1 2 /* 3 * Copyright 2009 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10 #include "SkEdgeClipper.h" 11 #include "SkGeometry.h" 12 13 static bool quick_reject(const SkRect& bounds, const SkRect& clip) { 14 return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop; 15 } 16 17 static inline void clamp_le(SkScalar& value, SkScalar max) { 18 if (value > max) { 19 value = max; 20 } 21 } 22 23 static inline void clamp_ge(SkScalar& value, SkScalar min) { 24 if (value < min) { 25 value = min; 26 } 27 } 28 29 /* src[] must be monotonic in Y. This routine copies src into dst, and sorts 30 it to be increasing in Y. If it had to reverse the order of the points, 31 it returns true, otherwise it returns false 32 */ 33 static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) { 34 // we need the data to be monotonically increasing in Y 35 if (src[0].fY > src[count - 1].fY) { 36 for (int i = 0; i < count; i++) { 37 dst[i] = src[count - i - 1]; 38 } 39 return true; 40 } else { 41 memcpy(dst, src, count * sizeof(SkPoint)); 42 return false; 43 } 44 } 45 46 /////////////////////////////////////////////////////////////////////////////// 47 48 static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, 49 SkScalar target, SkScalar* t) { 50 /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 51 * We solve for t, using quadratic equation, hence we have to rearrange 52 * our cooefficents to look like At^2 + Bt + C 53 */ 54 SkScalar A = c0 - c1 - c1 + c2; 55 SkScalar B = 2*(c1 - c0); 56 SkScalar C = c0 - target; 57 58 SkScalar roots[2]; // we only expect one, but make room for 2 for safety 59 int count = SkFindUnitQuadRoots(A, B, C, roots); 60 if (count) { 61 *t = roots[0]; 62 return true; 63 } 64 return false; 65 } 66 67 static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { 68 return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); 69 } 70 71 static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) { 72 return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t); 73 } 74 75 // Modify pts[] in place so that it is clipped in Y to the clip rect 76 static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) { 77 SkScalar t; 78 SkPoint tmp[5]; // for SkChopQuadAt 79 80 // are we partially above 81 if (pts[0].fY < clip.fTop) { 82 if (chopMonoQuadAtY(pts, clip.fTop, &t)) { 83 // take the 2nd chopped quad 84 SkChopQuadAt(pts, tmp, t); 85 // clamp to clean up imprecise numerics in the chop 86 tmp[2].fY = clip.fTop; 87 clamp_ge(tmp[3].fY, clip.fTop); 88 89 pts[0] = tmp[2]; 90 pts[1] = tmp[3]; 91 } else { 92 // if chopMonoQuadAtY failed, then we may have hit inexact numerics 93 // so we just clamp against the top 94 for (int i = 0; i < 3; i++) { 95 if (pts[i].fY < clip.fTop) { 96 pts[i].fY = clip.fTop; 97 } 98 } 99 } 100 } 101 102 // are we partially below 103 if (pts[2].fY > clip.fBottom) { 104 if (chopMonoQuadAtY(pts, clip.fBottom, &t)) { 105 SkChopQuadAt(pts, tmp, t); 106 // clamp to clean up imprecise numerics in the chop 107 clamp_le(tmp[1].fY, clip.fBottom); 108 tmp[2].fY = clip.fBottom; 109 110 pts[1] = tmp[1]; 111 pts[2] = tmp[2]; 112 } else { 113 // if chopMonoQuadAtY failed, then we may have hit inexact numerics 114 // so we just clamp against the bottom 115 for (int i = 0; i < 3; i++) { 116 if (pts[i].fY > clip.fBottom) { 117 pts[i].fY = clip.fBottom; 118 } 119 } 120 } 121 } 122 } 123 124 // srcPts[] must be monotonic in X and Y 125 void SkEdgeClipper::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) { 126 SkPoint pts[3]; 127 bool reverse = sort_increasing_Y(pts, srcPts, 3); 128 129 // are we completely above or below 130 if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { 131 return; 132 } 133 134 // Now chop so that pts is contained within clip in Y 135 chop_quad_in_Y(pts, clip); 136 137 if (pts[0].fX > pts[2].fX) { 138 