Home | History | Annotate | Download | only in evp
      1 /* ====================================================================
      2  * Copyright (c) 2011-2013 The OpenSSL Project.  All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in
     13  *    the documentation and/or other materials provided with the
     14  *    distribution.
     15  *
     16  * 3. All advertising materials mentioning features or use of this
     17  *    software must display the following acknowledgment:
     18  *    "This product includes software developed by the OpenSSL Project
     19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
     20  *
     21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     22  *    endorse or promote products derived from this software without
     23  *    prior written permission. For written permission, please contact
     24  *    licensing (at) OpenSSL.org.
     25  *
     26  * 5. Products derived from this software may not be called "OpenSSL"
     27  *    nor may "OpenSSL" appear in their names without prior written
     28  *    permission of the OpenSSL Project.
     29  *
     30  * 6. Redistributions of any form whatsoever must retain the following
     31  *    acknowledgment:
     32  *    "This product includes software developed by the OpenSSL Project
     33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
     34  *
     35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     46  * OF THE POSSIBILITY OF SUCH DAMAGE.
     47  * ====================================================================
     48  */
     49 
     50 #include <openssl/opensslconf.h>
     51 
     52 #include <stdio.h>
     53 #include <string.h>
     54 
     55 #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
     56 
     57 #include <openssl/evp.h>
     58 #include <openssl/objects.h>
     59 #include <openssl/aes.h>
     60 #include <openssl/sha.h>
     61 #include "evp_locl.h"
     62 
     63 #ifndef EVP_CIPH_FLAG_AEAD_CIPHER
     64 #define EVP_CIPH_FLAG_AEAD_CIPHER	0x200000
     65 #define EVP_CTRL_AEAD_TLS1_AAD		0x16
     66 #define EVP_CTRL_AEAD_SET_MAC_KEY	0x17
     67 #endif
     68 
     69 #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
     70 #define EVP_CIPH_FLAG_DEFAULT_ASN1 0
     71 #endif
     72 
     73 #define TLS1_1_VERSION 0x0302
     74 
     75 typedef struct
     76     {
     77     AES_KEY		ks;
     78     SHA_CTX		head,tail,md;
     79     size_t		payload_length;	/* AAD length in decrypt case */
     80     union {
     81 	unsigned int	tls_ver;
     82     	unsigned char	tls_aad[16];	/* 13 used */
     83     } aux;
     84     } EVP_AES_HMAC_SHA1;
     85 
     86 #define NO_PAYLOAD_LENGTH	((size_t)-1)
     87 
     88 #if	defined(AES_ASM) &&	( \
     89 	defined(__x86_64)	|| defined(__x86_64__)	|| \
     90 	defined(_M_AMD64)	|| defined(_M_X64)	|| \
     91 	defined(__INTEL__)	)
     92 
     93 #if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC)
     94 # define BSWAP(x) ({ unsigned int r=(x); asm ("bswapl %0":"=r"(r):"0"(r)); r; })
     95 #endif
     96 
     97 extern unsigned int OPENSSL_ia32cap_P[2];
     98 #define AESNI_CAPABLE   (1<<(57-32))
     99 
    100 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
    101 			      AES_KEY *key);
    102 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
    103 			      AES_KEY *key);
    104 
    105 void aesni_cbc_encrypt(const unsigned char *in,
    106 			   unsigned char *out,
    107 			   size_t length,
    108 			   const AES_KEY *key,
    109 			   unsigned char *ivec, int enc);
    110 
    111 void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
    112 		const AES_KEY *key, unsigned char iv[16],
    113 		SHA_CTX *ctx,const void *in0);
    114 
