Home | History | Annotate | Download | only in IPO
      1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass deletes dead arguments from internal functions.  Dead argument
     11 // elimination removes arguments which are directly dead, as well as arguments
     12 // only passed into function calls as dead arguments of other functions.  This
     13 // pass also deletes dead return values in a similar way.
     14 //
     15 // This pass is often useful as a cleanup pass to run after aggressive
     16 // interprocedural passes, which add possibly-dead arguments or return values.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "deadargelim"
     21 #include "llvm/Transforms/IPO.h"
     22 #include "llvm/ADT/DenseMap.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/DIBuilder.h"
     27 #include "llvm/DebugInfo.h"
     28 #include "llvm/IR/CallingConv.h"
     29 #include "llvm/IR/Constant.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Instructions.h"
     32 #include "llvm/IR/IntrinsicInst.h"
     33 #include "llvm/IR/LLVMContext.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/Pass.h"
     36 #include "llvm/Support/CallSite.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include <map>
     40 #include <set>
     41 using namespace llvm;
     42 
     43 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
     44 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
     45 STATISTIC(NumArgumentsReplacedWithUndef,
     46           "Number of unread args replaced with undef");
     47 namespace {
     48   /// DAE - The dead argument elimination pass.
     49   ///
     50   class DAE : public ModulePass {
     51   public:
     52 
     53     /// Struct that represents (part of) either a return value or a function
     54     /// argument.  Used so that arguments and return values can be used
     55     /// interchangeably.
     56     struct RetOrArg {
     57       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
     58                IsArg(IsArg) {}
     59       const Function *F;
     60       unsigned Idx;
     61       bool IsArg;
     62 
     63       /// Make RetOrArg comparable, so we can put it into a map.
     64       bool operator<(const RetOrArg &O) const {
     65         if (F != O.F)
     66           return F < O.F;
     67         else if (Idx != O.Idx)
     68           return Idx < O.Idx;
     69         else
     70           return IsArg < O.IsArg;
     71       }
     72 
     73       /// Make RetOrArg comparable, so we can easily iterate the multimap.
     74       bool operator==(const RetOrArg &O) const {
     75         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
     76       }
     77 
     78       std::string getDescription() const {
     79         return std::string((IsArg ? "Argument #" : "Return value #"))
     80                + utostr(Idx) + " of function " + F->getName().str();
     81       }
     82     };
     83 
     84     /// Liveness enum - During our initial pass over the program, we determine
     85     /// that things are either alive or maybe alive. We don't mark anything
     86     /// explicitly dead (even if we know they are), since anything not alive
     87     /// with no registered uses (in Uses) will never be marked alive and will
     88     /// thus become dead in the end.
     89     enum Liveness { Live, MaybeLive };
     90 
     91     /// Convenience wrapper
     92     RetOrArg CreateRet(const Function *F, unsigned Idx) {
     93       return RetOrArg(F, Idx, false);
     94     }
     95     /// Convenience wrapper
     96     RetOrArg CreateArg(const Function *F, unsigned Idx) {
     97       return RetOrArg(F, Idx, true);
     98     }
     99 
    100     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
    101     /// This maps a return value or argument to any MaybeLive return values or
    102     /// arguments it uses. This allows the MaybeLive values to be marked live
    103     /// when any of its users is marked live.
    104     /// For example (indices are left out for clarity):
    105     ///  - Uses[ret F] = ret G
    106     ///    This means that F calls G, and F returns the value returned by G.
    107     ///  - Uses[arg F] = ret G
    108     ///    This means that some function calls G and passes its result as an
    109     ///    argument to F.
    110     ///  - Uses[ret F] = arg F
    111     ///    This means that F returns one of its own arguments.
    112     ///  - Uses[arg F] = arg G
    113     ///    This means that G calls F and passes one of its own (G's) arguments
    114     ///    directly to F.
    115     UseMap Uses;
    116 
    117     typedef std::set<RetOrArg> LiveSet;
    118     typedef std::set<const Function*> LiveFuncSet;
    119 
    120     /// This set contains all values that have been determined to be live.
    121     LiveSet LiveValues;
    122     /// This set contains all values that are cannot be changed in any way.
    123     LiveFuncSet LiveFunctions;
    124 
    125     typedef SmallVector<RetOrArg, 5> UseVector;
    126 
    127     // Map each LLVM function to corresponding metadata with debug info. If
    128     // the function is replaced with another one, we should patch the pointer
    129     // to LLVM function in metadata.
    130     // As the code generation for module is finished (and DIBuilder is
    131     // finalized) we assume that subprogram descriptors won't be changed, and
    132     // they are stored in map for short duration anyway.
    133     typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
    134     FunctionDIMap FunctionDIs;
    135 
    136   protected:
    137     // DAH uses this to specify a different ID.