SkTSwap<SkPoint>(pts[0], pts[2]); 139 reverse = !reverse; 140 } 141 SkASSERT(pts[0].fX <= pts[1].fX); 142 SkASSERT(pts[1].fX <= pts[2].fX); 143 144 // Now chop in X has needed, and record the segments 145 146 if (pts[2].fX <= clip.fLeft) { // wholly to the left 147 this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); 148 return; 149 } 150 if (pts[0].fX >= clip.fRight) { // wholly to the right 151 this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); 152 return; 153 } 154 155 SkScalar t; 156 SkPoint tmp[5]; // for SkChopQuadAt 157 158 // are we partially to the left 159 if (pts[0].fX < clip.fLeft) { 160 if (chopMonoQuadAtX(pts, clip.fLeft, &t)) { 161 SkChopQuadAt(pts, tmp, t); 162 this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse); 163 // clamp to clean up imprecise numerics in the chop 164 tmp[2].fX = clip.fLeft; 165 clamp_ge(tmp[3].fX, clip.fLeft); 166 167 pts[0] = tmp[2]; 168 pts[1] = tmp[3]; 169 } else { 170 // if chopMonoQuadAtY failed, then we may have hit inexact numerics 171 // so we just clamp against the left 172 this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); 173 return; 174 } 175 } 176 177 // are we partially to the right 178 if (pts[2].fX > clip.fRight) { 179 if (chopMonoQuadAtX(pts, clip.fRight, &t)) { 180 SkChopQuadAt(pts, tmp, t); 181 // clamp to clean up imprecise numerics in the chop 182 clamp_le(tmp[1].fX, clip.fRight); 183 tmp[2].fX = clip.fRight; 184 185 this->appendQuad(tmp, reverse); 186 this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse); 187 } else { 188 // if chopMonoQuadAtY failed, then we may have hit inexact numerics 189 // so we just clamp against the right 190 this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); 191 } 192 } else { // wholly inside the clip 193 this->appendQuad(pts, reverse); 194 } 195 } 196 197 bool SkEdgeClipper::clipQuad(const SkPoint srcPts[3], const SkRect& clip) { 198 fCurrPoint = fPoints; 199 fCurrVerb = fVerbs; 200 201 SkRect bounds; 202 bounds.set(srcPts, 3); 203 204 if (!quick_reject(bounds, clip)) { 205 SkPoint monoY[5]; 206 int countY = SkChopQuadAtYExtrema(srcPts, monoY); 207 for (int y = 0; y <= countY; y++) { 208 SkPoint monoX[5]; 209 int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX); 210 for (int x = 0; x <= countX; x++) { 211 this->clipMonoQuad(&monoX[x * 2], clip); 212 SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); 213 SkASSERT(fCurrPoint - fPoints <= kMaxPoints); 214 } 215 } 216 } 217 218 *fCurrVerb = SkPath::kDone_Verb; 219 fCurrPoint = fPoints; 220 fCurrVerb = fVerbs; 221 return SkPath::kDone_Verb != fVerbs[0]; 222 } 223 224 /////////////////////////////////////////////////////////////////////////////// 225 226 static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, 227 SkScalar D, SkScalar t) { 228 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); 229 } 230 231 /* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the 232 t value such that cubic(t) = target 233 */ 234 static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, 235 SkScalar target, SkScalar* t) { 236 // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); 237 SkASSERT(c0 < target && target < c3); 238 239 SkScalar D = c0 - target; 240 SkScalar A = c3 + 3*(c1 - c2) - c0; 241 SkScalar B = 3*(c2 - c1 - c1 + c0); 242 SkScalar C = 3*(c1 - c0); 243 244 const SkScalar TOLERANCE = SK_Scalar1 / 4096; 245 SkScalar minT = 0; 246 SkScalar maxT = SK_Scalar1; 247 SkScalar mid; 248 249 // This is a lot of iterations. Is there a faster way? 250 for (int i = 0; i < 24; i++) { 251 mid = SkScalarAve(minT, maxT); 252 SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); 253 if (delta < 0) { 254 minT = mid; 255 delta = -delta; 256 } else { 257 maxT = mid; 258 } 259 if (delta < TOLERANCE) { 260 break; 261 } 262 } 263 *t = mid; 264 // SkDebugf("-- evalCubicAt %d delta %g\n", i, eval_cubic_coeff(A, B, C, D, *t)); 265 return true; 266 } 267 268 static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) { 269 return chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, t); 270 } 271 272 static bool chopMonoCubicAtX(SkPoint pts[4], SkScalar x, SkScalar* t) { 273 return chopMonoCubicAt(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, x, t); 274 } 275 276 // Modify pts[] in place so that it is clipped in Y to the clip rect 277 static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) { 278 279 // are we partially above 280 if (pts[0].fY < clip.fTop) { 281 SkScalar t; 282 if (chopMonoCubicAtY(pts, clip.fTop, &t)) { 283 SkPoint tmp[7]; 284 SkChopCubicAt(pts, tmp, t); 285 286 // tmp[3, 4, 5].fY should all be to the below clip.fTop. 287 // Since we can't trust the numerics of 288 // the chopper, we force those conditions now 289 tmp[3].fY = clip.fTop; 290 clamp_ge(tmp[4].fY, clip.fTop); 291 clamp_ge(tmp[5].fY, clip.fTop); 292 293 pts[0] = tmp[3]; 294 pts[1] = tmp[4]; 295 pts[2] = tmp[5]; 296 } else { 297 // if chopMonoCubicAtY failed, then we may have hit inexact numerics 298 // so we just clamp against the top 299 for (int i = 0; i < 4; i++) { 300 clamp_ge(pts[i].fY, clip.fTop); 301 } 302 } 303 } 304 305 // are we partially below 306 if (pts[3].fY > clip.fBottom) { 307 SkScalar t; 308 if (chopMonoCubicAtY(pts, clip.fBottom, &t)) { 309 SkPoint tmp[7]; 310 SkChopCubicAt(pts, tmp, t); 311 tmp[3].fY = clip.fBottom; 312 clamp_le(tmp[2].fY, clip.fBottom); 313 314 pts[1] = tmp[1]; 315 pts[2] = tmp[2]; 316 pts[3] = tmp[3]; 317 } else { 318 // if chopMonoCubicAtY failed, then we may have hit inexact numerics 319 // so we just clamp against the bottom 320 for (int i = 0; i < 4; i++) { 321 clamp_le(pts[i].fY, clip.fBottom); 322 } 323 } 324 } 325 } 326 327 // srcPts[] must be monotonic in X and Y 328 void SkEdgeClipper::clipMonoCubic(const SkPoint src[4], const SkRect& clip) { 329 SkPoint pts[4]; 330 bool reverse = sort_increasing_Y(pts, src, 4); 331 332 // are we completely above or below 333 if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { 334 return; 335 } 336 337 // Now chop so that pts is contained within clip in Y 338 chop_cubic_in_Y(pts, clip); 339 340 if (pts[0].fX > pts[3].fX) { 341 SkTSwap<SkPoint>(pts[0], pts[3]); 342 SkTSwap<SkPoint>(pts[1], pts[2]); 343 reverse = !reverse; 344 } 345 346 // Now chop in X has needed, and record the segments 347 348 if (pts[3].fX <= clip.fLeft) { // wholly to the left 349 this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); 350 return; 351 } 352 if (pts[0].fX >= clip.fRight) { // wholly to the right 353 this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); 354 return; 355 } 356 357 // are we partially to the left 358 if (pts[0].fX < clip.fLeft) { 359 SkScalar t; 360 if (chopMonoCubicAtX(pts, clip.fLeft, &t)) { 361 SkPoint tmp[7]; 362 SkChopCubicAt(pts, tmp, t); 363 this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse); 364 365 // tmp[3, 4, 5].fX should all be to the right of clip.fLeft. 366 // Since we can't trust the numerics of 367 // the chopper, we force those conditions now 368 tmp[3].fX = clip.fLeft; 369 clamp_ge(tmp[4].fX, clip.fLeft); 370 clamp_ge(tmp[5].fX, clip.fLeft); 371 372 pts[0] = tmp[3]; 373 pts[1] = tmp[4]; 374 pts[2] = tmp[5]; 375 } else { 376 // if chopMonocubicAtY failed, then we may have hit inexact numerics 377 // so we just clamp against the left 378 this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); 379 return; 380 } 381 } 382 383 // are we partially to the right 384 if (pts[3].fX > clip.fRight) { 385 SkScalar t; 386 if (chopMonoCubicAtX(pts, clip.fRight, &t)) { 387 SkPoint tmp[7]; 388 SkChopCubicAt(pts, tmp, t); 389 tmp[3].fX = clip.fRight; 390 clamp_le(tmp[2].fX, clip.fRight); 391 clamp_le(tmp[1].fX, clip.fRight); 392 