    115 #define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
    116 
    117 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
    118 			const unsigned char *inkey,
    119 			const unsigned char *iv, int enc)
    120 	{
    121 	EVP_AES_HMAC_SHA1 *key = data(ctx);
    122 	int ret;
    123 
    124 	if (enc)
    125 		ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks);
    126 	else
    127 		ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks);
    128 
    129 	SHA1_Init(&key->head);	/* handy when benchmarking */
    130 	key->tail = key->head;
    131 	key->md   = key->head;
    132 
    133 	key->payload_length = NO_PAYLOAD_LENGTH;
    134 
    135 	return ret<0?0:1;
    136 	}
    137 
    138 #define	STITCHED_CALL
    139 
    140 #if !defined(STITCHED_CALL)
    141 #define	aes_off 0
    142 #endif
    143 
    144 void sha1_block_data_order (void *c,const void *p,size_t len);
    145 
    146 static void sha1_update(SHA_CTX *c,const void *data,size_t len)
    147 {	const unsigned char *ptr = data;
    148 	size_t res;
    149 
    150 	if ((res = c->num)) {
    151 		res = SHA_CBLOCK-res;
    152 		if (len<res) res=len;
    153 		SHA1_Update (c,ptr,res);
    154 		ptr += res;
    155 		len -= res;
    156 	}
    157 
    158 	res = len % SHA_CBLOCK;
    159 	len -= res;
    160 
    161 	if (len) {
    162 		sha1_block_data_order(c,ptr,len/SHA_CBLOCK);
    163 
    164 		ptr += len;
    165 		c->Nh += len>>29;
    166 		c->Nl += len<<=3;
    167 		if (c->Nl<(unsigned int)len) c->Nh++;
    168 	}
    169 
    170 	if (res)
    171 		SHA1_Update(c,ptr,res);
    172 }
    173 
    174 #ifdef SHA1_Update
    175 #undef SHA1_Update
    176 #endif
    177 #define SHA1_Update sha1_update
    178 
    179 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
    180 		      const unsigned char *in, size_t len)
    181 	{
    182 	EVP_AES_HMAC_SHA1 *key = data(ctx);
    183 	unsigned int l;
    184 	size_t	plen = key->payload_length,
    185 		iv = 0,		/* explicit IV in TLS 1.1 and later */
    186 		sha_off = 0;
    187 #if defined(STITCHED_CALL)
    188 	size_t	aes_off = 0,
    189 		blocks;
    190 
    191 	sha_off = SHA_CBLOCK-key->md.num;
    192 #endif
    193 
    194 	key->payload_length = NO_PAYLOAD_LENGTH;
    195 
    196 	if (len%AES_BLOCK_SIZE) return 0;
    197 
    198 	if (ctx->encrypt) {
    199 		if (plen==NO_PAYLOAD_LENGTH)
    200 			plen = len;
    201 		else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE))
    202 			return 0;
    203 		else if (key->aux.tls_ver >= TLS1_1_VERSION)
    204 			iv = AES_BLOCK_SIZE;
    205 
    206 #if defined(STITCHED_CALL)
    207 		if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)) {
    208 			SHA1_Update(&key->md,in+iv,sha_off);
    209 
    210 			aesni_cbc_sha1_enc(in,out,blocks,&key->ks,
    211 				ctx->iv,&key->md,in+iv+sha_off);
    212 			blocks *= SHA_CBLOCK;
    213 			aes_off += blocks;
    214 			sha_off += blocks;
    215 			key->md.Nh += blocks>>29;
    216 			key->md.Nl += blocks<<=3;
    217 			if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
    218 		} else {
    219 			sha_off = 0;
    220 		}
    221 #endif
    222 		sha_off += iv;
    223 		SHA1_Update(&key->md,in+sha_off,plen-sha_off);
    224 
    225 		if (plen!=len)	{	/* "TLS" mode of operation */
    226 			if (in!=out)
    227 				memcpy(out+aes_off,in+aes_off,plen-aes_off);
    228 
    229 			/* calculate HMAC and append it to payload */
    230 			SHA1_Final(out+plen,&key->md);
    231 			key->md = key->tail;
    232 			SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH);
    233 			SHA1_Final(out+plen,&key->md);
    234 
    235 			/* pad the payload|hmac */
    236 			plen += SHA_DIGEST_LENGTH;
    237 			for (l=len-plen-1;plen<len;plen++) out[plen]=l;
