1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. Eigen itself is part of the KDE project. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr> 5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #include "main.h" 12 #include <Eigen/LU> 13 14 template<typename MatrixType> void inverse(const MatrixType& m) 15 { 16 /* this test covers the following files: 17 Inverse.h 18 */ 19 int rows = m.rows(); 20 int cols = m.cols(); 21 22 typedef typename MatrixType::Scalar Scalar; 23 typedef typename NumTraits<Scalar>::Real RealScalar; 24 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; 25 26 MatrixType m1 = MatrixType::Random(rows, cols), 27 m2(rows, cols), 28 mzero = MatrixType::Zero(rows, cols), 29 identity = MatrixType::Identity(rows, rows); 30 31 while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8) 32 { 33 m1 = MatrixType::Random(rows, cols); 34 } 35 36 m2 = m1.inverse(); 37 VERIFY_IS_APPROX(m1, m2.inverse() ); 38 39 m1.computeInverse(&m2); 40 VERIFY_IS_APPROX(m1, m2.inverse() ); 41 42 VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); 43 44 VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); 45 VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); 46 47 VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); 48 49 // since for the general case we implement separately row-major and col-major, test that 50 VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); 51 } 52 53 void test_eigen2_inverse() 54 { 55 for(int i = 0; i < g_repeat; i++) { 56 CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) ); 57 CALL_SUBTEST_2( inverse(Matrix2d()) ); 58 CALL_SUBTEST_3( inverse(Matrix3f()) ); 59 CALL_SUBTEST_4( inverse(Matrix4f()) ); 60 CALL_SUBTEST_5( inverse(MatrixXf(8,8)) ); 61 CALL_SUBTEST_6( inverse(MatrixXcd(7,7)) ); 62 } 63 } 64