Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // Platform specific code for Solaris 10 goes here. For the POSIX comaptible
     29 // parts the implementation is in platform-posix.cc.
     30 
     31 #ifdef __sparc
     32 # error "V8 does not support the SPARC CPU architecture."
     33 #endif
     34 
     35 #include <sys/stack.h>  // for stack alignment
     36 #include <unistd.h>  // getpagesize(), usleep()
     37 #include <sys/mman.h>  // mmap()
     38 #include <ucontext.h>  // walkstack(), getcontext()
     39 #include <dlfcn.h>     // dladdr
     40 #include <pthread.h>
     41 #include <sched.h>  // for sched_yield
     42 #include <semaphore.h>
     43 #include <time.h>
     44 #include <sys/time.h>  // gettimeofday(), timeradd()
     45 #include <errno.h>
     46 #include <ieeefp.h>  // finite()
     47 #include <signal.h>  // sigemptyset(), etc
     48 #include <sys/regset.h>
     49 
     50 
     51 #undef MAP_TYPE
     52 
     53 #include "v8.h"
     54 
     55 #include "platform-posix.h"
     56 #include "platform.h"
     57 #include "v8threads.h"
     58 #include "vm-state-inl.h"
     59 
     60 
     61 // It seems there is a bug in some Solaris distributions (experienced in
     62 // SunOS 5.10 Generic_141445-09) which make it difficult or impossible to
     63 // access signbit() despite the availability of other C99 math functions.
     64 #ifndef signbit
     65 // Test sign - usually defined in math.h
     66 int signbit(double x) {
     67   // We need to take care of the special case of both positive and negative
     68   // versions of zero.
     69   if (x == 0) {
     70     return fpclass(x) & FP_NZERO;
     71   } else {
     72     // This won't detect negative NaN but that should be okay since we don't
     73     // assume that behavior.
     74     return x < 0;
     75   }
     76 }
     77 #endif  // signbit
     78 
     79 namespace v8 {
     80 namespace internal {
     81 
     82 
     83 // 0 is never a valid thread id on Solaris since the main thread is 1 and
     84 // subsequent have their ids incremented from there
     85 static const pthread_t kNoThread = (pthread_t) 0;
     86 
     87 
     88 double ceiling(double x) {
     89   return ceil(x);
     90 }
     91 
     92 
     93 static Mutex* limit_mutex = NULL;
     94 void OS::SetUp() {
     95   // Seed the random number generator.
     96   // Convert the current time to a 64-bit integer first, before converting it
     97   // to an unsigned. Going directly will cause an overflow and the seed to be
     98   // set to all ones. The seed will be identical for different instances that
     99   // call this setup code within the same millisecond.
    100   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
    101   srandom(static_cast<unsigned int>(seed));
    102   limit_mutex = CreateMutex();
    103 }
    104 
    105 
    106 void OS::PostSetUp() {
    107   // Math functions depend on CPU features therefore they are initialized after
    108   // CPU.
    109   MathSetup();
    110 }
    111 
    112 
    113 uint64_t OS::CpuFeaturesImpliedByPlatform() {
    114   return 0;  // Solaris runs on a lot of things.
    115 }
    116 
    117 
    118 int OS::ActivationFrameAlignment() {
    119   // GCC generates code that requires 16 byte alignment such as movdqa.
    120   return Max(STACK_ALIGN, 16);
    121 }
    122 
    123 
    124 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
    125   __asm__ __volatile__("" : : : "memory");
    126   *ptr = value;
    127 }
    128 
    129 
    130 const char* OS::LocalTimezone(double time) {
    131   if (isnan(time)) return "";
    132   time_t tv = static_cast<time_t>(floor(time/msPerSecond));
    133   struct tm* t = localtime(&tv);
    134   if (NULL == t) return "";
    135   return tzname[0];  // The location of the timezone string on Solaris.
    136 }
    137 
    138 
    139 double OS::LocalTimeOffset() {
    140   // On Solaris, struct tm does not contain a tm_gmtoff field.
    141   time_t utc = time(NULL);
    142   ASSERT(utc != -1);
    143   struct tm* loc = localtime(&utc);
    144   ASSERT(loc != NULL);
    145   return static_cast<double>((mktime(loc) - utc) * msPerSecond);
    146 }
    147 
    148 
    149 // We keep the lowest and highest addresses mapped as a quick way of
    150 // determining that pointers are outside the heap (used mostly in assertions
    151 // and verification).  The estimate is conservative, i.e., not all addresses in
    152 // 'allocated' space are actually allocated to our heap.  The range is
    153 // [lowest, highest), inclusive on the low and and exclusive on the high end.