    238 			/* encrypt HMAC|padding at once */
    239 			aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off,
    240 					&key->ks,ctx->iv,1);
    241 		} else {
    242 			aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off,
    243 					&key->ks,ctx->iv,1);
    244 		}
    245 	} else {
    246 		union { unsigned int  u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
    247 			unsigned char c[32+SHA_DIGEST_LENGTH]; } mac, *pmac;
    248 
    249 		/* arrange cache line alignment */
    250 		pmac = (void *)(((size_t)mac.c+31)&((size_t)0-32));
    251 
    252 		/* decrypt HMAC|padding at once */
    253 		aesni_cbc_encrypt(in,out,len,
    254 				&key->ks,ctx->iv,0);
    255 
    256 		if (plen) {	/* "TLS" mode of operation */
    257 			size_t inp_len, mask, j, i;
    258 			unsigned int res, maxpad, pad, bitlen;
    259 			int ret = 1;
    260 			union {	unsigned int  u[SHA_LBLOCK];
    261 				unsigned char c[SHA_CBLOCK]; }
    262 				*data = (void *)key->md.data;
    263 
    264 			if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3])
    265 			    >= TLS1_1_VERSION)
    266 				iv = AES_BLOCK_SIZE;
    267 
    268 			if (len<(iv+SHA_DIGEST_LENGTH+1))
    269 				return 0;
    270 
    271 			/* omit explicit iv */
    272 			out += iv;
    273 			len -= iv;
    274 
    275 			/* figure out payload length */
    276 			pad = out[len-1];
    277 			maxpad = len-(SHA_DIGEST_LENGTH+1);
    278 			maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8);
    279 			maxpad &= 255;
    280 
    281 			inp_len = len - (SHA_DIGEST_LENGTH+pad+1);
    282 			mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1)));
    283 			inp_len &= mask;
    284 			ret &= (int)mask;
    285 
    286 			key->aux.tls_aad[plen-2] = inp_len>>8;
    287 			key->aux.tls_aad[plen-1] = inp_len;
    288 
    289 			/* calculate HMAC */
    290 			key->md = key->head;
    291 			SHA1_Update(&key->md,key->aux.tls_aad,plen);
    292 
    293 #if 1
    294 			len -= SHA_DIGEST_LENGTH;		/* amend mac */
    295 			if (len>=(256+SHA_CBLOCK)) {
    296 				j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK);
    297 				j += SHA_CBLOCK-key->md.num;
    298 				SHA1_Update(&key->md,out,j);
    299 				out += j;
    300 				len -= j;
    301 				inp_len -= j;
    302 			}
    303 
    304 			/* but pretend as if we hashed padded payload */
    305 			bitlen = key->md.Nl+(inp_len<<3);	/* at most 18 bits */
    306 #ifdef BSWAP
    307 			bitlen = BSWAP(bitlen);
    308 #else
    309 			mac.c[0] = 0;
    310 			mac.c[1] = (unsigned char)(bitlen>>16);
    311 			mac.c[2] = (unsigned char)(bitlen>>8);
    312 			mac.c[3] = (unsigned char)bitlen;
    313 			bitlen = mac.u[0];
    314 #endif
    315 
    316 			pmac->u[0]=0;
    317 			pmac->u[1]=0;
    318 			pmac->u[2]=0;
    319 			pmac->u[3]=0;
    320 			pmac->u[4]=0;
    321 
    322 			for (res=key->md.num, j=0;j<len;j++) {
    323 				size_t c = out[j];
    324 				mask = (j-inp_len)>>(sizeof(j)*8-8);
    325 				c &= mask;
    326 				c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8));
    327 				data->c[res++]=(unsigned char)c;
    328 
    329 				if (res!=SHA_CBLOCK) continue;
    330 
    331 				mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
    332 				data->u[SHA_LBLOCK-1] |= bitlen&mask;
    333 				sha1_block_data_order(&key->md,data,1);
    334 				mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
    335 				pmac->u[0] |= key->md.h0 & mask;
    336 				pmac->u[1] |= key->md.h1 & mask;
    337 				pmac->u[2] |= key->md.h2 & mask;
    338 				pmac->u[3] |= key->md.h3 & mask;
    339 				pmac->u[4] |= key->md.h4 & mask;
    340 				res=0;
    341 			}
    342 
    343 			for(i=res;i<SHA_CBLOCK;i++,j++) data->c[i]=0;
    344 
