Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <Eigen/SVD>
     13 
     14 template<typename MatrixType, typename JacobiScalar>
     15 void jacobi(const MatrixType& m = MatrixType())
     16 {
     17   typedef typename MatrixType::Scalar Scalar;
     18   typedef typename MatrixType::Index Index;
     19   Index rows = m.rows();
     20   Index cols = m.cols();
     21 
     22   enum {
     23     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     24     ColsAtCompileTime = MatrixType::ColsAtCompileTime
     25   };
     26 
     27   typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
     28 
     29   const MatrixType a(MatrixType::Random(rows, cols));
     30 
     31   JacobiVector v = JacobiVector::Random().normalized();
     32   JacobiScalar c = v.x(), s = v.y();
     33   JacobiRotation<JacobiScalar> rot(c, s);
     34 
     35   {
     36     Index p = internal::random<Index>(0, rows-1);
     37     Index q;
     38     do {
     39       q = internal::random<Index>(0, rows-1);
     40     } while (q == p);
     41 
     42     MatrixType b = a;
     43     b.applyOnTheLeft(p, q, rot);
     44     VERIFY_IS_APPROX(b.row(p), c * a.row(p) + internal::conj(s) * a.row(q));
     45     VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + internal::conj(c) * a.row(q));
     46   }
     47 
     48   {
     49     Index p = internal::random<Index>(0, cols-1);
     50     Index q;
     51     do {
     52       q = internal::random<Index>(0, cols-1);
     53     } while (q == p);
     54 
     55     MatrixType b = a;
     56     b.applyOnTheRight(p, q, rot);
     57     VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
     58     VERIFY_IS_APPROX(b.col(q), internal::conj(s) * a.col(p) + internal::conj(c) * a.col(q));
     59   }
     60 }
     61 
     62 void test_jacobi()
     63 {
     64   for(int i = 0; i < g_repeat; i++) {
     65     CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
     66     CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
     67     CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
     68     CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
     69 
     70     int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
     71         c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
     72     CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
     73     CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
     74     CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
     75     // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
     76     CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
     77     CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
     78     (void) r;
     79     (void) c;
     80   }
     81 }
     82