    138     explicit DAE(char &ID) : ModulePass(ID) {}
    139 
    140   public:
    141     static char ID; // Pass identification, replacement for typeid
    142     DAE() : ModulePass(ID) {
    143       initializeDAEPass(*PassRegistry::getPassRegistry());
    144     }
    145 
    146     bool runOnModule(Module &M);
    147 
    148     virtual bool ShouldHackArguments() const { return false; }
    149 
    150   private:
    151     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
    152     Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
    153                        unsigned RetValNum = 0);
    154     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
    155 
    156     void CollectFunctionDIs(Module &M);
    157     void SurveyFunction(const Function &F);
    158     void MarkValue(const RetOrArg &RA, Liveness L,
    159                    const UseVector &MaybeLiveUses);
    160     void MarkLive(const RetOrArg &RA);
    161     void MarkLive(const Function &F);
    162     void PropagateLiveness(const RetOrArg &RA);
    163     bool RemoveDeadStuffFromFunction(Function *F);
    164     bool DeleteDeadVarargs(Function &Fn);
    165     bool RemoveDeadArgumentsFromCallers(Function &Fn);
    166   };
    167 }
    168 
    169 
    170 char DAE::ID = 0;
    171 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
    172 
    173 namespace {
    174   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
    175   /// deletes arguments to functions which are external.  This is only for use
    176   /// by bugpoint.
    177   struct DAH : public DAE {
    178     static char ID;
    179     DAH() : DAE(ID) {}
    180 
    181     virtual bool ShouldHackArguments() const { return true; }
    182   };
    183 }
    184 
    185 char DAH::ID = 0;
    186 INITIALIZE_PASS(DAH, "deadarghaX0r",
    187                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
    188                 false, false)
    189 
    190 /// createDeadArgEliminationPass - This pass removes arguments from functions
    191 /// which are not used by the body of the function.
    192 ///
    193 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
    194 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
    195 
    196 /// CollectFunctionDIs - Map each function in the module to its debug info
    197 /// descriptor.
    198 void DAE::CollectFunctionDIs(Module &M) {
    199   FunctionDIs.clear();
    200 
    201   for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    202        E = M.named_metadata_end(); I != E; ++I) {
    203     NamedMDNode &NMD = *I;
    204     for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
    205          MDIndex < MDNum; ++MDIndex) {
    206       MDNode *Node = NMD.getOperand(MDIndex);
    207       if (!DIDescriptor(Node).isCompileUnit())
    208         continue;
    209       DICompileUnit CU(Node);
    210       const DIArray &SPs = CU.getSubprograms();
    211       for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
    212            SPIndex < SPNum; ++SPIndex) {
    213         DISubprogram SP(SPs.getElement(SPIndex));
    214         assert((!SP || SP.isSubprogram()) &&
    215           "A MDNode in subprograms of a CU should be null or a DISubprogram.");
    216         if (!SP)
    217           continue;
    218         if (Function *F = SP.getFunction())
    219           FunctionDIs[F] = SP;
    220       }
    221     }
    222   }
    223 }
    224 
    225 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
    226 /// llvm.vastart is never called, the varargs list is dead for the function.
    227 bool DAE::DeleteDeadVarargs(Function &Fn) {
    228   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
    229   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
    230 
    231   // Ensure that the function is only directly called.
    232   if (Fn.hasAddressTaken())
    233     return false;
    234 
    235   // Okay, we know we can transform this function if safe.  Scan its body
    236   // looking for calls to llvm.vastart.
    237   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    238     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    239       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    240         if (II->getIntrinsicID() == Intrinsic::vastart)
    241           return false;
    242       }
    243     }
    244   }
    245 
    246   // If we get here, there are no calls to llvm.vastart in the function body,
    247   // remove the "..." and adjust all the calls.
    248 
    249   // Start by computing a new prototype for the function, which is the same as
    250   // the old function, but doesn't have isVarArg set.
    251   FunctionType *FTy = Fn.getFunctionType();
    252 
    253   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
    254   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
    255                                                 Params, false);
    256   unsigned NumArgs = Params.size();
    257 
    258   // Create the new function body and insert it into the module...
    259   Function *NF = Function::Create(NFTy, Fn.getLinkage());
    260   NF->copyAttributesFrom(&Fn);
    261   Fn.getParent()->getFunctionList().insert(&Fn, NF);
    262   NF->takeName(&Fn);
    263 
    264   // Loop over all of the callers of the function, transforming the call sites
    265   // to pass in a smaller number of arguments into the new function.
    266   //
    267   std::vector<Value*> Args;
    268   for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ) {
    269     CallSite CS(*I++);
    270     if (!CS)
    271       continue;
    272     Instruction *Call = CS.getInstruction();
    273 
    274     // Pass all the same arguments.
    275     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
    276 
    277     // Drop any attributes that were on the vararg arguments.