    345 			if (res>SHA_CBLOCK-8) {
    346 				mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
    347 				data->u[SHA_LBLOCK-1] |= bitlen&mask;
    348 				sha1_block_data_order(&key->md,data,1);
    349 				mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
    350 				pmac->u[0] |= key->md.h0 & mask;
    351 				pmac->u[1] |= key->md.h1 & mask;
    352 				pmac->u[2] |= key->md.h2 & mask;
    353 				pmac->u[3] |= key->md.h3 & mask;
    354 				pmac->u[4] |= key->md.h4 & mask;
    355 
    356 				memset(data,0,SHA_CBLOCK);
    357 				j+=64;
    358 			}
    359 			data->u[SHA_LBLOCK-1] = bitlen;
    360 			sha1_block_data_order(&key->md,data,1);
    361 			mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1));
    362 			pmac->u[0] |= key->md.h0 & mask;
    363 			pmac->u[1] |= key->md.h1 & mask;
    364 			pmac->u[2] |= key->md.h2 & mask;
    365 			pmac->u[3] |= key->md.h3 & mask;
    366 			pmac->u[4] |= key->md.h4 & mask;
    367 
    368 #ifdef BSWAP
    369 			pmac->u[0] = BSWAP(pmac->u[0]);
    370 			pmac->u[1] = BSWAP(pmac->u[1]);
    371 			pmac->u[2] = BSWAP(pmac->u[2]);
    372 			pmac->u[3] = BSWAP(pmac->u[3]);
    373 			pmac->u[4] = BSWAP(pmac->u[4]);
    374 #else
    375 			for (i=0;i<5;i++) {
    376 				res = pmac->u[i];
    377 				pmac->c[4*i+0]=(unsigned char)(res>>24);
    378 				pmac->c[4*i+1]=(unsigned char)(res>>16);
    379 				pmac->c[4*i+2]=(unsigned char)(res>>8);
    380 				pmac->c[4*i+3]=(unsigned char)res;
    381 			}
    382 #endif
    383 			len += SHA_DIGEST_LENGTH;
    384 #else
    385 			SHA1_Update(&key->md,out,inp_len);
    386 			res = key->md.num;
    387 			SHA1_Final(pmac->c,&key->md);
    388 
    389 			{
    390 			unsigned int inp_blocks, pad_blocks;
    391 
    392 			/* but pretend as if we hashed padded payload */
    393 			inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
    394 			res += (unsigned int)(len-inp_len);
    395 			pad_blocks = res / SHA_CBLOCK;
    396 			res %= SHA_CBLOCK;
    397 			pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
    398 			for (;inp_blocks<pad_blocks;inp_blocks++)
    399 				sha1_block_data_order(&key->md,data,1);
    400 			}
    401 #endif
    402 			key->md = key->tail;
    403 			SHA1_Update(&key->md,pmac->c,SHA_DIGEST_LENGTH);
    404 			SHA1_Final(pmac->c,&key->md);
    405 
    406 			/* verify HMAC */
    407 			out += inp_len;
    408 			len -= inp_len;
    409 #if 1
    410 			{
    411 			unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH;
    412 			size_t off = out-p;
    413 			unsigned int c, cmask;
    414 
    415 			maxpad += SHA_DIGEST_LENGTH;
    416 			for (res=0,i=0,j=0;j<maxpad;j++) {
    417 				c = p[j];
    418 				cmask = ((int)(j-off-SHA_DIGEST_LENGTH))>>(sizeof(int)*8-1);
    419 				res |= (c^pad)&~cmask;	/* ... and padding */
    420 				cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1);
    421 				res |= (c^pmac->c[i])&cmask;
    422 				i += 1&cmask;
    423 			}
    424 			maxpad -= SHA_DIGEST_LENGTH;
    425 
    426 			res = 0-((0-res)>>(sizeof(res)*8-1));
    427 			ret &= (int)~res;
    428 			}
    429 #else
    430 			for (res=0,i=0;i<SHA_DIGEST_LENGTH;i++)
    431 				res |= out[i]^pmac->c[i];
    432 			res = 0-((0-res)>>(sizeof(res)*8-1));
    433 			ret &= (int)~res;
    434 
    435 			/* verify padding */
    436 			pad = (pad&~res) | (maxpad&res);
    437 			out = out+len-1-pad;
    438 			for (res=0,i=0;i<pad;i++)
    439 				res |= out[i]^pad;
    440 
    441 			res = (0-res)>>(sizeof(res)*8-1);
    442 			ret &= (int)~res;
    443 #endif
    444 			return ret;
    445 		} else {
    446 			SHA1_Update(&key->md,out,len);
    447 		}
    448 	}
    449 
    450 	return 1;
    451 	}
    452 
    453 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
