1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "liveobjectlist-inl.h" 31 #include "macro-assembler.h" 32 #include "mark-compact.h" 33 #include "platform.h" 34 35 namespace v8 { 36 namespace internal { 37 38 39 // ---------------------------------------------------------------------------- 40 // HeapObjectIterator 41 42 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { 43 // You can't actually iterate over the anchor page. It is not a real page, 44 // just an anchor for the double linked page list. Initialize as if we have 45 // reached the end of the anchor page, then the first iteration will move on 46 // to the first page. 47 Initialize(space, 48 NULL, 49 NULL, 50 kAllPagesInSpace, 51 NULL); 52 } 53 54 55 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, 56 HeapObjectCallback size_func) { 57 // You can't actually iterate over the anchor page. It is not a real page, 58 // just an anchor for the double linked page list. Initialize the current 59 // address and end as NULL, then the first iteration will move on 60 // to the first page. 61 Initialize(space, 62 NULL, 63 NULL, 64 kAllPagesInSpace, 65 size_func); 66 } 67 68 69 HeapObjectIterator::HeapObjectIterator(Page* page, 70 HeapObjectCallback size_func) { 71 Space* owner = page->owner(); 72 ASSERT(owner == HEAP->old_pointer_space() || 73 owner == HEAP->old_data_space() || 74 owner == HEAP->map_space() || 75 owner == HEAP->cell_space() || 76 owner == HEAP->code_space()); 77 Initialize(reinterpret_cast<PagedSpace*>(owner), 78 page->area_start(), 79 page->area_end(), 80 kOnePageOnly, 81 size_func); 82 ASSERT(page->WasSweptPrecisely()); 83 } 84 85 86 void HeapObjectIterator::Initialize(PagedSpace* space, 87 Address cur, Address end, 88 HeapObjectIterator::PageMode mode, 89 HeapObjectCallback size_f) { 90 // Check that we actually can iterate this space. 91 ASSERT(!space->was_swept_conservatively()); 92 93 space_ = space; 94 cur_addr_ = cur; 95 cur_end_ = end; 96 page_mode_ = mode; 97 size_func_ = size_f; 98 } 99 100 101 // We have hit the end of the page and should advance to the next block of 102 // objects. This happens at the end of the page. 103 bool HeapObjectIterator::AdvanceToNextPage() { 104 ASSERT(cur_addr_ == cur_end_); 105 if (page_mode_ == kOnePageOnly) return false; 106 Page* cur_page; 107 if (cur_addr_ == NULL) { 108 cur_page = space_->anchor(); 109 } else { 110 cur_page = Page::FromAddress(cur_addr_ - 1); 111 ASSERT(cur_addr_ == cur_page->area_end()); 112 } 113 cur_page = cur_page->next_page(); 114 if (cur_page == space_->anchor()) return false; 115 cur_addr_ = cur_page->area_start(); 116 cur_end_ = cur_page->area_end(); 117 ASSERT(cur_page->WasSweptPrecisely()); 118 return true; 119 } 120 121 122 // ----------------------------------------------------------------------------- 123 // CodeRange 124 125 126 CodeRange::CodeRange(Isolate* isolate) 127 : isolate_(isolate), 128 code_range_(NULL), 129 free_list_(0), 130 allocation_list_(0), 131 current_allocation_block_index_(0) { 132 } 133 134 135 bool CodeRange::SetUp(const size_t requested) { 136 ASSERT(code_range_ == NULL); 137 138 code_range_ = new VirtualMemory(requested); 139 CHECK(code_range_ != NULL); 140 if (!code_range_->IsReserved()) { 141 delete code_range_; 142 code_range_ = NULL; 143 return false; 144 } 145 146 // We are sure that we have mapped a block of requested addresses. 147 ASSERT(code_range_->size() == requested); 148 LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested)); 149 Address base = reinterpret_cast<Address>(code_range_->address()); 150 Address aligned_base = 151 RoundUp(reinterpret_cast<Address>(code_range_->address()), 152 MemoryChunk::kAlignment); 153 size_t size = code_range_->size() - (aligned_base - base); 154 allocation_list_.Add(FreeBlock(aligned_base, size)); 155 current_allocation_block_index_ = 0; 156 return true; 157 } 158 159 160 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, 161 const FreeBlock* right) { 162 // The entire point of CodeRange is that the difference between two 163 // addresses in the range can be represented as a signed 32-bit int, 164 // so the cast is semantically correct. 165 return static_cast<int>(left->start - right->start); 166 } 167 168 169 void CodeRange::GetNextAllocationBlock(size_t requested) { 170 for (current_allocation_block_index_++; 171 current_allocation_block_index_ < allocation_list_.length(); 172 current_allocation_block_index_++) { 173 if (requested <= allocation_list_[current_allocation_block_index_].size) { 174 return; // Found a large enough allocation block. 175 } 176 } 177 178 // Sort and merge the free blocks on the free list and the allocation list. 179 free_list_.AddAll(allocation_list_); 180 allocation_list_.Clear(); 181 free_list_.Sort(&CompareFreeBlockAddress); 182 for (int i = 0; i < free_list_.length();) { 183 FreeBlock merged = free_list_[i]; 184 i++; 185 // Add adjacent free blocks to the current merged block. 186 while (i < free_list_.length() && 187 free_list_[i].start == merged.start + merged.size) { 188 merged.size += free_list_[i].size; 189 i++; 190 } 191 if (merged.size > 0) { 192 allocation_list_.Add(merged); 193 } 194 } 195 free_list_.Clear(); 196 197 for (current_allocation_block_index_ = 0; 198 current_allocation_block_index_ < allocation_list_.length(); 199 current_allocation_block_index_++) { 200 if (requested <= allocation_list_[current_allocation_block_index_].size) { 201 return; // Found a large enough allocation block. 202 } 203 } 204 205 // Code range is full or too fragmented. 206 V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock"); 207 } 208 209 210 211 Address CodeRange::AllocateRawMemory(const size_t requested, 212 size_t* allocated) { 213 ASSERT(current_allocation_block_index_ < allocation_list_.length()); 214 if (requested > allocation_list_[current_allocation_block_index_].size) { 215 // Find an allocation block large enough. This function call may 216 // call V8::FatalProcessOutOfMemory if it cannot find a large enough block. 217 GetNextAllocationBlock(requested); 218 } 219 // Commit the requested memory at the start of the current allocation block. 220 size_t aligned_requested = RoundUp(requested, MemoryChunk::kAlignment); 221 FreeBlock current = allocation_list_[current_allocation_block_index_]; 222 if (aligned_requested >= (current.size - Page::kPageSize)) { 223 // Don't leave a small free block, useless for a large object or chunk. 224 *allocated = current.size; 225 } else { 226 *allocated = aligned_requested; 227 } 228 ASSERT(*allocated <= current.size); 229 ASSERT(IsAddressAligned(current.start, MemoryChunk::kAlignment)); 230 if (!MemoryAllocator::CommitCodePage(code_range_, 231 current.start, 232 *allocated)) { 233 *allocated = 0; 234 return NULL; 235 } 236 allocation_list_[current_allocation_block_index_].start += *allocated; 237 allocation_list_[current_allocation_block_index_].size -= *allocated; 238 if (*allocated == current.size) { 239 GetNextAllocationBlock(0); // This block is used up, get the next one. 240 } 241 return current.start; 242 } 243 244 245 void CodeRange::FreeRawMemory(Address address, size_t length) { 246 ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment)); 247 free_list_.Add(FreeBlock(address, length)); 248 code_range_->Uncommit(address, length); 249 } 250 251 252 void CodeRange::TearDown() { 253 delete code_range_; // Frees all memory in the virtual memory range. 