    278     AttributeSet PAL = CS.getAttributes();
    279     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
    280       SmallVector<AttributeSet, 8> AttributesVec;
    281       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
    282         AttributesVec.push_back(PAL.getSlotAttributes(i));
    283       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    284         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
    285                                                   PAL.getFnAttributes()));
    286       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
    287     }
    288 
    289     Instruction *New;
    290     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    291       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    292                                Args, "", Call);
    293       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    294       cast<InvokeInst>(New)->setAttributes(PAL);
    295     } else {
    296       New = CallInst::Create(NF, Args, "", Call);
    297       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    298       cast<CallInst>(New)->setAttributes(PAL);
    299       if (cast<CallInst>(Call)->isTailCall())
    300         cast<CallInst>(New)->setTailCall();
    301     }
    302     New->setDebugLoc(Call->getDebugLoc());
    303 
    304     Args.clear();
    305 
    306     if (!Call->use_empty())
    307       Call->replaceAllUsesWith(New);
    308 
    309     New->takeName(Call);
    310 
    311     // Finally, remove the old call from the program, reducing the use-count of
    312     // F.
    313     Call->eraseFromParent();
    314   }
    315 
    316   // Since we have now created the new function, splice the body of the old
    317   // function right into the new function, leaving the old rotting hulk of the
    318   // function empty.
    319   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
    320 
    321   // Loop over the argument list, transferring uses of the old arguments over to
    322   // the new arguments, also transferring over the names as well.  While we're at
    323   // it, remove the dead arguments from the DeadArguments list.
    324   //
    325   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
    326        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    327     // Move the name and users over to the new version.
    328     I->replaceAllUsesWith(I2);
    329     I2->takeName(I);
    330   }
    331 
    332   // Patch the pointer to LLVM function in debug info descriptor.
    333   FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
    334   if (DI != FunctionDIs.end())
    335     DI->second.replaceFunction(NF);
    336 
    337   // Fix up any BlockAddresses that refer to the function.
    338   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
    339   // Delete the bitcast that we just created, so that NF does not
    340   // appear to be address-taken.
    341   NF->removeDeadConstantUsers();
    342   // Finally, nuke the old function.
    343   Fn.eraseFromParent();
    344   return true;
    345 }
    346 
    347 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
    348 /// arguments that are unused, and changes the caller parameters to be undefined
    349 /// instead.
    350 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
    351 {
    352   if (Fn.isDeclaration() || Fn.mayBeOverridden())
    353     return false;
    354 
    355   // Functions with local linkage should already have been handled, except the
    356   // fragile (variadic) ones which we can improve here.
    357   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
    358     return false;
    359 
    360   if (Fn.use_empty())
    361     return false;
    362 
    363   SmallVector<unsigned, 8> UnusedArgs;
    364   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
    365        I != E; ++I) {
    366     Argument *Arg = I;
    367 
    368     if (Arg->use_empty() && !Arg->hasByValAttr())
    369       UnusedArgs.push_back(Arg->getArgNo());
    370   }
    371 
    372   if (UnusedArgs.empty())
    373     return false;
    374 
    375   bool Changed = false;
    376 
    377   for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
    378        I != E; ++I) {
    379     CallSite CS(*I);
    380     if (!CS || !CS.isCallee(I))
    381       continue;
    382 
    383     // Now go through all unused args and replace them with "undef".
    384     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
    385       unsigned ArgNo = UnusedArgs[I];
    386 
    387       Value *Arg = CS.getArgument(ArgNo);
    388       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
    389       ++NumArgumentsReplacedWithUndef;
    390       Changed = true;
    391     }
    392   }
    393 
    394   return Changed;
    395 }
    396 
    397 /// Convenience function that returns the number of return values. It returns 0
    398 /// for void functions and 1 for functions not returning a struct. It returns
    399 /// the number of struct elements for functions returning a struct.
    400 static unsigned NumRetVals(const Function *F) {
    401   if (F->getReturnType()->isVoidTy())
    402     return 0;
    403   else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
    404     return STy->getNumElements();
    405   else
    406     return 1;
    407 }
    408 
    409 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
    410 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
    411 /// liveness of Use.
    412 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
    413   // We're live if our use or its Function is already marked as live.
    414   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    415     return Live;
    416 
    417   // We're maybe live otherwise, but remember that we must become live if
    418   // Use becomes live.
    419   MaybeLiveUses.push_back(Use);
    420   return MaybeLive;
    421 }
    422 
    423 
    424 /// SurveyUse - This looks at a single use of an argument or return value
    425 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
    426 /// if it causes the used value to become MaybeLive.
    427 ///
    428 /// RetValNum is the return value number to use when this use is used in a
    429 /// return instruction. This is used in the recursion, you should always leave
    430 /// it at 0.
    431 DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
    432                              UseVector &MaybeLiveUses, unsigned RetValNum) {
    433     const User *V = *U;
    434     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
    435       // The value is returned from a function. It's only live when the
    436       // function's return value is live. We use RetValNum here, for the case
    437       // that U is really a use of an insertvalue instruction that uses the
    438       // original Use.
    439       RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
    440       // We might be live, depending on the liveness of Use.
    441       return MarkIfNotLive(Use, MaybeLiveUses);
    442     }
    443     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
    444       if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
    445           && IV->hasIndices())
    446         // The use we are examining is inserted into an aggregate. Our liveness
    447         // depends on all uses of that aggregate, but if it is used as a return
    448         // value, only index at which we were inserted counts.
    449         RetValNum = *IV->idx_begin();
    450 
    451       // Note that if we are used as the aggregate operand to the insertvalue,
    452       // we don't change RetValNum, but do survey all our uses.
