1 #!/usr/bin/env perl 2 3 # ==================================================================== 4 # [Re]written by Andy Polyakov <appro (at] fy.chalmers.se> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 10 # At some point it became apparent that the original SSLeay RC4 11 # assembler implementation performs suboptimally on latest IA-32 12 # microarchitectures. After re-tuning performance has changed as 13 # following: 14 # 15 # Pentium -10% 16 # Pentium III +12% 17 # AMD +50%(*) 18 # P4 +250%(**) 19 # 20 # (*) This number is actually a trade-off:-) It's possible to 21 # achieve +72%, but at the cost of -48% off PIII performance. 22 # In other words code performing further 13% faster on AMD 23 # would perform almost 2 times slower on Intel PIII... 24 # For reference! This code delivers ~80% of rc4-amd64.pl 25 # performance on the same Opteron machine. 26 # (**) This number requires compressed key schedule set up by 27 # RC4_set_key [see commentary below for further details]. 28 # 29 # <appro (at] fy.chalmers.se> 30 31 # May 2011 32 # 33 # Optimize for Core2 and Westmere [and incidentally Opteron]. Current 34 # performance in cycles per processed byte (less is better) and 35 # improvement relative to previous version of this module is: 36 # 37 # Pentium 10.2 # original numbers 38 # Pentium III 7.8(*) 39 # Intel P4 7.5 40 # 41 # Opteron 6.1/+20% # new MMX numbers 42 # Core2 5.3/+67%(**) 43 # Westmere 5.1/+94%(**) 44 # Sandy Bridge 5.0/+8% 45 # Atom 12.6/+6% 46 # 47 # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, 48 # but this specific code performs poorly on Core2. And vice 49 # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs 50 # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU 51 # [anymore], I chose to discard PIII-specific code path and opt 52 # for original IALU-only code, which is why MMX/SSE code path 53 # is guarded by SSE2 bit (see below), not MMX/SSE. 54 # (**) Performance vs. block size on Core2 and Westmere had a maximum 55 # at ... 64 bytes block size. And it was quite a maximum, 40-60% 56 # in comparison to largest 8KB block size. Above improvement 57 # coefficients are for the largest block size. 58 59 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 60 push(@INC,"${dir}","${dir}../../perlasm"); 61 require "x86asm.pl"; 62 63 &asm_init($ARGV[0],"rc4-586.pl"); 64 65 $xx="eax"; 66 $yy="ebx"; 67 $tx="ecx"; 68 $ty="edx"; 69 $inp="esi"; 70 $out="ebp"; 71 $dat="edi"; 72 73 sub RC4_loop { 74 my $i=shift; 75 my $func = ($i==0)?*mov:*or; 76 77 &add (&LB($yy),&LB($tx)); 78 &mov ($ty,&DWP(0,$dat,$yy,4)); 79 &mov (&DWP(0,$dat,$yy,4),$tx); 80 &mov (&DWP(0,$dat,$xx,4),$ty); 81 &add ($ty,$tx); 82 &inc (&LB($xx)); 83 &and ($ty,0xff); 84 &ror ($out,8) if ($i!=0); 85 if ($i<3) { 86 &mov ($tx,&DWP(0,$dat,$xx,4)); 87 } else { 88 &mov ($tx,&wparam(3)); # reload [re-biased] out 89 } 90 &$func ($out,&DWP(0,$dat,$ty,4)); 91 } 92 93 if ($alt=0) { 94 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, 95 # but ~40% slower on Core2 and Westmere... Attempt to add movz 96 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet 97 # on Core2 with movz it's almost 20% slower than below alternative 98 # code... Yes, it's a total mess... 99 my @XX=($xx,$out); 100 $RC4_loop_mmx = sub { # SSE actually... 