254 code_range_ = NULL; 255 free_list_.Free(); 256 allocation_list_.Free(); 257 } 258 259 260 // ----------------------------------------------------------------------------- 261 // MemoryAllocator 262 // 263 264 MemoryAllocator::MemoryAllocator(Isolate* isolate) 265 : isolate_(isolate), 266 capacity_(0), 267 capacity_executable_(0), 268 size_(0), 269 size_executable_(0) { 270 } 271 272 273 bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) { 274 capacity_ = RoundUp(capacity, Page::kPageSize); 275 capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); 276 ASSERT_GE(capacity_, capacity_executable_); 277 278 size_ = 0; 279 size_executable_ = 0; 280 281 return true; 282 } 283 284 285 void MemoryAllocator::TearDown() { 286 // Check that spaces were torn down before MemoryAllocator. 287 ASSERT(size_ == 0); 288 // TODO(gc) this will be true again when we fix FreeMemory. 289 // ASSERT(size_executable_ == 0); 290 capacity_ = 0; 291 capacity_executable_ = 0; 292 } 293 294 295 void MemoryAllocator::FreeMemory(VirtualMemory* reservation, 296 Executability executable) { 297 // TODO(gc) make code_range part of memory allocator? 298 ASSERT(reservation->IsReserved()); 299 size_t size = reservation->size(); 300 ASSERT(size_ >= size); 301 size_ -= size; 302 303 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); 304 305 if (executable == EXECUTABLE) { 306 ASSERT(size_executable_ >= size); 307 size_executable_ -= size; 308 } 309 // Code which is part of the code-range does not have its own VirtualMemory. 310 ASSERT(!isolate_->code_range()->contains( 311 static_cast<Address>(reservation->address()))); 312 ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); 313 reservation->Release(); 314 } 315 316 317 void MemoryAllocator::FreeMemory(Address base, 318 size_t size, 319 Executability executable) { 320 // TODO(gc) make code_range part of memory allocator? 321 ASSERT(size_ >= size); 322 size_ -= size; 323 324 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); 325 326 if (executable == EXECUTABLE) { 327 ASSERT(size_executable_ >= size); 328 size_executable_ -= size; 329 } 330 if (isolate_->code_range()->contains(static_cast<Address>(base))) { 331 ASSERT(executable == EXECUTABLE); 332 isolate_->code_range()->FreeRawMemory(base, size); 333 } else { 334 ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); 335 bool result = VirtualMemory::ReleaseRegion(base, size); 336 USE(result); 337 ASSERT(result); 338 } 339 } 340 341 342 Address MemoryAllocator::ReserveAlignedMemory(size_t size, 343 size_t alignment, 344 VirtualMemory* controller) { 345 VirtualMemory reservation(size, alignment); 346 347 if (!reservation.IsReserved()) return NULL; 348 size_ += reservation.size(); 349 Address base = RoundUp(static_cast<Address>(reservation.address()), 350 alignment); 351 controller->TakeControl(&reservation); 352 return base; 353 } 354 355 356 Address MemoryAllocator::AllocateAlignedMemory(size_t size, 357 size_t alignment, 358 Executability executable, 359 VirtualMemory* controller) { 360 VirtualMemory reservation; 361 Address base = ReserveAlignedMemory(size, alignment, &reservation); 362 if (base == NULL) return NULL; 363 364 if (executable == EXECUTABLE) { 365 if (!CommitCodePage(&reservation, base, size)) { 366 base = NULL; 367 } 368 } else { 369 if (!reservation.Commit(base, size, false)) { 370 base = NULL; 371 } 372 } 373 374 if (base == NULL) { 375 // Failed to commit the body. Release the mapping and any partially 376 // commited regions inside it. 377 reservation.Release(); 378 return NULL; 379 } 380 381 controller->TakeControl(&reservation); 382 return base; 383 } 384 385 386 void Page::InitializeAsAnchor(PagedSpace* owner) { 387 set_owner(owner); 388 set_prev_page(this); 389 set_next_page(this); 390 } 391 392 393 NewSpacePage* NewSpacePage::Initialize(Heap* heap, 394 Address start, 395 SemiSpace* semi_space) { 396 Address area_start = start + NewSpacePage::kObjectStartOffset; 397 Address area_end = start + Page::kPageSize; 398 399 MemoryChunk* chunk = MemoryChunk::Initialize(heap, 400 start, 401 Page::kPageSize, 402 area_start, 403 area_end, 404 NOT_EXECUTABLE, 405 semi_space); 406 chunk->set_next_chunk(NULL); 407 chunk->set_prev_chunk(NULL); 408 chunk->initialize_scan_on_scavenge(true); 409 bool in_to_space = (semi_space->id() != kFromSpace); 410 chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE 411 : MemoryChunk::IN_FROM_SPACE); 412 ASSERT(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE 413 : MemoryChunk::IN_TO_SPACE)); 414 NewSpacePage* page = static_cast<NewSpacePage*>(chunk); 415 heap->incremental_marking()->SetNewSpacePageFlags(page); 416 return page; 417 } 418 419 420 void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) { 421 set_owner(semi_space); 422 set_next_chunk(this); 423 set_prev_chunk(this); 424 // Flags marks this invalid page as not being in new-space. 425 // All real new-space pages will be in new-space. 426 SetFlags(0, ~0); 427 } 428 429 430 MemoryChunk* MemoryChunk::Initialize(Heap* heap, 431 Address base, 432 size_t size, 433 Address area_start, 434 Address area_end, 435 Executability executable, 436 Space* owner) { 437 MemoryChunk* chunk = FromAddress(base); 438 439 ASSERT(base == chunk->address()); 440 441 chunk->heap_ = heap; 442 chunk->size_ = size; 443 chunk->area_start_ = area_start; 444 chunk->area_end_ = area_end; 445 chunk->flags_ = 0; 446 chunk->set_owner(owner); 447 chunk->InitializeReservedMemory(); 448 chunk->slots_buffer_ = NULL; 449 chunk->skip_list_ = NULL; 450 chunk->ResetLiveBytes(); 451 Bitmap::Clear(chunk); 452 chunk->initialize_scan_on_scavenge(false); 453 chunk->SetFlag(WAS_SWEPT_PRECISELY); 454 455 ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset); 456 ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset); 457 458 if (executable == EXECUTABLE) { 459 chunk->SetFlag(IS_EXECUTABLE); 460 } 461 462 if (owner == heap->old_data_space()) { 463 chunk->SetFlag(CONTAINS_ONLY_DATA); 464 } 465 466 return chunk; 467 } 468 469 470 void MemoryChunk::InsertAfter(MemoryChunk* other) { 471 next_chunk_ = other->next_chunk_; 472 prev_chunk_ = other; 473 other->next_chunk_->prev_chunk_ = this; 474 other->next_chunk_ = this; 475 } 476 477 478 void MemoryChunk::Unlink() { 479 if (!InNewSpace() && IsFlagSet(SCAN_ON_SCAVENGE)) { 480 heap_->decrement_scan_on_scavenge_pages(); 481 ClearFlag(SCAN_ON_SCAVENGE); 482 } 483 next_chunk_->prev_chunk_ = prev_chunk_; 484 prev_chunk_->next_chunk_ = next_chunk_; 485 prev_chunk_ = NULL; 486 next_chunk_ = NULL; 487 } 488 489 490 MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size, 491 Executability executable, 492 Space* owner) { 493 size_t chunk_size; 494 Heap* heap = isolate_->heap(); 495 Address base = NULL; 496 VirtualMemory reservation; 497 Address area_start = NULL; 498 Address area_end = NULL; 499 if (executable == EXECUTABLE) { 500 chunk_size = RoundUp(CodePageAreaStartOffset() + body_size, 501 OS::CommitPageSize()) + CodePageGuardSize(); 502 503 // Check executable memory limit. 