Home | History | Annotate | Download | only in main
      1 /**************************************************************************
      2  *
      3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
      4  * All Rights Reserved.
      5  *
      6  **************************************************************************/
      7 
      8 
      9 /**
     10  * Code to implement GL_OES_query_matrix.  See the spec at:
     11  * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
     12  */
     13 
     14 
     15 #include <stdlib.h>
     16 #include <math.h>
     17 #include "GLES/gl.h"
     18 #include "GLES/glext.h"
     19 
     20 
     21 /**
     22  * This is from the GL_OES_query_matrix extension specification:
     23  *
     24  *  GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
     25  *                                GLint   exponent[16] )
     26  *  mantissa[16] contains the contents of the current matrix in GLfixed
     27  *  format.  exponent[16] contains the unbiased exponents applied to the
     28  *  matrix components, so that the internal representation of component i
     29  *  is close to mantissa[i] * 2^exponent[i].  The function returns a status
     30  *  word which is zero if all the components are valid. If
     31  *  status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
     32  *  The implementations are not required to keep track of overflows.  In
     33  *  that case, the invalid bits are never set.
     34  */
     35 
     36 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
     37 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
     38 
     39 #if defined(_MSC_VER)
     40 /* Oddly, the fpclassify() function doesn't exist in such a form
     41  * on MSVC.  This is an implementation using slightly different
     42  * lower-level Windows functions.
     43  */
     44 #include <float.h>
     45 
     46 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
     47 fpclassify(double x)
     48 {
     49     switch(_fpclass(x)) {
     50         case _FPCLASS_SNAN: /* signaling NaN */
     51         case _FPCLASS_QNAN: /* quiet NaN */
     52             return FP_NAN;
     53         case _FPCLASS_NINF: /* negative infinity */
     54         case _FPCLASS_PINF: /* positive infinity */
     55             return FP_INFINITE;
     56         case _FPCLASS_NN:   /* negative normal */
     57         case _FPCLASS_PN:   /* positive normal */
     58             return FP_NORMAL;
     59         case _FPCLASS_ND:   /* negative denormalized */
     60         case _FPCLASS_PD:   /* positive denormalized */
     61             return FP_SUBNORMAL;
     62         case _FPCLASS_NZ:   /* negative zero */
     63         case _FPCLASS_PZ:   /* positive zero */
     64             return FP_ZERO;
     65         default:
     66             /* Should never get here; but if we do, this will guarantee
     67              * that the pattern is not treated like a number.
     68              */
     69             return FP_NAN;
     70     }
     71 }
     72 
     73 #elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \
     74      defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \
     75      (defined(__sun) && defined(__C99FEATURES__)) || defined(__MINGW32__) || \
     76      (defined(__sun) && defined(__GNUC__)) || defined(ANDROID) || defined(__HAIKU__)
     77 
     78 /* fpclassify is available. */
     79 
     80 #elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
     81 
     82 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
     83 fpclassify(double x)
     84 {
     85    /* XXX do something better someday */
     86    return FP_NORMAL;
     87 }
     88 
     89 #endif
     90 
     91 extern GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]);
     92 
     93 /* The Mesa functions we'll need */
     94 extern void GL_APIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params);
     95 extern void GL_APIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params);
     96 
     97 GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
     98 {
     99     GLfloat matrix[16];
    100     GLint tmp;
    101     GLenum currentMode = GL_FALSE;
    102     GLenum desiredMatrix = GL_FALSE;
    103     /* The bitfield returns 1 for each component that is invalid (i.e.
    104      * NaN or Inf).  In case of error, everything is invalid.
    105      */
    106     GLbitfield rv;
    107     register unsigned int i;
    108     unsigned int bit;
    109 
    110     /* This data structure defines the mapping between the current matrix
    111      * mode and the desired matrix identifier.
    112      */
    113     static struct {
    114         GLenum currentMode;
    115         GLenum desiredMatrix;
    116     } modes[] = {
    117         {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
    118         {GL_PROJECTION, GL_PROJECTION_MATRIX},
    119         {GL_TEXTURE, GL_TEXTURE_MATRIX},
    120     };
    121 
    122     /* Call Mesa to get the current matrix in floating-point form.  First,
    123      * we have to figure out what the current matrix mode is.
    124      */
    125     _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
    126     currentMode = (GLenum) tmp;
    127 
    128     /* The mode is either GL_FALSE, if for some reason we failed to query
    129      * the mode, or a given mode from the above table.  Search for the
    130      * returned mode to get the desired matrix; if we don't find it,
    131      * we can return immediately, as _mesa_GetInteger() will have
    132      * logged the necessary error already.
    133      */
    134     for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
    135         if (modes[i].currentMode == currentMode) {
    136             desiredMatrix = modes[i].desiredMatrix;
    137             break;
    138         }
    139     }
    140     if (desiredMatrix == GL_FALSE) {
    141         /* Early error means all values are invalid. */
    142         return 0xffff;
    143     }
    144 
    145     /* Now pull the matrix itself. */
    146     _mesa_GetFloatv(desiredMatrix, matrix);
    147 
    148     rv = 0;
    149     for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
    150         float normalizedFraction;
    151         int exp;
    152 
    153         switch (fpclassify(matrix[i])) {
    154             /* A "subnormal" or denormalized number is too small to be
    155              * represented in normal format; but despite that it's a
    156              * valid floating point number.  FP_ZERO and FP_NORMAL
    157              * are both valid as well.  We should be fine treating
    158              * these three cases as legitimate floating-point numbers.
    159              */
    160             case FP_SUBNORMAL:
    161             case FP_NORMAL:
    162             case FP_ZERO:
    163                 normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
    164                 mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
    165                 exponent[i] = (GLint) exp;
    166                 break;
    167 
    168             /* If the entry is not-a-number or an infinity, then the
    169              * matrix component is invalid.  The invalid flag for
    170              * the component is already set; might as well set the
    171              * other return values to known values.  We'll set
    172              * distinct values so that a savvy end user could determine
    173              * whether the matrix component was a NaN or an infinity,
    174              * but this is more useful for debugging than anything else
    175              * since the standard doesn't specify any such magic
    176              * values to return.
    177              */
    178             case FP_NAN:
    179                 mantissa[i] = INT_TO_FIXED(0);
    180                 exponent[i] = (GLint) 0;
    181                 rv |= bit;
    182                 break;
    183 
    184             case FP_INFINITE:
    185                 /* Return +/- 1 based on whether it's a positive or
    186                  * negative infinity.
    187                  */
    188                 if (matrix[i] > 0) {
    189                     mantissa[i] = INT_TO_FIXED(1);
    190                 }
    191                 else {
    192                     mantissa[i] = -INT_TO_FIXED(1);
    193                 }
    194                 exponent[i] = (GLint) 0;
    195                 rv |= bit;
    196                 break;
    197 
    198             /* We should never get here; but here's a catching case
    199              * in case fpclassify() is returnings something unexpected.
    200              */
    201             default:
    202                 mantissa[i] = INT_TO_FIXED(2);
    203                 exponent[i] = (GLint) 0;
    204                 rv |= bit;
    205                 break;
    206         }
    207 
    208     } /* for each component */
    209 
    210     /* All done */
    211     return rv;
    212 }
    213