    154 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
    155 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
    156 
    157 
    158 static void UpdateAllocatedSpaceLimits(void* address, int size) {
    159   ASSERT(limit_mutex != NULL);
    160   ScopedLock lock(limit_mutex);
    161 
    162   lowest_ever_allocated = Min(lowest_ever_allocated, address);
    163   highest_ever_allocated =
    164       Max(highest_ever_allocated,
    165           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
    166 }
    167 
    168 
    169 bool OS::IsOutsideAllocatedSpace(void* address) {
    170   return address < lowest_ever_allocated || address >= highest_ever_allocated;
    171 }
    172 
    173 
    174 size_t OS::AllocateAlignment() {
    175   return static_cast<size_t>(getpagesize());
    176 }
    177 
    178 
    179 void* OS::Allocate(const size_t requested,
    180                    size_t* allocated,
    181                    bool is_executable) {
    182   const size_t msize = RoundUp(requested, getpagesize());
    183   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
    184   void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
    185 
    186   if (mbase == MAP_FAILED) {
    187     LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
    188     return NULL;
    189   }
    190   *allocated = msize;
    191   UpdateAllocatedSpaceLimits(mbase, msize);
    192   return mbase;
    193 }
    194 
    195 
    196 void OS::Free(void* address, const size_t size) {
    197   // TODO(1240712): munmap has a return value which is ignored here.
    198   int result = munmap(address, size);
    199   USE(result);
    200   ASSERT(result == 0);
    201 }
    202 
    203 
    204 void OS::Sleep(int milliseconds) {
    205   useconds_t ms = static_cast<useconds_t>(milliseconds);
    206   usleep(1000 * ms);
    207 }
    208 
    209 
    210 void OS::Abort() {
    211   // Redirect to std abort to signal abnormal program termination.
    212   abort();
    213 }
    214 
    215 
    216 void OS::DebugBreak() {
    217   asm("int $3");
    218 }
    219 
    220 
    221 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
    222  public:
    223   PosixMemoryMappedFile(FILE* file, void* memory, int size)
    224     : file_(file), memory_(memory), size_(size) { }
    225   virtual ~PosixMemoryMappedFile();
    226   virtual void* memory() { return memory_; }
    227   virtual int size() { return size_; }
    228  private:
    229   FILE* file_;
    230   void* memory_;
    231   int size_;
    232 };
    233 
    234 
    235 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
    236   FILE* file = fopen(name, "r+");
    237   if (file == NULL) return NULL;
    238 
    239   fseek(file, 0, SEEK_END);
    240   int size = ftell(file);
    241 
    242   void* memory =
    243       mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
    244   return new PosixMemoryMappedFile(file, memory, size);
    245 }
    246 
    247 
    248 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    249     void* initial) {
    250   FILE* file = fopen(name, "w+");
    251   if (file == NULL) return NULL;
    252   int result = fwrite(initial, size, 1, file);
    253   if (result < 1) {
    254     fclose(file);
    255     return NULL;
    256   }
    257   void* memory =
    258       mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
    259   return new PosixMemoryMappedFile(file, memory, size);
    260 }
    261 
    262 
    263 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
    264   if (memory_) munmap(memory_, size_);
    265   fclose(file_);
    266 }
    267 
    268 
    269 void OS::LogSharedLibraryAddresses() {
    270 }
    271 
    272 
    273 void OS::SignalCodeMovingGC() {
    274 }
    275 
    276 
    277 struct StackWalker {
    278   Vector<OS::StackFrame>& frames;
    279   int index;
    280 };
    281 
    282 
    283 static int StackWalkCallback(uintptr_t pc, int signo, void* data) {
    284   struct StackWalker* walker = static_cast<struct StackWalker*>(data);
    285   Dl_info info;
    286 
    287   int i = walker->index;
    288 
    289   walker->frames[i].address = reinterpret_cast<void*>(pc);
    290 
    291   // Make sure line termination is in place.
    292   walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0';
    293 
    294   Vector<char> text = MutableCStrVector(walker->frames[i].text,
    295                                         OS::kStackWalkMaxTextLen);
    296 
    297   if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) {
    298     OS::SNPrintF(text, "[0x%p]", pc);
    299   } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) {
    300     // We have symbol info.
    301     OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc);
    302   } else {
    303     // No local symbol info.