    453 
    454       Liveness Result = MaybeLive;
    455       for (Value::const_use_iterator I = IV->use_begin(),
    456            E = V->use_end(); I != E; ++I) {
    457         Result = SurveyUse(I, MaybeLiveUses, RetValNum);
    458         if (Result == Live)
    459           break;
    460       }
    461       return Result;
    462     }
    463 
    464     if (ImmutableCallSite CS = V) {
    465       const Function *F = CS.getCalledFunction();
    466       if (F) {
    467         // Used in a direct call.
    468 
    469         // Find the argument number. We know for sure that this use is an
    470         // argument, since if it was the function argument this would be an
    471         // indirect call and the we know can't be looking at a value of the
    472         // label type (for the invoke instruction).
    473         unsigned ArgNo = CS.getArgumentNo(U);
    474 
    475         if (ArgNo >= F->getFunctionType()->getNumParams())
    476           // The value is passed in through a vararg! Must be live.
    477           return Live;
    478 
    479         assert(CS.getArgument(ArgNo)
    480                == CS->getOperand(U.getOperandNo())
    481                && "Argument is not where we expected it");
    482 
    483         // Value passed to a normal call. It's only live when the corresponding
    484         // argument to the called function turns out live.
    485         RetOrArg Use = CreateArg(F, ArgNo);
    486         return MarkIfNotLive(Use, MaybeLiveUses);
    487       }
    488     }
    489     // Used in any other way? Value must be live.
    490     return Live;
    491 }
    492 
    493 /// SurveyUses - This looks at all the uses of the given value
    494 /// Returns the Liveness deduced from the uses of this value.
    495 ///
    496 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
    497 /// the result is Live, MaybeLiveUses might be modified but its content should
    498 /// be ignored (since it might not be complete).
    499 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
    500   // Assume it's dead (which will only hold if there are no uses at all..).
    501   Liveness Result = MaybeLive;
    502   // Check each use.
    503   for (Value::const_use_iterator I = V->use_begin(),
    504        E = V->use_end(); I != E; ++I) {
    505     Result = SurveyUse(I, MaybeLiveUses);
    506     if (Result == Live)
    507       break;
    508   }
    509   return Result;
    510 }
    511 
    512 // SurveyFunction - This performs the initial survey of the specified function,
    513 // checking out whether or not it uses any of its incoming arguments or whether
    514 // any callers use the return value.  This fills in the LiveValues set and Uses
    515 // map.
    516 //
    517 // We consider arguments of non-internal functions to be intrinsically alive as
    518 // well as arguments to functions which have their "address taken".
    519 //
    520 void DAE::SurveyFunction(const Function &F) {
    521   unsigned RetCount = NumRetVals(&F);
    522   // Assume all return values are dead
    523   typedef SmallVector<Liveness, 5> RetVals;
    524   RetVals RetValLiveness(RetCount, MaybeLive);
    525 
    526   typedef SmallVector<UseVector, 5> RetUses;
    527   // These vectors map each return value to the uses that make it MaybeLive, so
    528   // we can add those to the Uses map if the return value really turns out to be
    529   // MaybeLive. Initialized to a list of RetCount empty lists.
    530   RetUses MaybeLiveRetUses(RetCount);
    531 
    532   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    533     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
    534       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
    535           != F.getFunctionType()->getReturnType()) {
    536         // We don't support old style multiple return values.
    537         MarkLive(F);
    538         return;
    539       }
    540 
    541   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
    542     MarkLive(F);
    543     return;
    544   }
    545 
    546   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
    547   // Keep track of the number of live retvals, so we can skip checks once all
    548   // of them turn out to be live.
    549   unsigned NumLiveRetVals = 0;
    550   Type *STy = dyn_cast<StructType>(F.getReturnType());
    551   // Loop all uses of the function.
    552   for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
    553        I != E; ++I) {
    554     // If the function is PASSED IN as an argument, its address has been
    555     // taken.
    556     ImmutableCallSite CS(*I);
    557     if (!CS || !CS.isCallee(I)) {
    558       MarkLive(F);
    559       return;
    560     }
    561 
    562     // If this use is anything other than a call site, the function is alive.
    563     const Instruction *TheCall = CS.getInstruction();
    564     if (!TheCall) {   // Not a direct call site?
    565       MarkLive(F);
    566       return;
    567     }
    568 
    569     // If we end up here, we are looking at a direct call to our function.
    570 
    571     // Now, check how our return value(s) is/are used in this caller. Don't
    572     // bother checking return values if all of them are live already.
    573     if (NumLiveRetVals != RetCount) {
    574       if (STy) {
    575         // Check all uses of the return value.
    576         for (Value::const_use_iterator I = TheCall->use_begin(),
    577              E = TheCall->use_end(); I != E; ++I) {
    578           const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
    579           if (Ext && Ext->hasIndices()) {
    580             // This use uses a part of our return value, survey the uses of
    581             // that part and store the results for this index only.