504 if (size_executable_ + chunk_size > capacity_executable_) { 505 LOG(isolate_, 506 StringEvent("MemoryAllocator::AllocateRawMemory", 507 "V8 Executable Allocation capacity exceeded")); 508 return NULL; 509 } 510 511 // Allocate executable memory either from code range or from the 512 // OS. 513 if (isolate_->code_range()->exists()) { 514 base = isolate_->code_range()->AllocateRawMemory(chunk_size, &chunk_size); 515 ASSERT(IsAligned(reinterpret_cast<intptr_t>(base), 516 MemoryChunk::kAlignment)); 517 if (base == NULL) return NULL; 518 size_ += chunk_size; 519 // Update executable memory size. 520 size_executable_ += chunk_size; 521 } else { 522 base = AllocateAlignedMemory(chunk_size, 523 MemoryChunk::kAlignment, 524 executable, 525 &reservation); 526 if (base == NULL) return NULL; 527 // Update executable memory size. 528 size_executable_ += reservation.size(); 529 } 530 531 #ifdef DEBUG 532 ZapBlock(base, CodePageGuardStartOffset()); 533 ZapBlock(base + CodePageAreaStartOffset(), body_size); 534 #endif 535 area_start = base + CodePageAreaStartOffset(); 536 area_end = area_start + body_size; 537 } else { 538 chunk_size = MemoryChunk::kObjectStartOffset + body_size; 539 base = AllocateAlignedMemory(chunk_size, 540 MemoryChunk::kAlignment, 541 executable, 542 &reservation); 543 544 if (base == NULL) return NULL; 545 546 #ifdef DEBUG 547 ZapBlock(base, chunk_size); 548 #endif 549 550 area_start = base + Page::kObjectStartOffset; 551 area_end = base + chunk_size; 552 } 553 554 isolate_->counters()->memory_allocated()-> 555 Increment(static_cast<int>(chunk_size)); 556 557 LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); 558 if (owner != NULL) { 559 ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity()); 560 PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); 561 } 562 563 MemoryChunk* result = MemoryChunk::Initialize(heap, 564 base, 565 chunk_size, 566 area_start, 567 area_end, 568 executable, 569 owner); 570 result->set_reserved_memory(&reservation); 571 return result; 572 } 573 574 575 Page* MemoryAllocator::AllocatePage(PagedSpace* owner, 576 Executability executable) { 577 MemoryChunk* chunk = AllocateChunk(owner->AreaSize(), 578 executable, 579 owner); 580 581 if (chunk == NULL) return NULL; 582 583 return Page::Initialize(isolate_->heap(), chunk, executable, owner); 584 } 585 586 587 LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size, 588 Executability executable, 589 Space* owner) { 590 MemoryChunk* chunk = AllocateChunk(object_size, executable, owner); 591 if (chunk == NULL) return NULL; 592 return LargePage::Initialize(isolate_->heap(), chunk); 593 } 594 595 596 void MemoryAllocator::Free(MemoryChunk* chunk) { 597 LOG(isolate_, DeleteEvent("MemoryChunk", chunk)); 598 if (chunk->owner() != NULL) { 599 ObjectSpace space = 600 static_cast<ObjectSpace>(1 << chunk->owner()->identity()); 601 PerformAllocationCallback(space, kAllocationActionFree, chunk->size()); 602 } 603 604 isolate_->heap()->RememberUnmappedPage( 605 reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate()); 606 607 delete chunk->slots_buffer(); 608 delete chunk->skip_list(); 609 610 VirtualMemory* reservation = chunk->reserved_memory(); 611 if (reservation->IsReserved()) { 612 FreeMemory(reservation, chunk->executable()); 613 } else { 614 FreeMemory(chunk->address(), 615 chunk->size(), 616 chunk->executable()); 617 } 618 } 619 620 621 bool MemoryAllocator::CommitBlock(Address start, 622 size_t size, 623 Executability executable) { 624 if (!VirtualMemory::CommitRegion(start, size, executable)) return false; 625 #ifdef DEBUG 626 ZapBlock(start, size); 627 #endif 628 isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size)); 629 return true; 630 } 631 632 633 bool MemoryAllocator::UncommitBlock(Address start, size_t size) { 634 if (!VirtualMemory::UncommitRegion(start, size)) return false; 635 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); 636 return true; 637 } 638 639 640 void MemoryAllocator::ZapBlock(Address start, size_t size) { 641 for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { 642 Memory::Address_at(start + s) = kZapValue; 643 } 644 } 645 646 647 void MemoryAllocator::PerformAllocationCallback(ObjectSpace space, 648 AllocationAction action, 649 size_t size) { 650 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { 651 MemoryAllocationCallbackRegistration registration = 652 memory_allocation_callbacks_[i]; 653 if ((registration.space & space) == space && 654 (registration.action & action) == action) 655 registration.callback(space, action, static_cast<int>(size)); 656 } 657 } 658 659 660 bool MemoryAllocator::MemoryAllocationCallbackRegistered( 661 MemoryAllocationCallback callback) { 662 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { 663 if (memory_allocation_callbacks_[i].callback == callback) return true; 664 } 665 return false; 666 } 667 668 669 void MemoryAllocator::AddMemoryAllocationCallback( 670 MemoryAllocationCallback callback, 671 ObjectSpace space, 672 AllocationAction action) { 673 ASSERT(callback != NULL); 674 MemoryAllocationCallbackRegistration registration(callback, space, action); 675 ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback)); 676 return memory_allocation_callbacks_.Add(registration); 677 } 678 679 680 void MemoryAllocator::RemoveMemoryAllocationCallback( 681 MemoryAllocationCallback callback) { 682 ASSERT(callback != NULL); 683 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { 684 if (memory_allocation_callbacks_[i].callback == callback) { 685 memory_allocation_callbacks_.Remove(i); 686 return; 687 } 688 } 689 UNREACHABLE(); 690 } 691 692 693 #ifdef DEBUG 694 void MemoryAllocator::ReportStatistics() { 695 float pct = static_cast<float>(capacity_ - size_) / capacity_; 696 PrintF(" capacity: %" V8_PTR_PREFIX "d" 697 ", used: %" V8_PTR_PREFIX "d" 698 ", available: %%%d\n\n", 699 capacity_, size_, static_cast<int>(pct*100)); 700 } 701 #endif 702 703 704 int MemoryAllocator::CodePageGuardStartOffset() { 705 // We are guarding code pages: the first OS page after the header 706 // will be protected as non-writable. 707 return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize()); 708 } 709 710 711 int MemoryAllocator::CodePageGuardSize() { 712 return static_cast<int>(OS::CommitPageSize()); 713 } 714 715 716 int MemoryAllocator::CodePageAreaStartOffset() { 717 // We are guarding code pages: the first OS page after the header 718 // will be protected as non-writable. 719 return CodePageGuardStartOffset() + CodePageGuardSize(); 720 } 721 722 723 int MemoryAllocator::CodePageAreaEndOffset() { 724 // We are guarding code pages: the last OS page will be protected as 725 // non-writable. 726 return Page::kPageSize - static_cast<int>(OS::CommitPageSize()); 727 } 728 729 730 bool MemoryAllocator::CommitCodePage(VirtualMemory* vm, 731 Address start, 732 size_t size) { 733 // Commit page header (not executable). 734 if (!vm->Commit(start, 735 CodePageGuardStartOffset(), 736 false)) { 737 return false; 738 } 739 740 // Create guard page after the header. 