    304     OS::SNPrintF(text,
    305                  "%s'0x%p [0x%p]",
    306                  info.dli_fname,
    307                  pc - reinterpret_cast<uintptr_t>(info.dli_fbase),
    308                  pc);
    309   }
    310   walker->index++;
    311   return 0;
    312 }
    313 
    314 
    315 int OS::StackWalk(Vector<OS::StackFrame> frames) {
    316   ucontext_t ctx;
    317   struct StackWalker walker = { frames, 0 };
    318 
    319   if (getcontext(&ctx) < 0) return kStackWalkError;
    320 
    321   if (!walkcontext(&ctx, StackWalkCallback, &walker)) {
    322     return kStackWalkError;
    323   }
    324 
    325   return walker.index;
    326 }
    327 
    328 
    329 // Constants used for mmap.
    330 static const int kMmapFd = -1;
    331 static const int kMmapFdOffset = 0;
    332 
    333 
    334 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
    335 
    336 VirtualMemory::VirtualMemory(size_t size) {
    337   address_ = ReserveRegion(size);
    338   size_ = size;
    339 }
    340 
    341 
    342 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
    343     : address_(NULL), size_(0) {
    344   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
    345   size_t request_size = RoundUp(size + alignment,
    346                                 static_cast<intptr_t>(OS::AllocateAlignment()));
    347   void* reservation = mmap(OS::GetRandomMmapAddr(),
    348                            request_size,
    349                            PROT_NONE,
    350                            MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
    351                            kMmapFd,
    352                            kMmapFdOffset);
    353   if (reservation == MAP_FAILED) return;
    354 
    355   Address base = static_cast<Address>(reservation);
    356   Address aligned_base = RoundUp(base, alignment);
    357   ASSERT_LE(base, aligned_base);
    358 
    359   // Unmap extra memory reserved before and after the desired block.
    360   if (aligned_base != base) {
    361     size_t prefix_size = static_cast<size_t>(aligned_base - base);
    362     OS::Free(base, prefix_size);
    363     request_size -= prefix_size;
    364   }
    365 
    366   size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
    367   ASSERT_LE(aligned_size, request_size);
    368 
    369   if (aligned_size != request_size) {
    370     size_t suffix_size = request_size - aligned_size;
    371     OS::Free(aligned_base + aligned_size, suffix_size);
    372     request_size -= suffix_size;
    373   }
    374 
    375   ASSERT(aligned_size == request_size);
    376 
    377   address_ = static_cast<void*>(aligned_base);
    378   size_ = aligned_size;
    379 }
    380 
    381 
    382 VirtualMemory::~VirtualMemory() {
    383   if (IsReserved()) {
    384     bool result = ReleaseRegion(address(), size());
    385     ASSERT(result);
    386     USE(result);
    387   }
    388 }
    389 
    390 
    391 bool VirtualMemory::IsReserved() {
    392   return address_ != NULL;
    393 }
    394 
    395 
    396 void VirtualMemory::Reset() {
    397   address_ = NULL;
    398   size_ = 0;
    399 }
    400 
    401 
    402 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
    403   return CommitRegion(address, size, is_executable);
    404 }
    405 
    406 
    407 bool VirtualMemory::Uncommit(void* address, size_t size) {
    408   return UncommitRegion(address, size);
    409 }
    410 
    411 
    412 bool VirtualMemory::Guard(void* address) {
    413   OS::Guard(address, OS::CommitPageSize());
    414   return true;
    415 }
    416 
    417 
    418 void* VirtualMemory::ReserveRegion(size_t size) {
    419   void* result = mmap(OS::GetRandomMmapAddr(),
    420                       size,
    421                       PROT_NONE,
    422                       MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
    423                       kMmapFd,
    424                       kMmapFdOffset);
    425 
    426   if (result == MAP_FAILED) return NULL;
    427 
    428   return result;
    429 }
    430 
    431 
    432 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
    433   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
    434   if (MAP_FAILED == mmap(base,
    435                          size,
    436                          prot,
    437                          MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
    438                          kMmapFd,
    439                          kMmapFdOffset)) {
    440     return false;
    441   }
    442 
    443   UpdateAllocatedSpaceLimits(base, size);
    444   return true;
    445 }
    446 
    447 
    448 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
    449   return mmap(base,
    450               size,
    451               PROT_NONE,
    452               MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
    453               kMmapFd,
    454               kMmapFdOffset) != MAP_FAILED;
    455 }
    456 
    457 
    458 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
    459   return munmap(base, size) == 0;
    460 }
    461 
    462 
    463 class Thread::PlatformData : public Malloced {
    464  public:
    465   PlatformData() : thread_(kNoThread) {  }
    466 
    467   pthread_t thread_;  // Thread handle for pthread.
