141   <td>\code 
    142   sm1.cwiseProduct(sm2);
    143   sm1.cwiseQuotient(sm2);
    144   sm1.cwiseMin(sm2);
    145   sm1.cwiseMax(sm2);
    146   sm1.cwiseAbs();
    147   sm1.cwiseSqrt();
    148   \endcode</td>
    149   <td>
    150   sm1 and sm2 should have the same storage order
    151   </td>
    152 </tr>
    153 </table>
    154 
    155 
    156 \section SparseInterops Low-level storage
    157 There are a set of low-levels functions to get the standard compressed storage pointers. The matrix should be in compressed mode which can be checked by calling isCompressed(); makeCompressed() should do the job otherwise. 
    158 \code
    159   // Scalar pointer to the values of the matrix, size nnz
    160   sm1.valuePtr();  
    161   // Index pointer to get the row indices (resp. column indices) for column major (resp. row major) matrix, size nnz
    162   sm1.innerIndexPtr();
    163   // Index pointer to the beginning of each row (resp. column) in valuePtr() and innerIndexPtr() for column major (row major). The size is outersize()+1; 
    164   sm1.outerIndexPtr();  
    165 \endcode
    166 These pointers can therefore be easily used to send the matrix to some external libraries/solvers that are not yet supported by Eigen.
    167 
    168 \section sparsepermutation Permutations, submatrices and Selfadjoint Views
    169 In many cases, it is necessary to reorder the rows and/or the columns of the sparse matrix for several purposes : fill-in reducing during matrix decomposition, better data locality for sparse matrix-vector products... The class PermutationMatrix is available to this end. 
    170  \code
    171   PermutationMatrix<Dynamic, Dynamic, int> perm;
    172   // Reserve and fill the values of perm; 
    173   perm.inverse(n); // Compute eventually the inverse permutation
    174   sm1.twistedBy(perm) //Apply the permutation on rows and columns 
    175   sm2 = sm1 * perm; // ??? Apply the permutation on columns ???; 
    176   sm2 = perm * sm1; // ??? Apply the permutation on rows ???; 
    177   \endcode
    178 
    179 \section sparsesubmatrices Sub-matrices
    180 The following functions are useful to extract a block of rows (resp. columns) from a row-major (resp. column major) sparse matrix. Note that because of the particular storage, it is not ?? efficient ?? to extract a submatrix comprising a certain number of subrows and subcolumns.
    181  \code
    182   sm1.innerVector(outer); // Returns the outer -th column (resp. row) of the matrix if sm is col-major (resp. row-major)
    183   sm1.innerVectors(outer); // Returns the outer -th column (resp. row) of the matrix if mat is col-major (resp. row-major)
    184   sm1.middleRows(start, numRows); // For row major matrices, get a range of numRows rows
    185   sm1.middleCols(start, numCols); // For column major matrices, get a range of numCols cols
    186  \endcode 
    187  Examples : 
    188 
    189 \section sparseselfadjointview Sparse triangular and selfadjoint Views
    190  \code
    191   sm2 = sm1.triangularview<Lower>(); // Get the lower triangular part of the matrix. 
    192   dv2 = sm1.triangularView<Upper>().solve(dv1); // Solve the linear system with the uppper triangular part. 
    193   sm2 = sm1.selfadjointview<Lower>(); // Build a selfadjoint matrix from the lower part of sm1. 
    194   \endcode
    195 
    196 
    197 */
    198 }
    199