741 if (!vm->Guard(start + CodePageGuardStartOffset())) { 742 return false; 743 } 744 745 // Commit page body (executable). 746 size_t area_size = size - CodePageAreaStartOffset() - CodePageGuardSize(); 747 if (!vm->Commit(start + CodePageAreaStartOffset(), 748 area_size, 749 true)) { 750 return false; 751 } 752 753 // Create guard page after the allocatable area. 754 if (!vm->Guard(start + CodePageAreaStartOffset() + area_size)) { 755 return false; 756 } 757 758 return true; 759 } 760 761 762 // ----------------------------------------------------------------------------- 763 // MemoryChunk implementation 764 765 void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) { 766 MemoryChunk* chunk = MemoryChunk::FromAddress(address); 767 if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) { 768 static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by); 769 } 770 chunk->IncrementLiveBytes(by); 771 } 772 773 // ----------------------------------------------------------------------------- 774 // PagedSpace implementation 775 776 PagedSpace::PagedSpace(Heap* heap, 777 intptr_t max_capacity, 778 AllocationSpace id, 779 Executability executable) 780 : Space(heap, id, executable), 781 free_list_(this), 782 was_swept_conservatively_(false), 783 first_unswept_page_(Page::FromAddress(NULL)), 784 unswept_free_bytes_(0) { 785 if (id == CODE_SPACE) { 786 area_size_ = heap->isolate()->memory_allocator()-> 787 CodePageAreaSize(); 788 } else { 789 area_size_ = Page::kPageSize - Page::kObjectStartOffset; 790 } 791 max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) 792 * AreaSize(); 793 accounting_stats_.Clear(); 794 795 allocation_info_.top = NULL; 796 allocation_info_.limit = NULL; 797 798 anchor_.InitializeAsAnchor(this); 799 } 800 801 802 bool PagedSpace::SetUp() { 803 return true; 804 } 805 806 807 bool PagedSpace::HasBeenSetUp() { 808 return true; 809 } 810 811 812 void PagedSpace::TearDown() { 813 PageIterator iterator(this); 814 while (iterator.has_next()) { 815 heap()->isolate()->memory_allocator()->Free(iterator.next()); 816 } 817 anchor_.set_next_page(&anchor_); 818 anchor_.set_prev_page(&anchor_); 819 accounting_stats_.Clear(); 820 } 821 822 823 MaybeObject* PagedSpace::FindObject(Address addr) { 824 // Note: this function can only be called on precisely swept spaces. 825 ASSERT(!heap()->mark_compact_collector()->in_use()); 826 827 if (!Contains(addr)) return Failure::Exception(); 828 829 Page* p = Page::FromAddress(addr); 830 HeapObjectIterator it(p, NULL); 831 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { 832 Address cur = obj->address(); 833 Address next = cur + obj->Size(); 834 if ((cur <= addr) && (addr < next)) return obj; 835 } 836 837 UNREACHABLE(); 838 return Failure::Exception(); 839 } 840 841 bool PagedSpace::CanExpand() { 842 ASSERT(max_capacity_ % AreaSize() == 0); 843 ASSERT(Capacity() % AreaSize() == 0); 844 845 if (Capacity() == max_capacity_) return false; 846 847 ASSERT(Capacity() < max_capacity_); 848 849 // Are we going to exceed capacity for this space? 850 if ((Capacity() + Page::kPageSize) > max_capacity_) return false; 851 852 return true; 853 } 854 855 bool PagedSpace::Expand() { 856 if (!CanExpand()) return false; 857 858 Page* p = heap()->isolate()->memory_allocator()-> 859 AllocatePage(this, executable()); 860 if (p == NULL) return false; 861 862 ASSERT(Capacity() <= max_capacity_); 863 864 p->InsertAfter(anchor_.prev_page()); 865 866 return true; 867 } 868 869 870 int PagedSpace::CountTotalPages() { 871 PageIterator it(this); 872 int count = 0; 873 while (it.has_next()) { 874 it.next(); 875 count++; 876 } 877 return count; 878 } 879 880 881 void PagedSpace::ReleasePage(Page* page) { 882 ASSERT(page->LiveBytes() == 0); 883 ASSERT(AreaSize() == page->area_size()); 884 885 // Adjust list of unswept pages if the page is the head of the list. 886 if (first_unswept_page_ == page) { 887 first_unswept_page_ = page->next_page(); 888 if (first_unswept_page_ == anchor()) { 889 first_unswept_page_ = Page::FromAddress(NULL); 890 } 891 } 892 893 if (page->WasSwept()) { 894 intptr_t size = free_list_.EvictFreeListItems(page); 895 accounting_stats_.AllocateBytes(size); 896 ASSERT_EQ(AreaSize(), static_cast<int>(size)); 897 } else { 898 DecreaseUnsweptFreeBytes(page); 899 } 900 901 if (Page::FromAllocationTop(allocation_info_.top) == page) { 902 allocation_info_.top = allocation_info_.limit = NULL; 903 } 904 905 page->Unlink(); 906 if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) { 907 heap()->isolate()->memory_allocator()->Free(page); 908 } else { 909 heap()->QueueMemoryChunkForFree(page); 910 } 911 912 ASSERT(Capacity() > 0); 913 ASSERT(Capacity() % AreaSize() == 0); 914 accounting_stats_.ShrinkSpace(AreaSize()); 915 } 916 917 918 void PagedSpace::ReleaseAllUnusedPages() { 919 PageIterator it(this); 920 while (it.has_next()) { 921 Page* page = it.next(); 922 if (!page->WasSwept()) { 923 if (page->LiveBytes() == 0) ReleasePage(page); 924 } else { 925 HeapObject* obj = HeapObject::FromAddress(page->area_start()); 926 if (obj->IsFreeSpace() && 927 FreeSpace::cast(obj)->size() == AreaSize()) { 928 // Sometimes we allocate memory from free list but don't 929 // immediately initialize it (e.g. see PagedSpace::ReserveSpace 930 // called from Heap::ReserveSpace that can cause GC before 931 // reserved space is actually initialized). 932 // Thus we can't simply assume that obj represents a valid 933 // node still owned by a free list 934 // Instead we should verify that the page is fully covered 935 // by free list items. 936 FreeList::SizeStats sizes; 937 free_list_.CountFreeListItems(page, &sizes); 938 if (sizes.Total() == AreaSize()) { 939 ReleasePage(page); 940 } 941 } 942 } 943 } 944 heap()->FreeQueuedChunks(); 945 } 946 947 948 #ifdef DEBUG 949 void PagedSpace::Print() { } 950 #endif 951 952 953 #ifdef DEBUG 954 void PagedSpace::Verify(ObjectVisitor* visitor) { 955 // We can only iterate over the pages if they were swept precisely. 956 if (was_swept_conservatively_) return; 957 958 bool allocation_pointer_found_in_space = 959 (allocation_info_.top == allocation_info_.limit); 960 PageIterator page_iterator(this); 961 while (page_iterator.has_next()) { 962 Page* page = page_iterator.next(); 963 ASSERT(page->owner() == this); 964 if (page == Page::FromAllocationTop(allocation_info_.top)) { 965 allocation_pointer_found_in_space = true; 966 } 967 ASSERT(page->WasSweptPrecisely()); 968 HeapObjectIterator it(page, NULL); 969 Address end_of_previous_object = page->area_start(); 970 Address top = page->area_end(); 971 int black_size = 0; 972 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { 973 ASSERT(end_of_previous_object <= object->address()); 974 975 // The first word should be a map, and we expect all map pointers to 976 // be in map space. 977 Map* map = object->map(); 978 ASSERT(map->IsMap()); 979 ASSERT(heap()->map_space()->Contains(map)); 980 981 // Perform space-specific object verification. 