    468 };
    469 
    470 
    471 Thread::Thread(const Options& options)
    472     : data_(new PlatformData()),
    473       stack_size_(options.stack_size()) {
    474   set_name(options.name());
    475 }
    476 
    477 
    478 Thread::~Thread() {
    479   delete data_;
    480 }
    481 
    482 
    483 static void* ThreadEntry(void* arg) {
    484   Thread* thread = reinterpret_cast<Thread*>(arg);
    485   // This is also initialized by the first argument to pthread_create() but we
    486   // don't know which thread will run first (the original thread or the new
    487   // one) so we initialize it here too.
    488   thread->data()->thread_ = pthread_self();
    489   ASSERT(thread->data()->thread_ != kNoThread);
    490   thread->Run();
    491   return NULL;
    492 }
    493 
    494 
    495 void Thread::set_name(const char* name) {
    496   strncpy(name_, name, sizeof(name_));
    497   name_[sizeof(name_) - 1] = '\0';
    498 }
    499 
    500 
    501 void Thread::Start() {
    502   pthread_attr_t* attr_ptr = NULL;
    503   pthread_attr_t attr;
    504   if (stack_size_ > 0) {
    505     pthread_attr_init(&attr);
    506     pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
    507     attr_ptr = &attr;
    508   }
    509   pthread_create(&data_->thread_, NULL, ThreadEntry, this);
    510   ASSERT(data_->thread_ != kNoThread);
    511 }
    512 
    513 
    514 void Thread::Join() {
    515   pthread_join(data_->thread_, NULL);
    516 }
    517 
    518 
    519 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
    520   pthread_key_t key;
    521   int result = pthread_key_create(&key, NULL);
    522   USE(result);
    523   ASSERT(result == 0);
    524   return static_cast<LocalStorageKey>(key);
    525 }
    526 
    527 
    528 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
    529   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    530   int result = pthread_key_delete(pthread_key);
    531   USE(result);
    532   ASSERT(result == 0);
    533 }
    534 
    535 
    536 void* Thread::GetThreadLocal(LocalStorageKey key) {
    537   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    538   return pthread_getspecific(pthread_key);
    539 }
    540 
    541 
    542 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
    543   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    544   pthread_setspecific(pthread_key, value);
    545 }
    546 
    547 
    548 void Thread::YieldCPU() {
    549   sched_yield();
    550 }
    551 
    552 
    553 class SolarisMutex : public Mutex {
    554  public:
    555   SolarisMutex() {
    556     pthread_mutexattr_t attr;
    557     pthread_mutexattr_init(&attr);
    558     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
    559     pthread_mutex_init(&mutex_, &attr);
    560   }
    561 
    562   ~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
    563 
    564   int Lock() { return pthread_mutex_lock(&mutex_); }
    565 
    566   int Unlock() { return pthread_mutex_unlock(&mutex_); }
    567 
    568   virtual bool TryLock() {
    569     int result = pthread_mutex_trylock(&mutex_);
    570     // Return false if the lock is busy and locking failed.
    571     if (result == EBUSY) {
    572       return false;
    573     }
    574     ASSERT(result == 0);  // Verify no other errors.
    575     return true;
    576   }
    577 
    578  private:
    579   pthread_mutex_t mutex_;
    580 };
    581 
    582 
    583 Mutex* OS::CreateMutex() {
    584   return new SolarisMutex();
    585 }
    586 
    587 
    588 class SolarisSemaphore : public Semaphore {
    589  public:
    590   explicit SolarisSemaphore(int count) {  sem_init(&sem_, 0, count); }
    591   virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
    592 
    593   virtual void Wait();
    594   virtual bool Wait(int timeout);
    595   virtual void Signal() { sem_post(&sem_); }
    596  private:
    597   sem_t sem_;
    598 };
    599 
    600 
    601 void SolarisSemaphore::Wait() {
    602   while (true) {
    603     int result = sem_wait(&sem_);
    604     if (result == 0) return;  // Successfully got semaphore.