393 this->appendCubic(tmp, reverse); 394 this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse); 395 } else { 396 // if chopMonoCubicAtX failed, then we may have hit inexact numerics 397 // so we just clamp against the right 398 this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); 399 } 400 } else { // wholly inside the clip 401 this->appendCubic(pts, reverse); 402 } 403 } 404 405 bool SkEdgeClipper::clipCubic(const SkPoint srcPts[4], const SkRect& clip) { 406 fCurrPoint = fPoints; 407 fCurrVerb = fVerbs; 408 409 SkRect bounds; 410 bounds.set(srcPts, 4); 411 412 if (!quick_reject(bounds, clip)) { 413 SkPoint monoY[10]; 414 int countY = SkChopCubicAtYExtrema(srcPts, monoY); 415 for (int y = 0; y <= countY; y++) { 416 SkPoint monoX[10]; 417 int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX); 418 for (int x = 0; x <= countX; x++) { 419 this->clipMonoCubic(&monoX[x * 3], clip); 420 SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); 421 SkASSERT(fCurrPoint - fPoints <= kMaxPoints); 422 } 423 } 424 } 425 426 *fCurrVerb = SkPath::kDone_Verb; 427 fCurrPoint = fPoints; 428 fCurrVerb = fVerbs; 429 return SkPath::kDone_Verb != fVerbs[0]; 430 } 431 432 /////////////////////////////////////////////////////////////////////////////// 433 434 void SkEdgeClipper::appendVLine(SkScalar x, SkScalar y0, SkScalar y1, 435 bool reverse) { 436 *fCurrVerb++ = SkPath::kLine_Verb; 437 438 if (reverse) { 439 SkTSwap<SkScalar>(y0, y1); 440 } 441 fCurrPoint[0].set(x, y0); 442 fCurrPoint[1].set(x, y1); 443 fCurrPoint += 2; 444 } 445 446 void SkEdgeClipper::appendQuad(const SkPoint pts[3], bool reverse) { 447 *fCurrVerb++ = SkPath::kQuad_Verb; 448 449 if (reverse) { 450 fCurrPoint[0] = pts[2]; 451 fCurrPoint[2] = pts[0]; 452 } else { 453 fCurrPoint[0] = pts[0]; 454 fCurrPoint[2] = pts[2]; 455 } 456 fCurrPoint[1] = pts[1]; 457 fCurrPoint += 3; 458 } 459 460 void SkEdgeClipper::appendCubic(const SkPoint pts[4], bool reverse) { 461 *fCurrVerb++ = SkPath::kCubic_Verb; 462 463 if (reverse) { 464 for (int i = 0; i < 4; i++) { 465 fCurrPoint[i] = pts[3 - i]; 466 } 467 } else { 468 memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint)); 469 } 470 fCurrPoint += 4; 471 } 472 473 SkPath::Verb SkEdgeClipper::next(SkPoint pts[]) { 474 SkPath::Verb verb = *fCurrVerb; 475 476 switch (verb) { 477 case SkPath::kLine_Verb: 478 memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint)); 479 fCurrPoint += 2; 480 fCurrVerb += 1; 481 break; 482 case SkPath::kQuad_Verb: 483 memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint)); 484 fCurrPoint += 3; 485 fCurrVerb += 1; 486 break; 487 case SkPath::kCubic_Verb: 488 memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint)); 489 fCurrPoint += 4; 490 fCurrVerb += 1; 491 break; 492 case SkPath::kDone_Verb: 493 break; 494 default: 495 SkDEBUGFAIL("unexpected verb in quadclippper2 iter"); 496 break; 497 } 498 return verb; 499 } 500 501 /////////////////////////////////////////////////////////////////////////////// 502 503 #ifdef SK_DEBUG 504 static void assert_monotonic(const SkScalar coord[], int count) { 505 if (coord[0] > coord[(count - 1) * 2]) { 506 for (int i = 1; i < count; i++) { 507 SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]); 508 } 509 } else if (coord[0] < coord[(count - 1) * 2]) { 510 for (int i = 1; i < count; i++) { 511 SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]); 512 } 513 } else { 514 for (int i = 1; i < count; i++) { 515 SkASSERT(coord[2 * (i - 1)] == coord[i * 2]); 516 } 517 } 518 } 519 520 void sk_assert_monotonic_y(const SkPoint pts[], int count) { 521 if (count > 1) { 522 assert_monotonic(&pts[0].fY, count); 523 } 524 } 525 526 void sk_assert_monotonic_x(const SkPoint pts[], int count) { 527 if (count > 1) { 528 assert_monotonic(&pts[0].fX, count); 529 } 530 } 531 #endif 532