982 VerifyObject(object); 983 984 // The object itself should look OK. 985 object->Verify(); 986 987 // All the interior pointers should be contained in the heap. 988 int size = object->Size(); 989 object->IterateBody(map->instance_type(), size, visitor); 990 if (Marking::IsBlack(Marking::MarkBitFrom(object))) { 991 black_size += size; 992 } 993 994 ASSERT(object->address() + size <= top); 995 end_of_previous_object = object->address() + size; 996 } 997 ASSERT_LE(black_size, page->LiveBytes()); 998 } 999 ASSERT(allocation_pointer_found_in_space); 1000 } 1001 #endif 1002 1003 1004 // ----------------------------------------------------------------------------- 1005 // NewSpace implementation 1006 1007 1008 bool NewSpace::SetUp(int reserved_semispace_capacity, 1009 int maximum_semispace_capacity) { 1010 // Set up new space based on the preallocated memory block defined by 1011 // start and size. The provided space is divided into two semi-spaces. 1012 // To support fast containment testing in the new space, the size of 1013 // this chunk must be a power of two and it must be aligned to its size. 1014 int initial_semispace_capacity = heap()->InitialSemiSpaceSize(); 1015 1016 size_t size = 2 * reserved_semispace_capacity; 1017 Address base = 1018 heap()->isolate()->memory_allocator()->ReserveAlignedMemory( 1019 size, size, &reservation_); 1020 if (base == NULL) return false; 1021 1022 chunk_base_ = base; 1023 chunk_size_ = static_cast<uintptr_t>(size); 1024 LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_)); 1025 1026 ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); 1027 ASSERT(IsPowerOf2(maximum_semispace_capacity)); 1028 1029 // Allocate and set up the histogram arrays if necessary. 1030 allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); 1031 promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); 1032 1033 #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ 1034 promoted_histogram_[name].set_name(#name); 1035 INSTANCE_TYPE_LIST(SET_NAME) 1036 #undef SET_NAME 1037 1038 ASSERT(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize()); 1039 ASSERT(static_cast<intptr_t>(chunk_size_) >= 1040 2 * heap()->ReservedSemiSpaceSize()); 1041 ASSERT(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0)); 1042 1043 to_space_.SetUp(chunk_base_, 1044 initial_semispace_capacity, 1045 maximum_semispace_capacity); 1046 from_space_.SetUp(chunk_base_ + reserved_semispace_capacity, 1047 initial_semispace_capacity, 1048 maximum_semispace_capacity); 1049 if (!to_space_.Commit()) { 1050 return false; 1051 } 1052 1053 start_ = chunk_base_; 1054 address_mask_ = ~(2 * reserved_semispace_capacity - 1); 1055 object_mask_ = address_mask_ | kHeapObjectTagMask; 1056 object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag; 1057 1058 ResetAllocationInfo(); 1059 1060 return true; 1061 } 1062 1063 1064 void NewSpace::TearDown() { 1065 if (allocated_histogram_) { 1066 DeleteArray(allocated_histogram_); 1067 allocated_histogram_ = NULL; 1068 } 1069 if (promoted_histogram_) { 1070 DeleteArray(promoted_histogram_); 1071 promoted_histogram_ = NULL; 1072 } 1073 1074 start_ = NULL; 1075 allocation_info_.top = NULL; 1076 allocation_info_.limit = NULL; 1077 1078 to_space_.TearDown(); 1079 from_space_.TearDown(); 1080 1081 LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_)); 1082 1083 ASSERT(reservation_.IsReserved()); 1084 heap()->isolate()->memory_allocator()->FreeMemory(&reservation_, 1085 NOT_EXECUTABLE); 1086 chunk_base_ = NULL; 1087 chunk_size_ = 0; 1088 } 1089 1090 1091 void NewSpace::Flip() { 1092 SemiSpace::Swap(&from_space_, &to_space_); 1093 } 1094 1095 1096 void NewSpace::Grow() { 1097 // Double the semispace size but only up to maximum capacity. 1098 ASSERT(Capacity() < MaximumCapacity()); 1099 int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity())); 1100 if (to_space_.GrowTo(new_capacity)) { 1101 // Only grow from space if we managed to grow to-space. 1102 if (!from_space_.GrowTo(new_capacity)) { 1103 // If we managed to grow to-space but couldn't grow from-space, 1104 // attempt to shrink to-space. 1105 if (!to_space_.ShrinkTo(from_space_.Capacity())) { 1106 // We are in an inconsistent state because we could not 1107 // commit/uncommit memory from new space. 1108 V8::FatalProcessOutOfMemory("Failed to grow new space."); 1109 } 1110 } 1111 } 1112 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); 1113 } 1114 1115 1116 void NewSpace::Shrink() { 1117 int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt()); 1118 int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize); 1119 if (rounded_new_capacity < Capacity() && 1120 to_space_.ShrinkTo(rounded_new_capacity)) { 1121 // Only shrink from-space if we managed to shrink to-space. 1122 from_space_.Reset(); 1123 if (!from_space_.ShrinkTo(rounded_new_capacity)) { 1124 // If we managed to shrink to-space but couldn't shrink from 1125 // space, attempt to grow to-space again. 1126 if (!to_space_.GrowTo(from_space_.Capacity())) { 1127 // We are in an inconsistent state because we could not 1128 // commit/uncommit memory from new space. 1129 V8::FatalProcessOutOfMemory("Failed to shrink new space."); 1130 } 1131 } 1132 } 1133 allocation_info_.limit = to_space_.page_high(); 1134 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); 1135 } 1136 1137 1138 void NewSpace::UpdateAllocationInfo() { 1139 allocation_info_.top = to_space_.page_low(); 1140 allocation_info_.limit = to_space_.page_high(); 1141 1142 // Lower limit during incremental marking. 1143 if (heap()->incremental_marking()->IsMarking() && 1144 inline_allocation_limit_step() != 0) { 1145 Address new_limit = 1146 allocation_info_.top + inline_allocation_limit_step(); 1147 allocation_info_.limit = Min(new_limit, allocation_info_.limit); 1148 } 1149 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); 1150 } 1151 1152 1153 void NewSpace::ResetAllocationInfo() { 1154 to_space_.Reset(); 1155 UpdateAllocationInfo(); 1156 pages_used_ = 0; 1157 // Clear all mark-bits in the to-space. 1158 NewSpacePageIterator it(&to_space_); 1159 while (it.has_next()) { 1160 Bitmap::Clear(it.next()); 1161 } 1162 } 1163 1164 1165 bool NewSpace::AddFreshPage() { 1166 Address top = allocation_info_.top; 1167 if (NewSpacePage::IsAtStart(top)) { 1168 // The current page is already empty. Don't try to make another. 1169 1170 // We should only get here if someone asks to allocate more 1171 // than what can be stored in a single page. 1172 // TODO(gc): Change the limit on new-space allocation to prevent this 1173 // from happening (all such allocations should go directly to LOSpace). 1174 return false; 1175 } 1176 if (!to_space_.AdvancePage()) { 1177 // Failed to get a new page in to-space. 1178 return false; 1179 } 1180 1181 // Clear remainder of current page. 1182 Address limit = NewSpacePage::FromLimit(top)->area_end(); 1183 if (heap()->gc_state() == Heap::SCAVENGE) { 1184 heap()->promotion_queue()->SetNewLimit(limit); 1185 heap()->promotion_queue()->ActivateGuardIfOnTheSamePage(); 1186 } 1187 1188 int remaining_in_page = static_cast<int>(limit - top); 1189 heap()->CreateFillerObjectAt(top, remaining_in_page); 1190 pages_used_++; 1191 UpdateAllocationInfo(); 1192 1193 return true; 1194 } 1195 1196 1197 MaybeObject* NewSpace::SlowAllocateRaw(int size_in_bytes) { 1198 Address old_top = allocation_info_.top; 1199 Address new_top = old_top + size_in_bytes; 1200 Address high = to_space_.page_high(); 1201 if (allocation_info_.limit < high) { 1202 // Incremental marking has lowered the limit to get a 1203 // chance to do a step. 1204 allocation_info_.limit = Min( 1205 allocation_info_.limit + inline_allocation_limit_step_, 1206 high); 1207 int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_); 1208 heap()->incremental_marking()->Step( 1209 bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); 1210 top_on_previous_step_ = new_top; 1211 return AllocateRaw(size_in_bytes); 1212 } else if (AddFreshPage()) { 1213 // Switched to new page. Try allocating again. 