    582             unsigned Idx = *Ext->idx_begin();
    583             if (RetValLiveness[Idx] != Live) {
    584               RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
    585               if (RetValLiveness[Idx] == Live)
    586                 NumLiveRetVals++;
    587             }
    588           } else {
    589             // Used by something else than extractvalue. Mark all return
    590             // values as live.
    591             for (unsigned i = 0; i != RetCount; ++i )
    592               RetValLiveness[i] = Live;
    593             NumLiveRetVals = RetCount;
    594             break;
    595           }
    596         }
    597       } else {
    598         // Single return value
    599         RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
    600         if (RetValLiveness[0] == Live)
    601           NumLiveRetVals = RetCount;
    602       }
    603     }
    604   }
    605 
    606   // Now we've inspected all callers, record the liveness of our return values.
    607   for (unsigned i = 0; i != RetCount; ++i)
    608     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
    609 
    610   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
    611 
    612   // Now, check all of our arguments.
    613   unsigned i = 0;
    614   UseVector MaybeLiveArgUses;
    615   for (Function::const_arg_iterator AI = F.arg_begin(),
    616        E = F.arg_end(); AI != E; ++AI, ++i) {
    617     Liveness Result;
    618     if (F.getFunctionType()->isVarArg()) {
    619       // Variadic functions will already have a va_arg function expanded inside
    620       // them, making them potentially very sensitive to ABI changes resulting
    621       // from removing arguments entirely, so don't. For example AArch64 handles
    622       // register and stack HFAs very differently, and this is reflected in the
    623       // IR which has already been generated.
    624       Result = Live;
    625     } else {
    626       // See what the effect of this use is (recording any uses that cause
    627       // MaybeLive in MaybeLiveArgUses).
    628       Result = SurveyUses(AI, MaybeLiveArgUses);
    629     }
    630 
    631     // Mark the result.
    632     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    633     // Clear the vector again for the next iteration.
    634     MaybeLiveArgUses.clear();
    635   }
    636 }
    637 
    638 /// MarkValue - This function marks the liveness of RA depending on L. If L is
    639 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
    640 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
    641 /// live later on.
    642 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
    643                     const UseVector &MaybeLiveUses) {
    644   switch (L) {
    645     case Live: MarkLive(RA); break;
    646     case MaybeLive:
    647     {
    648       // Note any uses of this value, so this return value can be
    649       // marked live whenever one of the uses becomes live.
    650       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
    651            UE = MaybeLiveUses.end(); UI != UE; ++UI)
    652         Uses.insert(std::make_pair(*UI, RA));
    653       break;
    654     }
    655   }
    656 }
    657 
    658 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
    659 /// changed in any way. Additionally,
    660 /// mark any values that are used as this function's parameters or by its return
    661 /// values (according to Uses) live as well.
    662 void DAE::MarkLive(const Function &F) {
    663   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
    664   // Mark the function as live.
    665   LiveFunctions.insert(&F);
    666   // Mark all arguments as live.
    667   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    668     PropagateLiveness(CreateArg(&F, i));
    669   // Mark all return values as live.
    670   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    671     PropagateLiveness(CreateRet(&F, i));
    672 }
    673 
    674 /// MarkLive - Mark the given return value or argument as live. Additionally,
    675 /// mark any values that are used by this value (according to Uses) live as
    676 /// well.
    677 void DAE::MarkLive(const RetOrArg &RA) {
    678   if (LiveFunctions.count(RA.F))
    679     return; // Function was already marked Live.
    680 
    681   if (!LiveValues.insert(RA).second)
    682     return; // We were already marked Live.
    683 
    684   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
    685   PropagateLiveness(RA);
    686 }
    687 
    688 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
    689 /// to any other values it uses (according to Uses).
    690 void DAE::PropagateLiveness(const RetOrArg &RA) {
    691   // We don't use upper_bound (or equal_range) here, because our recursive call
    692   // to ourselves is likely to cause the upper_bound (which is the first value
    693   // not belonging to RA) to become erased and the iterator invalidated.
    694   UseMap::iterator Begin = Uses.lower_bound(RA);
    695   UseMap::iterator E = Uses.end();
    696   UseMap::iterator I;
    697   for (I = Begin; I != E && I->first == RA; ++I)
    698     MarkLive(I->second);
    699 
    700   // Erase RA from the Uses map (from the lower bound to wherever we ended up
    701   // after the loop).
    702   Uses.erase(Begin, I);
    703 }
    704 
    705 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
    706 // that are not in LiveValues. Transform the function and all of the callees of
    707 // the function to not have these arguments and return values.
    708 //
    709 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
    710   // Don't modify fully live functions
    711   if (LiveFunctions.count(F))
    712     return false;
    713 
    714   // Start by computing a new prototype for the function, which is the same as
    715   // the old function, but has fewer arguments and a different return type.
    716   FunctionType *FTy = F->getFunctionType();
    717   std::vector<Type*> Params;
    718 
    719   // Keep track of if we have a live 'returned' argument
    720   bool HasLiveReturnedArg = false;
    721 
    722   // Set up to build a new list of parameter attributes.