101 my $i=shift; 102 my $j=$i<=0?0:$i>>1; 103 my $mm=$i<=0?"mm0":"mm".($i&1); 104 105 &add (&LB($yy),&LB($tx)); 106 &lea (@XX[1],&DWP(1,@XX[0])); 107 &pxor ("mm2","mm0") if ($i==0); 108 &psllq ("mm1",8) if ($i==0); 109 &and (@XX[1],0xff); 110 &pxor ("mm0","mm0") if ($i<=0); 111 &mov ($ty,&DWP(0,$dat,$yy,4)); 112 &mov (&DWP(0,$dat,$yy,4),$tx); 113 &pxor ("mm1","mm2") if ($i==0); 114 &mov (&DWP(0,$dat,$XX[0],4),$ty); 115 &add (&LB($ty),&LB($tx)); 116 &movd (@XX[0],"mm7") if ($i==0); 117 &mov ($tx,&DWP(0,$dat,@XX[1],4)); 118 &pxor ("mm1","mm1") if ($i==1); 119 &movq ("mm2",&QWP(0,$inp)) if ($i==1); 120 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); 121 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); 122 123 push (@XX,shift(@XX)) if ($i>=0); 124 } 125 } else { 126 # Using pinsrw here improves performane on Intel CPUs by 2-3%, but 127 # brings down AMD by 7%... 128 $RC4_loop_mmx = sub { 129 my $i=shift; 130 131 &add (&LB($yy),&LB($tx)); 132 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); 133 &mov ($ty,&DWP(0,$dat,$yy,4)); 134 &mov (&DWP(0,$dat,$yy,4),$tx); 135 &mov (&DWP(0,$dat,$xx,4),$ty); 136 &inc ($xx); 137 &add ($ty,$tx); 138 &movz ($xx,&LB($xx)); # (*) 139 &movz ($ty,&LB($ty)); # (*) 140 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); 141 &movq ("mm0",&QWP(0,$inp)) if ($i<=0); 142 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); 143 &mov ($tx,&DWP(0,$dat,$xx,4)); 144 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); 145 146 # (*) This is the key to Core2 and Westmere performance. 147 # Whithout movz out-of-order execution logic confuses 148 # itself and fails to reorder loads and stores. Problem 149 # appears to be fixed in Sandy Bridge... 150 } 151 } 152 153 &external_label("OPENSSL_ia32cap_P"); 154 155 # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); 156 &function_begin("RC4"); 157 &mov ($dat,&wparam(0)); # load key schedule pointer 158 &mov ($ty, &wparam(1)); # load len 159 &mov ($inp,&wparam(2)); # load inp 160 &mov ($out,&wparam(3)); # load out 161 162 &xor ($xx,$xx); # avoid partial register stalls 163 &xor ($yy,$yy); 164 165 &cmp ($ty,0); # safety net 166 &je (&label("abort")); 167 168 &mov (&LB($xx),&BP(0,$dat)); # load key->x 169 &mov (&LB($yy),&BP(4,$dat)); # load key->y 170 &add ($dat,8); 171 172 &lea ($tx,&DWP(0,$inp,$ty)); 173 &sub ($out,$inp); # re-bias out 174 &mov (&wparam(1),$tx); # save input+len 175 176 &inc (&LB($xx)); 177 178 # detect compressed key schedule... 179 &cmp (&DWP(256,$dat),-1); 180 &je (&label("RC4_CHAR")); 181 182 &mov ($tx,&DWP(0,$dat,$xx,4)); 183 184 &and ($ty,-4); # how many 4-byte chunks? 185 &jz (&label("loop1")); 186 187 &test ($ty,-8); 188 &mov (&wparam(3),$out); # $out as accumulator in these loops 189 &jz (&label("go4loop4")); 190 191 &picmeup($out,"OPENSSL_ia32cap_P"); 192 &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] 193 &jnc (&label("go4loop4")); 194 195 &mov ($out,&wparam(3)) if (!