    605     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
    606   }
    607 }
    608 
    609 
    610 #ifndef TIMEVAL_TO_TIMESPEC
    611 #define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
    612     (ts)->tv_sec = (tv)->tv_sec;                                    \
    613     (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
    614 } while (false)
    615 #endif
    616 
    617 
    618 #ifndef timeradd
    619 #define timeradd(a, b, result) \
    620   do { \
    621     (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
    622     (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
    623     if ((result)->tv_usec >= 1000000) { \
    624       ++(result)->tv_sec; \
    625       (result)->tv_usec -= 1000000; \
    626     } \
    627   } while (0)
    628 #endif
    629 
    630 
    631 bool SolarisSemaphore::Wait(int timeout) {
    632   const long kOneSecondMicros = 1000000;  // NOLINT
    633 
    634   // Split timeout into second and nanosecond parts.
    635   struct timeval delta;
    636   delta.tv_usec = timeout % kOneSecondMicros;
    637   delta.tv_sec = timeout / kOneSecondMicros;
    638 
    639   struct timeval current_time;
    640   // Get the current time.
    641   if (gettimeofday(&current_time, NULL) == -1) {
    642     return false;
    643   }
    644 
    645   // Calculate time for end of timeout.
    646   struct timeval end_time;
    647   timeradd(&current_time, &delta, &end_time);
    648 
    649   struct timespec ts;
    650   TIMEVAL_TO_TIMESPEC(&end_time, &ts);
    651   // Wait for semaphore signalled or timeout.
    652   while (true) {
    653     int result = sem_timedwait(&sem_, &ts);
    654     if (result == 0) return true;  // Successfully got semaphore.
    655     if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
    656     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
    657   }
    658 }
    659 
    660 
    661 Semaphore* OS::CreateSemaphore(int count) {
    662   return new SolarisSemaphore(count);
    663 }
    664 
    665 
    666 static pthread_t GetThreadID() {
    667   return pthread_self();
    668 }
    669 
    670 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
    671   USE(info);
    672   if (signal != SIGPROF) return;
    673   Isolate* isolate = Isolate::UncheckedCurrent();
    674   if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
    675     // We require a fully initialized and entered isolate.
    676     return;
    677   }
    678   if (v8::Locker::IsActive() &&
    679       !isolate->thread_manager()->IsLockedByCurrentThread()) {
    680     return;
    681   }
    682 
    683   Sampler* sampler = isolate->logger()->sampler();
    684   if (sampler == NULL || !sampler->IsActive()) return;
    685 
    686   TickSample sample_obj;
    687   TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
    688   if (sample == NULL) sample = &sample_obj;
    689 
    690   // Extracting the sample from the context is extremely machine dependent.
    691   ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
    692   mcontext_t& mcontext = ucontext->uc_mcontext;
    693   sample->state = isolate->current_vm_state();
    694 
    695   sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]);
    696   sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]);
    697   sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]);
    698 
    699   sampler->SampleStack(sample);
    700   sampler->Tick(sample);
    701 }
    702 
    703 class Sampler::PlatformData : public Malloced {
    704  public:
    705   PlatformData() : vm_tid_(GetThreadID()) {}
    706 
    707   pthread_t vm_tid() const { return vm_tid_; }
    708 
    709  private:
    710   pthread_t vm_tid_;
    711 };
    712 
    713 
    714 class SignalSender : public Thread {
    715  public:
    716   enum SleepInterval {
    717     HALF_INTERVAL,
    718     FULL_INTERVAL
    719   };
    720 
    721   static const int kSignalSenderStackSize = 64 * KB;
    722 
    723   explicit SignalSender(int interval)
    724       : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
    725         interval_(interval) {}
    726 
    727   static void InstallSignalHandler() {
    728     struct sigaction sa;
    729     sa.sa_sigaction = ProfilerSignalHandler;
    730     sigemptyset(&sa.sa_mask);
    731     sa.sa_flags = SA_RESTART | SA_SIGINFO;
    732     signal_handler_installed_ =
    733         (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
    734   }
    735 
    736   static void RestoreSignalHandler() {
    737     if (signal_handler_installed_) {
    738       sigaction(SIGPROF, &old_signal_handler_, 0);
    739       signal_handler_installed_ = false;
    740     }
    741   }
    742 
    743   static void AddActiveSampler(Sampler* sampler) {
    744     ScopedLock lock(mutex_.Pointer());
    745     SamplerRegistry::AddActiveSampler(sampler);
    746     if (instance_ == NULL) {
    747       // Start a thread that will send SIGPROF signal to VM threads,
    748       // when CPU profiling will be enabled.
