Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 template<typename MatrixType> void matrixRedux(const MatrixType& m)
     13 {
     14   typedef typename MatrixType::Index Index;
     15   typedef typename MatrixType::Scalar Scalar;
     16   typedef typename MatrixType::RealScalar RealScalar;
     17 
     18   Index rows = m.rows();
     19   Index cols = m.cols();
     20 
     21   MatrixType m1 = MatrixType::Random(rows, cols);
     22 
     23   // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
     24   // failures if we underflow into denormals. Thus, we scale so that entires are close to 1.
     25   MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + Scalar(0.2) * m1;
     26 
     27   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
     28   VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
     29   Scalar s(0), p(1), minc(internal::real(m1.coeff(0))), maxc(internal::real(m1.coeff(0)));
     30   for(int j = 0; j < cols; j++)
     31   for(int i = 0; i < rows; i++)
     32   {
     33     s += m1(i,j);
     34     p *= m1_for_prod(i,j);
     35     minc = (std::min)(internal::real(minc), internal::real(m1(i,j)));
     36     maxc = (std::max)(internal::real(maxc), internal::real(m1(i,j)));
     37   }
     38   const Scalar mean = s/Scalar(RealScalar(rows*cols));
     39 
     40   VERIFY_IS_APPROX(m1.sum(), s);
     41   VERIFY_IS_APPROX(m1.mean(), mean);
     42   VERIFY_IS_APPROX(m1_for_prod.prod(), p);
     43   VERIFY_IS_APPROX(m1.real().minCoeff(), internal::real(minc));
     44   VERIFY_IS_APPROX(m1.real().maxCoeff(), internal::real(maxc));
     45 
     46   // test slice vectorization assuming assign is ok
     47   Index r0 = internal::random<Index>(0,rows-1);
     48   Index c0 = internal::random<Index>(0,cols-1);
     49   Index r1 = internal::random<Index>(r0+1,rows)-r0;
     50   Index c1 = internal::random<Index>(c0+1,cols)-c0;
     51   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
     52   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
     53   VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
     54   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
     55   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
     56 
     57   // test empty objects
     58   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(),   Scalar(0));
     59   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(),  Scalar(1));
     60 }
     61 
     62 template<typename VectorType> void vectorRedux(const VectorType& w)
     63 {
     64   typedef typename VectorType::Index Index;
     65   typedef typename VectorType::Scalar Scalar;
     66   typedef typename NumTraits<Scalar>::Real RealScalar;
     67   Index size = w.size();
     68 
     69   VectorType v = VectorType::Random(size);
     70   VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
     71 
     72   for(int i = 1; i < size; i++)
     73   {
     74     Scalar s(0), p(1);
     75     RealScalar minc(internal::real(v.coeff(0))), maxc(internal::real(v.coeff(0)));
     76     for(int j = 0; j < i; j++)
     77     {
     78       s += v[j];
     79       p *= v_for_prod[j];
     80       minc = (std::min)(minc, internal::real(v[j]));
     81       maxc = (std::max)(maxc, internal::real(v[j]));
     82     }
     83     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.head(i).sum()), Scalar(1));
     84     VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
     85     VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
     86     VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
     87   }
     88 
     89   for(int i = 0; i < size-1; i++)
     90   {
     91     Scalar s(0), p(1);
     92     RealScalar minc(internal::real(v.coeff(i))), maxc(internal::real(v.coeff(i)));
     93     for(int j = i; j < size; j++)
     94     {
     95       s += v[j];
     96       p *= v_for_prod[j];
     97       minc = (std::min)(minc, internal::real(v[j]));
     98       maxc = (std::max)(maxc, internal::real(v[j]));
     99     }
    100     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.tail(size-i).sum()), Scalar(1));
    101     VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
    102     VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
    103     VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
    104   }
    105 
    106   for(int i = 0; i < size/2; i++)
    107   {
    108     Scalar s(0), p(1);
    109     RealScalar minc(internal::real(v.coeff(i))), maxc(internal::real(v.coeff(i)));
    110     for(int j = i; j < size-i; j++)
    111     {
    112       s += v[j];
    113       p *= v_for_prod[j];
    114       minc = (std::min)(minc, internal::real(v[j]));
    115       maxc = (std::max)(maxc, internal::real(v[j]));
    116     }
    117     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
    118     VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
    119     VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
    120     VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
    121   }
    122 
    123   // test empty objects
    124   VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0));
    125   VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1));
    126   VERIFY_RAISES_ASSERT(v.head(0).mean());
    127   VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
    128   VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
    129 }
    130 
    131 void test_redux()
    132 {
    133   // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
    134   int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
    135   EIGEN_UNUSED_VARIABLE(maxsize);
    136   for(int i = 0; i < g_repeat; i++) {
    137     CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
    138     CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
    139     CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
    140     CALL_SUBTEST_2( matrixRedux(Array2f()) );
    141     CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
    142     CALL_SUBTEST_3( matrixRedux(Array4d()) );
    143     CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    144     CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    145     CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    146     CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    147     CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    148     CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    149   }
    150   for(int i = 0; i < g_repeat; i++) {
    151     CALL_SUBTEST_7( vectorRedux(Vector4f()) );
    152     CALL_SUBTEST_7( vectorRedux(Array4f()) );
    153     CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
    154     CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
    155     CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
    156     CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
    157   }
    158 }
    159