    454 	{
    455 	EVP_AES_HMAC_SHA1 *key = data(ctx);
    456 
    457 	switch (type)
    458 		{
    459 	case EVP_CTRL_AEAD_SET_MAC_KEY:
    460 		{
    461 		unsigned int  i;
    462 		unsigned char hmac_key[64];
    463 
    464 		memset (hmac_key,0,sizeof(hmac_key));
    465 
    466 		if (arg > (int)sizeof(hmac_key)) {
    467 			SHA1_Init(&key->head);
    468 			SHA1_Update(&key->head,ptr,arg);
    469 			SHA1_Final(hmac_key,&key->head);
    470 		} else {
    471 			memcpy(hmac_key,ptr,arg);
    472 		}
    473 
    474 		for (i=0;i<sizeof(hmac_key);i++)
    475 			hmac_key[i] ^= 0x36;		/* ipad */
    476 		SHA1_Init(&key->head);
    477 		SHA1_Update(&key->head,hmac_key,sizeof(hmac_key));
    478 
    479 		for (i=0;i<sizeof(hmac_key);i++)
    480 			hmac_key[i] ^= 0x36^0x5c;	/* opad */
    481 		SHA1_Init(&key->tail);
    482 		SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key));
    483 
    484 		OPENSSL_cleanse(hmac_key,sizeof(hmac_key));
    485 
    486 		return 1;
    487 		}
    488 	case EVP_CTRL_AEAD_TLS1_AAD:
    489 		{
    490 		unsigned char *p=ptr;
    491 		unsigned int   len=p[arg-2]<<8|p[arg-1];
    492 
    493 		if (ctx->encrypt)
    494 			{
    495 			key->payload_length = len;
    496 			if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) {
    497 				len -= AES_BLOCK_SIZE;
    498 				p[arg-2] = len>>8;
    499 				p[arg-1] = len;
    500 			}
    501 			key->md = key->head;
    502 			SHA1_Update(&key->md,p,arg);
    503 
    504 			return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)
    505 				- len);
    506 			}
    507 		else
    508 			{
    509 			if (arg>13) arg = 13;
    510 			memcpy(key->aux.tls_aad,ptr,arg);
    511 			key->payload_length = arg;
    512 
    513 			return SHA_DIGEST_LENGTH;
    514 			}
    515 		}
    516 	default:
    517 		return -1;
    518 		}
    519 	}
    520 
    521 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher =
    522 	{
    523 #ifdef NID_aes_128_cbc_hmac_sha1
    524 	NID_aes_128_cbc_hmac_sha1,
    525 #else
    526 	NID_undef,
    527 #endif
    528 	16,16,16,
    529 	EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
    530 	aesni_cbc_hmac_sha1_init_key,
    531 	aesni_cbc_hmac_sha1_cipher,
    532 	NULL,
    533 	sizeof(EVP_AES_HMAC_SHA1),
    534 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
    535 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
    536 	aesni_cbc_hmac_sha1_ctrl,
    537 	NULL
    538 	};
    539 
    540 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher =
    541 	{
    542 #ifdef NID_aes_256_cbc_hmac_sha1
    543 	NID_aes_256_cbc_hmac_sha1,
    544 #else
    545 	NID_undef,
    546 #endif
    547 	16,32,16,
    548 	EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
    549 	aesni_cbc_hmac_sha1_init_key,
    550 	aesni_cbc_hmac_sha1_cipher,
    551 	NULL,
    552 	sizeof(EVP_AES_HMAC_SHA1),
    553 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
    554 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
    555 	aesni_cbc_hmac_sha1_ctrl,
    556 	NULL
    557 	};
    558 
    559 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
    560 	{
    561 	return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
    562 		&aesni_128_cbc_hmac_sha1_cipher:NULL);
    563 	}
    564 
    565 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
    566 	{
    567 	return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
    568 		&aesni_256_cbc_hmac_sha1_cipher:NULL);
    569 	}
    570 #else
    571 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
    572 	{
    573 	return NULL;
    574 	}
    575 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
    576 	{
    577 	return NULL;
    578 	}
    579 #endif
    580 #endif
    581