    723   SmallVector<AttributeSet, 8> AttributesVec;
    724   const AttributeSet &PAL = F->getAttributes();
    725 
    726   // Remember which arguments are still alive.
    727   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
    728   // Construct the new parameter list from non-dead arguments. Also construct
    729   // a new set of parameter attributes to correspond. Skip the first parameter
    730   // attribute, since that belongs to the return value.
    731   unsigned i = 0;
    732   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    733        I != E; ++I, ++i) {
    734     RetOrArg Arg = CreateArg(F, i);
    735     if (LiveValues.erase(Arg)) {
    736       Params.push_back(I->getType());
    737       ArgAlive[i] = true;
    738 
    739       // Get the original parameter attributes (skipping the first one, that is
    740       // for the return value.
    741       if (PAL.hasAttributes(i + 1)) {
    742         AttrBuilder B(PAL, i + 1);
    743         if (B.contains(Attribute::Returned))
    744           HasLiveReturnedArg = true;
    745         AttributesVec.
    746           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    747       }
    748     } else {
    749       ++NumArgumentsEliminated;
    750       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
    751             << ") from " << F->getName() << "\n");
    752     }
    753   }
    754 
    755   // Find out the new return value.
    756   Type *RetTy = FTy->getReturnType();
    757   Type *NRetTy = NULL;
    758   unsigned RetCount = NumRetVals(F);
    759 
    760   // -1 means unused, other numbers are the new index
    761   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
    762   std::vector<Type*> RetTypes;
    763 
    764   // If there is a function with a live 'returned' argument but a dead return
    765   // value, then there are two possible actions:
    766   // 1) Eliminate the return value and take off the 'returned' attribute on the
    767   //    argument.
    768   // 2) Retain the 'returned' attribute and treat the return value (but not the
    769   //    entire function) as live so that it is not eliminated.
    770   //
    771   // It's not clear in the general case which option is more profitable because,
    772   // even in the absence of explicit uses of the return value, code generation
    773   // is free to use the 'returned' attribute to do things like eliding
    774   // save/restores of registers across calls. Whether or not this happens is
    775   // target and ABI-specific as well as depending on the amount of register
    776   // pressure, so there's no good way for an IR-level pass to figure this out.
    777   //
    778   // Fortunately, the only places where 'returned' is currently generated by
    779   // the FE are places where 'returned' is basically free and almost always a
    780   // performance win, so the second option can just be used always for now.
    781   //
    782   // This should be revisited if 'returned' is ever applied more liberally.
    783   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
    784     NRetTy = RetTy;
    785   } else {
    786     StructType *STy = dyn_cast<StructType>(RetTy);
    787     if (STy)
    788       // Look at each of the original return values individually.
    789       for (unsigned i = 0; i != RetCount; ++i) {
    790         RetOrArg Ret = CreateRet(F, i);
    791         if (LiveValues.erase(Ret)) {
    792           RetTypes.push_back(STy->getElementType(i));
    793           NewRetIdxs[i] = RetTypes.size() - 1;
    794         } else {
    795           ++NumRetValsEliminated;
    796           DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
    797                 << F->getName() << "\n");
    798         }
    799       }
    800     else
    801       // We used to return a single value.
    802       if (LiveValues.erase(CreateRet(F, 0))) {
    803         RetTypes.push_back(RetTy);
    804         NewRetIdxs[0] = 0;
    805       } else {
    806         DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
    807               << "\n");
    808         ++NumRetValsEliminated;
    809       }
    810     if (RetTypes.size() > 1)
    811       // More than one return type? Return a struct with them. Also, if we used
    812       // to return a struct and didn't change the number of return values,
    813       // return a struct again. This prevents changing {something} into
    814       // something and {} into void.
    815       // Make the new struct packed if we used to return a packed struct
    816       // already.
    817       NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    818     else if (RetTypes.size() == 1)
    819       // One return type? Just a simple value then, but only if we didn't use to
    820       // return a struct with that simple value before.
    821       NRetTy = RetTypes.front();
    822     else if (RetTypes.size() == 0)
    823       // No return types? Make it void, but only if we didn't use to return {}.
    824       NRetTy = Type::getVoidTy(F->getContext());
    825   }
    826 
    827   assert(NRetTy && "No new return type found?");
    828 
    829   // The existing function return attributes.
    830   AttributeSet RAttrs = PAL.getRetAttributes();
    831 
    832   // Remove any incompatible attributes, but only if we removed all return
    833   // values. Otherwise, ensure that we don't have any conflicting attributes
    834   // here. Currently, this should not be possible, but special handling might be
    835   // required when new return value attributes are added.
    836   if (NRetTy->isVoidTy())
    837     RAttrs =
    838       AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
    839                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    840          removeAttributes(AttributeFuncs::
    841                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    842                           AttributeSet::ReturnIndex));
    843   else
    844     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    845              hasAttributes(AttributeFuncs::
    846                            typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    847                            AttributeSet::ReturnIndex) &&
    848            "Return attributes no longer compatible?");
    849 
    850   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    851     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
    852 
    853   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    854     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    855                                               PAL.getFnAttributes()));
    856 
    857   // Reconstruct the AttributesList based on the vector we constructed.