$alt); 196 &movd ("mm7",&wparam(3)) if ($alt); 197 &and ($ty,-8); 198 &lea ($ty,&DWP(-8,$inp,$ty)); 199 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 200 201 &$RC4_loop_mmx(-1); 202 &jmp(&label("loop_mmx_enter")); 203 204 &set_label("loop_mmx",16); 205 &$RC4_loop_mmx(0); 206 &set_label("loop_mmx_enter"); 207 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } 208 &mov ($ty,$yy); 209 &xor ($yy,$yy); # this is second key to Core2 210 &mov (&LB($yy),&LB($ty)); # and Westmere performance... 211 &cmp ($inp,&DWP(-4,$dat)); 212 &lea ($inp,&DWP(8,$inp)); 213 &jb (&label("loop_mmx")); 214 215 if ($alt) { 216 &movd ($out,"mm7"); 217 &pxor ("mm2","mm0"); 218 &psllq ("mm1",8); 219 &pxor ("mm1","mm2"); 220 &movq (&QWP(-8,$out,$inp),"mm1"); 221 } else { 222 &psllq ("mm1",56); 223 &pxor ("mm2","mm1"); 224 &movq (&QWP(-8,$out,$inp),"mm2"); 225 } 226 &emms (); 227 228 &cmp ($inp,&wparam(1)); # compare to input+len 229 &je (&label("done")); 230 &jmp (&label("loop1")); 231 232 &set_label("go4loop4",16); 233 &lea ($ty,&DWP(-4,$inp,$ty)); 234 &mov (&wparam(2),$ty); # save input+(len/4)*4-4 235 236 &set_label("loop4"); 237 for ($i=0;$i<4;$i++) { RC4_loop($i); } 238 &ror ($out,8); 239 &xor ($out,&DWP(0,$inp)); 240 &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 241 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here 242 &lea ($inp,&DWP(4,$inp)); 243 &mov ($tx,&DWP(0,$dat,$xx,4)); 244 &jb (&label("loop4")); 245 246 &cmp ($inp,&wparam(1)); # compare to input+len 247 &je (&label("done")); 248 &mov ($out,&wparam(3)); # restore $out 249 250 &set_label("loop1",16); 251 &add (&LB($yy),&LB($tx)); 252 &mov ($ty,&DWP(0,$dat,$yy,4)); 253 &mov (&DWP(0,$dat,$yy,4),$tx); 254 &mov (&DWP(0,$dat,$xx,4),$ty); 255 &add ($ty,$tx); 256 &inc (&LB($xx)); 257 &and ($ty,0xff); 258 &mov ($ty,&DWP(0,$dat,$ty,4)); 259 &xor (&LB($ty),&BP(0,$inp)); 260 &lea ($inp,&DWP(1,$inp)); 261 &mov ($tx,&DWP(0,$dat,$xx,4)); 262 &cmp ($inp,&wparam(1)); # compare to input+len 263 &mov (&BP(-1,$out,$inp),&LB($ty)); 264 &jb (&label("loop1")); 265 266 &jmp (&label("done")); 267 268 # this is essentially Intel P4 specific codepath... 269 &set_label("RC4_CHAR",16); 270 &movz ($tx,&BP(0,$dat,$xx)); 271 # strangely enough unrolled loop performs over 20% slower... 272 &set_label("cloop1"); 273 &add (&LB($yy),&LB($tx)); 274 &movz ($ty,&BP(0,$dat,$yy)); 275 &mov (&BP(0,$dat,$yy),&LB($tx)); 276 &mov (&BP(0,$dat,$xx),&LB($ty)); 277 &add (&LB($ty),&LB($tx)); 278 &movz ($ty,&BP(0,$dat,$ty)); 279 &add (&LB($xx),1); 280 &xor (&LB($ty),&BP(0,$inp)); 281 &lea ($inp,&DWP(1,$inp)); 282 &movz ($tx,&BP(0,$dat,$xx)); 283 &cmp ($inp,&wparam(1)); 284 &mov (&BP(-1,$out,$inp),&LB($ty)); 285 &jb (&label("cloop1")); 286 287 &set_label("done"); 288 &dec (&LB($xx)); 289 &mov (&DWP(-4,$dat),$yy); # save key->y 290 &mov (&BP(-8,$dat),&LB($xx)); # save key->x 291 &set_label("abort"); 292 &function_end("RC4"); 293 294 ######################################################################## 295 296 $inp="esi"; 297 $out="edi"; 298 $idi="ebp"; 299 $ido="ecx"; 300 $idx="edx"; 301 302 # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); 303 &function_begin("private_RC4_set_key"); 304 &mov ($out,&wparam(0)); # load key 305 &mov ($idi,&wparam(1)); # load len 306 &mov ($inp,&wparam(2)); # load data 307 &picmeup($idx,"OPENSSL_ia32cap_P"); 308 309 &lea ($out,&DWP(2*4,$out)); # &key->data 310 &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end 311 &neg ($idi); 312 &xor ("eax","eax"); 313 &mov (&DWP(-4,$out),$idi); # borrow key->y 314 315 &bt (&DWP(0,$idx),20); # check for bit#20 316 &jc (&label("c1stloop")); 317 318 &set_label("w1stloop",16); 319 &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; 320 &add (&LB("eax"),1); # i++; 321 &jnc (&label("w1stloop")); 322 323 &xor ($ido,$ido); 324 &xor ($idx,$idx); 325 326 &set_label("w2ndloop",16); 327 &mov ("eax",&DWP(0,$out,$ido,4)); 328 &add (&LB($idx),&BP(0,$inp,$idi)); 329 &add (&LB($idx),&LB("eax")); 330 &add ($idi,1); 331 &mov ("ebx",&DWP(0,$out,$idx,4)); 332 &jnz (&label("wnowrap")); 333 &mov ($idi,&DWP(-4,$out)); 334 &set_label("wnowrap"); 335 &mov (&DWP(0,$out,$idx,4),"eax"); 336 &mov (&DWP(0,$out,$ido,4),"ebx"); 337 &add (&LB($ido),1); 338 &jnc (&label("w2ndloop")); 339 &jmp (&label("exit")); 340 341 # Unlike all other x86 [and x86_64] implementations, Intel P4 core 342 # [including EM64T] was found to perform poorly with above "32-bit" key 343 # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded 344 # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, 345 # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit 346 # schedule for x86[_64], because non-P4 implementations suffer from 347 # significant performance losses then, e.g. PIII exhibits >2x 348 # deterioration, and so does Opteron. In order to assure optimal 349 # all-round performance, we detect P4 at run-time and set up compressed 350 # key schedule, which is recognized by RC4 procedure. 351 352 &set_label("c1stloop",16); 353 &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; 354 &add (&LB("eax"),1); # i++; 355 &jnc (&label("c1stloop")); 356 357 &xor ($ido,$ido); 358 &xor ($idx,$idx); 359 &xor ("ebx","ebx"); 360 361 &set_label("c2ndloop",16); 362 &mov (&LB("eax"),&BP(0,$out,$ido)); 363 &add (&LB($idx),&BP(0,$inp,$idi)); 364 &add (&LB($idx),&LB("eax")); 365 &add ($idi,1); 366 &mov (&LB("ebx"),&BP(0,$out,$idx)); 367 &jnz (&label("cnowrap")); 368 &mov ($idi,&DWP(-4,$out)); 369 &set_label("cnowrap"); 370 &mov (&BP(0,$out,$idx),&LB("eax")); 371 &mov (&BP(0,$out,$ido),&LB("ebx")); 372 &add (&LB($ido),1); 373 &jnc (&label("c2ndloop")); 374 375 &mov (&DWP(256,$out),-1); # mark schedule as compressed 376 377 &set_label("exit"); 378 &xor ("eax","eax"); 379 &mov (&DWP(-8,$out),"eax"); # key->x=0; 380 &mov (&DWP(-4,$out),"eax"); # key->y=0; 381 &function_end("private_RC4_set_key"); 382 383 # const char *RC4_options(void); 384 &function_begin_B("RC4_options"); 385 &call (&label("pic_point")); 386 &set_label("pic_point"); 387 &blindpop("eax"); 388 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); 389 &picmeup("edx","OPENSSL_ia32cap_P"); 390 &mov ("edx",&DWP(0,"edx")); 391 &bt ("edx",20); 392 &jc (&label("1xchar")); 393 &bt ("edx",26); 394 &jnc (&label("ret")); 395 &add ("eax",25); 396 &ret (); 397 &set_label("1xchar"); 398 &add ("eax",12); 399 &set_label("ret"); 400 &ret (); 401 &set_label("opts",64); 402 &asciz ("rc4(4x,int)"); 403 &asciz ("rc4(1x,char)"); 404 &asciz ("rc4(8x,mmx)"); 405 &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); 406 &align (64); 407 &function_end_B("RC4_options"); 408 409 &asm_finish(); 410 411