1214 int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_); 1215 heap()->incremental_marking()->Step( 1216 bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); 1217 top_on_previous_step_ = to_space_.page_low(); 1218 return AllocateRaw(size_in_bytes); 1219 } else { 1220 return Failure::RetryAfterGC(); 1221 } 1222 } 1223 1224 1225 #ifdef DEBUG 1226 // We do not use the SemiSpaceIterator because verification doesn't assume 1227 // that it works (it depends on the invariants we are checking). 1228 void NewSpace::Verify() { 1229 // The allocation pointer should be in the space or at the very end. 1230 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); 1231 1232 // There should be objects packed in from the low address up to the 1233 // allocation pointer. 1234 Address current = to_space_.first_page()->area_start(); 1235 CHECK_EQ(current, to_space_.space_start()); 1236 1237 while (current != top()) { 1238 if (!NewSpacePage::IsAtEnd(current)) { 1239 // The allocation pointer should not be in the middle of an object. 1240 CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) || 1241 current < top()); 1242 1243 HeapObject* object = HeapObject::FromAddress(current); 1244 1245 // The first word should be a map, and we expect all map pointers to 1246 // be in map space. 1247 Map* map = object->map(); 1248 CHECK(map->IsMap()); 1249 CHECK(heap()->map_space()->Contains(map)); 1250 1251 // The object should not be code or a map. 1252 CHECK(!object->IsMap()); 1253 CHECK(!object->IsCode()); 1254 1255 // The object itself should look OK. 1256 object->Verify(); 1257 1258 // All the interior pointers should be contained in the heap. 1259 VerifyPointersVisitor visitor; 1260 int size = object->Size(); 1261 object->IterateBody(map->instance_type(), size, &visitor); 1262 1263 current += size; 1264 } else { 1265 // At end of page, switch to next page. 1266 NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page(); 1267 // Next page should be valid. 1268 CHECK(!page->is_anchor()); 1269 current = page->area_start(); 1270 } 1271 } 1272 1273 // Check semi-spaces. 1274 ASSERT_EQ(from_space_.id(), kFromSpace); 1275 ASSERT_EQ(to_space_.id(), kToSpace); 1276 from_space_.Verify(); 1277 to_space_.Verify(); 1278 } 1279 #endif 1280 1281 // ----------------------------------------------------------------------------- 1282 // SemiSpace implementation 1283 1284 void SemiSpace::SetUp(Address start, 1285 int initial_capacity, 1286 int maximum_capacity) { 1287 // Creates a space in the young generation. The constructor does not 1288 // allocate memory from the OS. A SemiSpace is given a contiguous chunk of 1289 // memory of size 'capacity' when set up, and does not grow or shrink 1290 // otherwise. In the mark-compact collector, the memory region of the from 1291 // space is used as the marking stack. It requires contiguous memory 1292 // addresses. 1293 ASSERT(maximum_capacity >= Page::kPageSize); 1294 initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize); 1295 capacity_ = initial_capacity; 1296 maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize); 1297 committed_ = false; 1298 start_ = start; 1299 address_mask_ = ~(maximum_capacity - 1); 1300 object_mask_ = address_mask_ | kHeapObjectTagMask; 1301 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; 1302 age_mark_ = start_; 1303 } 1304 1305 1306 void SemiSpace::TearDown() { 1307 start_ = NULL; 1308 capacity_ = 0; 1309 } 1310 1311 1312 bool SemiSpace::Commit() { 1313 ASSERT(!is_committed()); 1314 int pages = capacity_ / Page::kPageSize; 1315 Address end = start_ + maximum_capacity_; 1316 Address start = end - pages * Page::kPageSize; 1317 if (!heap()->isolate()->memory_allocator()->CommitBlock(start, 1318 capacity_, 1319 executable())) { 1320 return false; 1321 } 1322 1323 NewSpacePage* page = anchor(); 1324 for (int i = 1; i <= pages; i++) { 1325 NewSpacePage* new_page = 1326 NewSpacePage::Initialize(heap(), end - i * Page::kPageSize, this); 1327 new_page->InsertAfter(page); 1328 page = new_page; 1329 } 1330 1331 committed_ = true; 1332 Reset(); 1333 return true; 1334 } 1335 1336 1337 bool SemiSpace::Uncommit() { 1338 ASSERT(is_committed()); 1339 Address start = start_ + maximum_capacity_ - capacity_; 1340 if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) { 1341 return false; 1342 } 1343 anchor()->set_next_page(anchor()); 1344 anchor()->set_prev_page(anchor()); 1345 1346 committed_ = false; 1347 return true; 1348 } 1349 1350 1351 bool SemiSpace::GrowTo(int new_capacity) { 1352 if (!is_committed()) { 1353 if (!Commit()) return false; 1354 } 1355 ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); 1356 ASSERT(new_capacity <= maximum_capacity_); 1357 ASSERT(new_capacity > capacity_); 1358 int pages_before = capacity_ / Page::kPageSize; 1359 int pages_after = new_capacity / Page::kPageSize; 1360 1361 Address end = start_ + maximum_capacity_; 1362 Address start = end - new_capacity; 1363 size_t delta = new_capacity - capacity_; 1364 1365 ASSERT(IsAligned(delta, OS::AllocateAlignment())); 1366 if (!heap()->isolate()->memory_allocator()->CommitBlock( 1367 start, delta, executable())) { 1368 return false; 1369 } 1370 capacity_ = new_capacity; 1371 NewSpacePage* last_page = anchor()->prev_page(); 1372 ASSERT(last_page != anchor()); 1373 for (int i = pages_before + 1; i <= pages_after; i++) { 1374 Address page_address = end - i * Page::kPageSize; 1375 NewSpacePage* new_page = NewSpacePage::Initialize(heap(), 1376 page_address, 1377 this); 1378 new_page->InsertAfter(last_page); 1379 Bitmap::Clear(new_page); 1380 // Duplicate the flags that was set on the old page. 1381 new_page->SetFlags(last_page->GetFlags(), 1382 NewSpacePage::kCopyOnFlipFlagsMask); 1383 last_page = new_page; 1384 } 1385 return true; 1386 } 1387 1388 1389 bool SemiSpace::ShrinkTo(int new_capacity) { 1390 ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); 1391 ASSERT(new_capacity >= initial_capacity_); 1392 ASSERT(new_capacity < capacity_); 1393 if (is_committed()) { 1394 // Semispaces grow backwards from the end of their allocated capacity, 1395 // so we find the before and after start addresses relative to the 1396 // end of the space. 