    858   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
    859 
    860   // Create the new function type based on the recomputed parameters.
    861   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
    862 
    863   // No change?
    864   if (NFTy == FTy)
    865     return false;
    866 
    867   // Create the new function body and insert it into the module...
    868   Function *NF = Function::Create(NFTy, F->getLinkage());
    869   NF->copyAttributesFrom(F);
    870   NF->setAttributes(NewPAL);
    871   // Insert the new function before the old function, so we won't be processing
    872   // it again.
    873   F->getParent()->getFunctionList().insert(F, NF);
    874   NF->takeName(F);
    875 
    876   // Loop over all of the callers of the function, transforming the call sites
    877   // to pass in a smaller number of arguments into the new function.
    878   //
    879   std::vector<Value*> Args;
    880   while (!F->use_empty()) {
    881     CallSite CS(F->use_back());
    882     Instruction *Call = CS.getInstruction();
    883 
    884     AttributesVec.clear();
    885     const AttributeSet &CallPAL = CS.getAttributes();
    886 
    887     // The call return attributes.
    888     AttributeSet RAttrs = CallPAL.getRetAttributes();
    889 
    890     // Adjust in case the function was changed to return void.
    891     RAttrs =
    892       AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
    893                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    894         removeAttributes(AttributeFuncs::
    895                          typeIncompatible(NF->getReturnType(),
    896                                           AttributeSet::ReturnIndex),
    897                          AttributeSet::ReturnIndex));
    898     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    899       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
    900 
    901     // Declare these outside of the loops, so we can reuse them for the second
    902     // loop, which loops the varargs.
    903     CallSite::arg_iterator I = CS.arg_begin();
    904     unsigned i = 0;
    905     // Loop over those operands, corresponding to the normal arguments to the
    906     // original function, and add those that are still alive.
    907     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
    908       if (ArgAlive[i]) {
    909         Args.push_back(*I);
    910         // Get original parameter attributes, but skip return attributes.
    911         if (CallPAL.hasAttributes(i + 1)) {
    912           AttrBuilder B(CallPAL, i + 1);
    913           // If the return type has changed, then get rid of 'returned' on the
    914           // call site. The alternative is to make all 'returned' attributes on
    915           // call sites keep the return value alive just like 'returned'
    916           // attributes on function declaration but it's less clearly a win
    917           // and this is not an expected case anyway
    918           if (NRetTy != RetTy && B.contains(Attribute::Returned))
    919             B.removeAttribute(Attribute::Returned);
    920           AttributesVec.
    921             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    922         }
    923       }
    924 
    925     // Push any varargs arguments on the list. Don't forget their attributes.
    926     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
    927       Args.push_back(*I);
    928       if (CallPAL.hasAttributes(i + 1)) {
    929         AttrBuilder B(CallPAL, i + 1);
    930         AttributesVec.
    931           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    932       }
    933     }
    934 
    935     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    936       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    937                                                 CallPAL.getFnAttributes()));
    938 
    939     // Reconstruct the AttributesList based on the vector we constructed.
    940     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
    941 
    942     Instruction *New;
    943     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    944       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    945                                Args, "", Call);
    946       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    947       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    948     } else {
    949       New = CallInst::Create(NF, Args, "", Call);
    950       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    951       cast<CallInst>(New)->setAttributes(NewCallPAL);
    952       if (cast<CallInst>(Call)->isTailCall())
    953         cast<CallInst>(New)->setTailCall();
    954     }
    955     New->setDebugLoc(Call->getDebugLoc());
    956 
    957     Args.clear();
    958 
    959     if (!Call->use_empty()) {
    960       if (New->getType() == Call->getType()) {
    961         // Return type not changed? Just replace users then.
    962         Call->replaceAllUsesWith(New);
    963         New->takeName(Call);
    964       } else if (New->getType()->isVoidTy()) {
    965         // Our return value has uses, but they will get removed later on.
    966         // Replace by null for now.
    967         if (!Call->getType()->isX86_MMXTy())
    968           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    969       } else {
    970         assert(RetTy->isStructTy() &&
    971                "Return type changed, but not into a void. The old return type"
    972                " must have been a struct!");
    973         Instruction *InsertPt = Call;
    974         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    975           BasicBlock::iterator IP = II->getNormalDest()->begin();
    976           while (isa<PHINode>(IP)) ++IP;
    977           InsertPt = IP;
    978         }
    979 
    980         // We used to return a struct. Instead of doing smart stuff with all the
    981         // uses of this struct, we will just rebuild it using
    982         // extract/insertvalue chaining and let instcombine clean that up.
    983         //
    984         // Start out building up our return value from undef
    985         Value *RetVal = UndefValue::get(RetTy);
    986         for (unsigned i = 0; i != RetCount; ++i)
    987           if (NewRetIdxs[i] != -1) {
    988             Value *V;
    989             if (RetTypes.size() > 1)
    990               // We are still returning a struct, so extract the value from our
    991               // return value
    992               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
    993                                            InsertPt);
    994             else
    995               // We are now returning a single element, so just insert that
    996               V = New;
    997             // Insert the value at the old position
    998             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
    999           }
   1000         // Now, replace all uses of the old call instruction with the return
   1001         // struct we built
   1002         Call->replaceAllUsesWith(RetVal);
   1003         New->takeName(Call);
   1004       }
   1005     }
   1006 
   1007     // Finally, remove the old call from the program, reducing the use-count of
   1008     // F.