    749       instance_ = new SignalSender(sampler->interval());
    750       instance_->Start();
    751     } else {
    752       ASSERT(instance_->interval_ == sampler->interval());
    753     }
    754   }
    755 
    756   static void RemoveActiveSampler(Sampler* sampler) {
    757     ScopedLock lock(mutex_.Pointer());
    758     SamplerRegistry::RemoveActiveSampler(sampler);
    759     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
    760       RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
    761       delete instance_;
    762       instance_ = NULL;
    763       RestoreSignalHandler();
    764     }
    765   }
    766 
    767   // Implement Thread::Run().
    768   virtual void Run() {
    769     SamplerRegistry::State state;
    770     while ((state = SamplerRegistry::GetState()) !=
    771            SamplerRegistry::HAS_NO_SAMPLERS) {
    772       bool cpu_profiling_enabled =
    773           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
    774       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
    775       if (cpu_profiling_enabled && !signal_handler_installed_) {
    776         InstallSignalHandler();
    777       } else if (!cpu_profiling_enabled && signal_handler_installed_) {
    778         RestoreSignalHandler();
    779       }
    780 
    781       // When CPU profiling is enabled both JavaScript and C++ code is
    782       // profiled. We must not suspend.
    783       if (!cpu_profiling_enabled) {
    784         if (rate_limiter_.SuspendIfNecessary()) continue;
    785       }
    786       if (cpu_profiling_enabled && runtime_profiler_enabled) {
    787         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
    788           return;
    789         }
    790         Sleep(HALF_INTERVAL);
    791         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
    792           return;
    793         }
    794         Sleep(HALF_INTERVAL);
    795       } else {
    796         if (cpu_profiling_enabled) {
    797           if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
    798                                                       this)) {
    799             return;
    800           }
    801         }
    802         if (runtime_profiler_enabled) {
    803           if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
    804                                                       NULL)) {
    805             return;
    806           }
    807         }
    808         Sleep(FULL_INTERVAL);
    809       }
    810     }
    811   }
    812 
    813   static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
    814     if (!sampler->IsProfiling()) return;
    815     SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
    816     sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
    817   }
    818 
    819   static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
    820     if (!sampler->isolate()->IsInitialized()) return;
    821     sampler->isolate()->runtime_profiler()->NotifyTick();
    822   }
    823 
    824   void SendProfilingSignal(pthread_t tid) {
    825     if (!signal_handler_installed_) return;
    826     pthread_kill(tid, SIGPROF);
    827   }
    828 
    829   void Sleep(SleepInterval full_or_half) {
    830     // Convert ms to us and subtract 100 us to compensate delays
    831     // occuring during signal delivery.
    832     useconds_t interval = interval_ * 1000 - 100;
    833     if (full_or_half == HALF_INTERVAL) interval /= 2;
    834     int result = usleep(interval);
    835 #ifdef DEBUG
    836     if (result != 0 && errno != EINTR) {
    837       fprintf(stderr,
    838               "SignalSender usleep error; interval = %u, errno = %d\n",
    839               interval,
    840               errno);
    841       ASSERT(result == 0 || errno == EINTR);
    842     }
    843 #endif
    844     USE(result);
    845   }
    846 
    847   const int interval_;
    848   RuntimeProfilerRateLimiter rate_limiter_;
    849 
    850   // Protects the process wide state below.
    851   static LazyMutex mutex_;
    852   static SignalSender* instance_;
    853   static bool signal_handler_installed_;
    854   static struct sigaction old_signal_handler_;
    855 
    856  private:
    857   DISALLOW_COPY_AND_ASSIGN(SignalSender);
    858 };
    859 
    860 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
    861 SignalSender* SignalSender::instance_ = NULL;
    862 struct sigaction SignalSender::old_signal_handler_;
    863 bool SignalSender::signal_handler_installed_ = false;
    864 
    865 
    866 Sampler::Sampler(Isolate* isolate, int interval)
    867     : isolate_(isolate),
    868       interval_(interval),
    869       profiling_(false),
    870       active_(false),
    871       samples_taken_(0) {
    872   data_ = new PlatformData;
    873 }
    874 
    875 
    876 Sampler::~Sampler() {
    877   ASSERT(!IsActive());
    878   delete data_;
    879 }
    880 
    881 
    882 void Sampler::Start() {
    883   ASSERT(!IsActive());
    884   SetActive(true);
    885   SignalSender::AddActiveSampler(this);
    886 }
    887 
    888 
    889 void Sampler::Stop() {
    890   ASSERT(IsActive());
    891   SignalSender::RemoveActiveSampler(this);
    892   SetActive(false);
    893 }
    894 
    895 } }  // namespace v8::internal
    896