   1009     Call->eraseFromParent();
   1010   }
   1011 
   1012   // Since we have now created the new function, splice the body of the old
   1013   // function right into the new function, leaving the old rotting hulk of the
   1014   // function empty.
   1015   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
   1016 
   1017   // Loop over the argument list, transferring uses of the old arguments over to
   1018   // the new arguments, also transferring over the names as well.
   1019   i = 0;
   1020   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
   1021        I2 = NF->arg_begin(); I != E; ++I, ++i)
   1022     if (ArgAlive[i]) {
   1023       // If this is a live argument, move the name and users over to the new
   1024       // version.
   1025       I->replaceAllUsesWith(I2);
   1026       I2->takeName(I);
   1027       ++I2;
   1028     } else {
   1029       // If this argument is dead, replace any uses of it with null constants
   1030       // (these are guaranteed to become unused later on).
   1031       if (!I->getType()->isX86_MMXTy())
   1032         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
   1033     }
   1034 
   1035   // If we change the return value of the function we must rewrite any return
   1036   // instructions.  Check this now.
   1037   if (F->getReturnType() != NF->getReturnType())
   1038     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
   1039       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   1040         Value *RetVal;
   1041 
   1042         if (NFTy->getReturnType()->isVoidTy()) {
   1043           RetVal = 0;
   1044         } else {
   1045           assert (RetTy->isStructTy());
   1046           // The original return value was a struct, insert
   1047           // extractvalue/insertvalue chains to extract only the values we need
   1048           // to return and insert them into our new result.
   1049           // This does generate messy code, but we'll let it to instcombine to
   1050           // clean that up.
   1051           Value *OldRet = RI->getOperand(0);
   1052           // Start out building up our return value from undef
   1053           RetVal = UndefValue::get(NRetTy);
   1054           for (unsigned i = 0; i != RetCount; ++i)
   1055             if (NewRetIdxs[i] != -1) {
   1056               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
   1057                                                               "oldret", RI);
   1058               if (RetTypes.size() > 1) {
   1059                 // We're still returning a struct, so reinsert the value into
   1060                 // our new return value at the new index
   1061 
   1062                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
   1063                                                  "newret", RI);
   1064               } else {
   1065                 // We are now only returning a simple value, so just return the
   1066                 // extracted value.
   1067                 RetVal = EV;
   1068               }
   1069             }
   1070         }
   1071         // Replace the return instruction with one returning the new return
   1072         // value (possibly 0 if we became void).
   1073         ReturnInst::Create(F->getContext(), RetVal, RI);
   1074         BB->getInstList().erase(RI);
   1075       }
   1076 
   1077   // Patch the pointer to LLVM function in debug info descriptor.
   1078   FunctionDIMap::iterator DI = FunctionDIs.find(F);
   1079   if (DI != FunctionDIs.end())
   1080     DI->second.replaceFunction(NF);
   1081 
   1082   // Now that the old function is dead, delete it.
   1083   F->eraseFromParent();
   1084 
   1085   return true;
   1086 }
   1087 
   1088 bool DAE::runOnModule(Module &M) {
   1089   bool Changed = false;
   1090 
   1091   // Collect debug info descriptors for functions.
   1092   CollectFunctionDIs(M);
   1093 
   1094   // First pass: Do a simple check to see if any functions can have their "..."
   1095   // removed.  We can do this if they never call va_start.  This loop cannot be
   1096   // fused with the next loop, because deleting a function invalidates
   1097   // information computed while surveying other functions.
   1098   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
   1099   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1100     Function &F = *I++;
   1101     if (F.getFunctionType()->isVarArg())
   1102       Changed |= DeleteDeadVarargs(F);
   1103   }
   1104 
   1105   // Second phase:loop through the module, determining which arguments are live.
   1106   // We assume all arguments are dead unless proven otherwise (allowing us to
   1107   // determine that dead arguments passed into recursive functions are dead).
   1108   //
   1109   DEBUG(dbgs() << "DAE - Determining liveness\n");
   1110   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
   1111     SurveyFunction(*I);
   1112 
   1113   // Now, remove all dead arguments and return values from each function in
   1114   // turn.
   1115   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1116     // Increment now, because the function will probably get removed (ie.
   1117     // replaced by a new one).
   1118     Function *F = I++;
   1119     Changed |= RemoveDeadStuffFromFunction(F);
   1120   }
   1121 
   1122   // Finally, look for any unused parameters in functions with non-local
   1123   // linkage and replace the passed in parameters with undef.
   1124   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
   1125     Function& F = *I;
   1126 
   1127     Changed |= RemoveDeadArgumentsFromCallers(F);
   1128   }
   1129 
   1130   return Changed;
   1131 }
   1132