1397 Address space_end = start_ + maximum_capacity_; 1398 Address old_start = space_end - capacity_; 1399 size_t delta = capacity_ - new_capacity; 1400 ASSERT(IsAligned(delta, OS::AllocateAlignment())); 1401 1402 MemoryAllocator* allocator = heap()->isolate()->memory_allocator(); 1403 if (!allocator->UncommitBlock(old_start, delta)) { 1404 return false; 1405 } 1406 1407 int pages_after = new_capacity / Page::kPageSize; 1408 NewSpacePage* new_last_page = 1409 NewSpacePage::FromAddress(space_end - pages_after * Page::kPageSize); 1410 new_last_page->set_next_page(anchor()); 1411 anchor()->set_prev_page(new_last_page); 1412 ASSERT((current_page_ <= first_page()) && (current_page_ >= new_last_page)); 1413 } 1414 1415 capacity_ = new_capacity; 1416 1417 return true; 1418 } 1419 1420 1421 void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) { 1422 anchor_.set_owner(this); 1423 // Fixup back-pointers to anchor. Address of anchor changes 1424 // when we swap. 1425 anchor_.prev_page()->set_next_page(&anchor_); 1426 anchor_.next_page()->set_prev_page(&anchor_); 1427 1428 bool becomes_to_space = (id_ == kFromSpace); 1429 id_ = becomes_to_space ? kToSpace : kFromSpace; 1430 NewSpacePage* page = anchor_.next_page(); 1431 while (page != &anchor_) { 1432 page->set_owner(this); 1433 page->SetFlags(flags, mask); 1434 if (becomes_to_space) { 1435 page->ClearFlag(MemoryChunk::IN_FROM_SPACE); 1436 page->SetFlag(MemoryChunk::IN_TO_SPACE); 1437 page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); 1438 page->ResetLiveBytes(); 1439 } else { 1440 page->SetFlag(MemoryChunk::IN_FROM_SPACE); 1441 page->ClearFlag(MemoryChunk::IN_TO_SPACE); 1442 } 1443 ASSERT(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); 1444 ASSERT(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) || 1445 page->IsFlagSet(MemoryChunk::IN_FROM_SPACE)); 1446 page = page->next_page(); 1447 } 1448 } 1449 1450 1451 void SemiSpace::Reset() { 1452 ASSERT(anchor_.next_page() != &anchor_); 1453 current_page_ = anchor_.next_page(); 1454 } 1455 1456 1457 void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) { 1458 // We won't be swapping semispaces without data in them. 1459 ASSERT(from->anchor_.next_page() != &from->anchor_); 1460 ASSERT(to->anchor_.next_page() != &to->anchor_); 1461 1462 // Swap bits. 1463 SemiSpace tmp = *from; 1464 *from = *to; 1465 *to = tmp; 1466 1467 // Fixup back-pointers to the page list anchor now that its address 1468 // has changed. 1469 // Swap to/from-space bits on pages. 1470 // Copy GC flags from old active space (from-space) to new (to-space). 1471 intptr_t flags = from->current_page()->GetFlags(); 1472 to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask); 1473 1474 from->FlipPages(0, 0); 1475 } 1476 1477 1478 void SemiSpace::set_age_mark(Address mark) { 1479 ASSERT(NewSpacePage::FromLimit(mark)->semi_space() == this); 1480 age_mark_ = mark; 1481 // Mark all pages up to the one containing mark. 1482 NewSpacePageIterator it(space_start(), mark); 1483 while (it.has_next()) { 1484 it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); 1485 } 1486 } 1487 1488 1489 #ifdef DEBUG 1490 void SemiSpace::Print() { } 1491 1492 1493 void SemiSpace::Verify() { 1494 bool is_from_space = (id_ == kFromSpace); 1495 NewSpacePage* page = anchor_.next_page(); 1496 CHECK(anchor_.semi_space() == this); 1497 while (page != &anchor_) { 1498 CHECK(page->semi_space() == this); 1499 CHECK(page->InNewSpace()); 1500 CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE 1501 : MemoryChunk::IN_TO_SPACE)); 1502 CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE 1503 : MemoryChunk::IN_FROM_SPACE)); 1504 CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING)); 1505 if (!is_from_space) { 1506 // The pointers-from-here-are-interesting flag isn't updated dynamically 1507 // on from-space pages, so it might be out of sync with the marking state. 1508 if (page->heap()->incremental_marking()->IsMarking()) { 1509 CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); 1510 } else { 1511 CHECK(!page->IsFlagSet( 1512 MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); 1513 } 1514 // TODO(gc): Check that the live_bytes_count_ field matches the 1515 // black marking on the page (if we make it match in new-space). 1516 } 1517 CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); 1518 CHECK(page->prev_page()->next_page() == page); 1519 page = page->next_page(); 1520 } 1521 } 1522 1523 1524 void SemiSpace::AssertValidRange(Address start, Address end) { 1525 // Addresses belong to same semi-space 1526 NewSpacePage* page = NewSpacePage::FromLimit(start); 1527 NewSpacePage* end_page = NewSpacePage::FromLimit(end); 1528 SemiSpace* space = page->semi_space(); 1529 CHECK_EQ(space, end_page->semi_space()); 1530 // Start address is before end address, either on same page, 1531 // or end address is on a later page in the linked list of 1532 // semi-space pages. 1533 if (page == end_page) { 1534 CHECK(start <= end); 1535 } else { 1536 while (page != end_page) { 1537 page = page->next_page(); 1538 CHECK_NE(page, space->anchor()); 1539 } 1540 } 1541 } 1542 #endif 1543 1544 1545 // ----------------------------------------------------------------------------- 1546 // SemiSpaceIterator implementation. 1547 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { 1548 Initialize(space->bottom(), space->top(), NULL); 1549 } 1550 1551 1552 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, 1553 HeapObjectCallback size_func) { 1554 Initialize(space->bottom(), space->top(), size_func); 1555 } 1556 1557 1558 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { 1559 Initialize(start, space->top(), NULL); 1560 } 1561 1562 1563 SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) { 1564 Initialize(from, to, NULL); 1565 } 1566 1567 1568 void SemiSpaceIterator::Initialize(Address start, 1569 Address end, 1570 HeapObjectCallback size_func) { 1571 SemiSpace::AssertValidRange(start, end); 1572 current_ = start; 1573 limit_ = end; 1574 size_func_ = size_func; 1575 } 1576 1577 1578 #ifdef DEBUG 1579 // heap_histograms is shared, always clear it before using it. 1580 static void ClearHistograms() { 1581 Isolate* isolate = Isolate::Current(); 1582 // We reset the name each time, though it hasn't changed. 1583 #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name); 1584 INSTANCE_TYPE_LIST(DEF_TYPE_NAME) 1585 #undef DEF_TYPE_NAME 1586 1587 #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear(); 1588 INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) 1589 #undef CLEAR_HISTOGRAM 1590 1591 isolate->js_spill_information()->Clear(); 1592 } 1593 1594 1595 static void ClearCodeKindStatistics() { 1596 Isolate* isolate = Isolate::Current(); 1597 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { 1598 isolate->code_kind_statistics()[i] = 0; 1599 } 1600 } 1601 1602 1603 static void ReportCodeKindStatistics() { 1604 Isolate* isolate = Isolate::Current(); 1605 const char* table[Code::NUMBER_OF_KINDS] = { NULL }; 1606 1607 #define CASE(name) \ 1608 case Code::name: table[Code::name] = #name; \ 1609 break 1610 1611 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { 1612 switch (static_cast<Code::Kind>(i)) { 1613 CASE(FUNCTION); 1614 CASE(OPTIMIZED_FUNCTION); 1615 CASE(STUB); 1616 CASE(BUILTIN); 1617 CASE(LOAD_IC); 1618 CASE(KEYED_LOAD_IC); 1619 CASE(STORE_IC); 1620 CASE(KEYED_STORE_IC); 1621 CASE(CALL_IC); 1622 CASE(KEYED_CALL_IC); 1623 CASE(UNARY_OP_IC); 1624 CASE(BINARY_OP_IC); 1625 CASE(COMPARE_IC); 1626 CASE(TO_BOOLEAN_IC); 1627 } 1628 } 1629 1630 #undef CASE 1631 1632 PrintF("\n Code kind histograms: \n"); 1633 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { 1634 if (isolate->code_kind_statistics()[i] > 0) { 1635 PrintF(" %-20s: %10d bytes\n", table[i], 1636 isolate->code_kind_statistics()[i]); 1637 } 1638 } 1639 PrintF("\n"); 1640 } 1641 1642 1643 static int CollectHistogramInfo(HeapObject* obj) { 1644 Isolate* isolate = Isolate::Current(); 1645 InstanceType type = obj->map()->instance_type(); 1646 ASSERT(0 <= type && type <= LAST_TYPE); 1647 ASSERT(isolate->heap_histograms()[type].name() != NULL); 1648 isolate->heap_histograms()[type].increment_number(1); 1649 isolate->heap_histograms()[type].increment_bytes(obj->Size()); 1650 1651 if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { 1652 JSObject::cast(obj)->IncrementSpillStatistics( 1653 isolate->js_spill_information()); 1654 } 1655 1656 return obj->Size(); 1657 } 1658 1659 1660 static void ReportHistogram(bool print_spill) { 1661 Isolate* isolate = Isolate::Current(); 1662 PrintF("\n Object Histogram:\n"); 1663 for (int i = 0; i <= LAST_TYPE; i++) { 1664 if (isolate->heap_histograms()[i].number() > 0) { 1665 PrintF(" %-34s%10d (%10d bytes)\n", 1666 isolate->heap_histograms()[i].name(), 1667 isolate->heap_histograms()[i].number(), 1668 isolate->heap_histograms()[i].bytes()); 1669 } 1670 } 1671 PrintF("\n"); 1672 1673 // Summarize string types. 1674 int string_number = 0; 1675 int string_bytes = 0; 1676 #define INCREMENT(type, size, name, camel_name) \ 1677 string_number += isolate->heap_histograms()[type].number(); \ 1678 string_bytes += isolate->heap_histograms()[type].bytes(); 1679 STRING_TYPE_LIST(INCREMENT) 1680 #undef INCREMENT 1681 if (string_number > 0) { 1682 PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, 1683 string_bytes); 1684 } 1685 1686 if (FLAG_collect_heap_spill_statistics && print_spill) { 1687 isolate->js_spill_information()->Print(); 1688 } 1689 } 1690 #endif // DEBUG 1691 1692 1693 // Support for statistics gathering for --heap-stats and --log-gc. 1694 void NewSpace::ClearHistograms() { 1695 for (int i = 0; i <= LAST_TYPE; i++) { 1696 allocated_histogram_[i].clear(); 1697 promoted_histogram_[i].clear(); 1698 } 1699 } 1700 1701 // Because the copying collector does not touch garbage objects, we iterate 1702 // the new space before a collection to get a histogram of allocated objects. 1703 // This only happens when --log-gc flag is set. 1704 void NewSpace::CollectStatistics() { 1705 ClearHistograms(); 1706 SemiSpaceIterator it(this); 1707 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) 1708 RecordAllocation(obj); 1709 } 1710 1711 1712 static void DoReportStatistics(Isolate* isolate, 1713 HistogramInfo* info, const char* description) { 1714 LOG(isolate, HeapSampleBeginEvent("NewSpace", description)); 1715 // Lump all the string types together. 1716 int string_number = 0; 1717 int string_bytes = 0; 1718 #define INCREMENT(type, size, name, camel_name) \ 1719 string_number += info[type].number(); \ 1720 string_bytes += info[type].bytes(); 1721 STRING_TYPE_LIST(INCREMENT) 1722 #undef INCREMENT 1723 if (string_number > 0) { 1724 LOG(isolate, 1725 HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); 1726 } 1727 1728 // Then do the other types. 1729 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { 1730 if (info[i].number() > 0) { 1731 LOG(isolate, 1732 HeapSampleItemEvent(info[i].name(), info[i].number(), 1733 info[i].bytes())); 1734 } 1735 } 1736 LOG(isolate, HeapSampleEndEvent("NewSpace", description)); 1737 } 1738 1739 1740 void NewSpace::ReportStatistics() { 1741 #ifdef DEBUG 1742 if (FLAG_heap_stats) { 1743 float pct = static_cast<float>(Available()) / Capacity(); 1744 PrintF(" capacity: %" V8_PTR_PREFIX "d" 1745 ", available: %" V8_PTR_PREFIX "d, %%%d\n", 1746 Capacity(), Available(), static_cast<int>(pct*100)); 1747 PrintF("\n Object Histogram:\n"); 1748 for (int i = 0; i <= LAST_TYPE; i++) { 1749 if (allocated_histogram_[i].number() > 0) { 1750 PrintF(" %-34s%10d (%10d bytes)\n", 1751 allocated_histogram_[i].name(), 1752 allocated_histogram_[i].number(), 1753 allocated_histogram_[i].bytes()); 1754 } 1755 } 1756 PrintF("\n"); 1757 } 1758 #endif // DEBUG 1759 1760 if (FLAG_log_gc) { 1761 Isolate* isolate = ISOLATE; 1762 DoReportStatistics(isolate, allocated_histogram_, "allocated"); 1763 DoReportStatistics(isolate, promoted_histogram_, "promoted"); 1764 } 1765 } 1766 1767 1768 void NewSpace::RecordAllocation(HeapObject* obj) { 1769 InstanceType type = obj->map()->instance_type(); 1770 ASSERT(0 <= type && type <= LAST_TYPE); 1771 allocated_histogram_[type].increment_number(1); 1772 allocated_histogram_[type].increment_bytes(obj->Size()); 1773 } 1774 1775 1776 void NewSpace::RecordPromotion(HeapObject* obj) { 1777 InstanceType type = obj->map()->instance_type(); 1778 ASSERT(0 <= type && type <= LAST_TYPE); 1779 promoted_histogram_[type].increment_number(1); 1780 promoted_histogram_[type].increment_bytes(obj->Size()); 1781 } 1782 1783 // ----------------------------------------------------------------------------- 1784 // Free lists for old object spaces implementation 1785 1786 void FreeListNode::set_size(Heap* heap, int size_in_bytes) { 1787 ASSERT(size_in_bytes > 0); 1788 ASSERT(IsAligned(size_in_bytes, kPointerSize)); 1789 1790 // We write a map and possibly size information to the block. If the block 1791 // is big enough to be a FreeSpace with at least one extra word (the next 1792 // pointer), we set its map to be the free space map and its size to an 1793 // appropriate array length for the desired size from HeapObject::Size(). 1794 // If the block is too small (eg, one or two words), to hold both a size 1795 // field and a next pointer, we give it a filler map that gives it the 1796 // correct size. 1797 if (size_in_bytes > FreeSpace::kHeaderSize) { 1798 set_map_no_write_barrier(heap->raw_unchecked_free_space_map()); 1799 // Can't use FreeSpace::cast because it fails during deserialization. 1800 FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this); 1801 this_as_free_space->set_size(size_in_bytes); 1802 } else if (size_in_bytes == kPointerSize) { 1803 set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map()); 1804 } else if (size_in_bytes == 2 * kPointerSize) { 1805 set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map()); 1806 } else { 1807 UNREACHABLE(); 1808 } 1809 // We would like to ASSERT(Size() == size_in_bytes) but this would fail during 1810 // deserialization because the free space map is not done yet. 1811 } 1812 1813 1814 FreeListNode* FreeListNode::next() { 1815 ASSERT(IsFreeListNode(this)); 1816 if (map() == HEAP->raw_unchecked_free_space_map()) { 1817 ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); 1818 return reinterpret_cast<FreeListNode*>( 1819 Memory::Address_at(address() + kNextOffset)); 1820 } else { 1821 return reinterpret_cast<FreeListNode*>( 1822 Memory::Address_at(address() + kPointerSize)); 1823 } 1824 } 1825 1826 1827 FreeListNode** FreeListNode::next_address() { 1828 ASSERT(IsFreeListNode(this)); 1829 if (map() == HEAP->raw_unchecked_free_space_map()) { 1830 ASSERT(Size() >= kNextOffset + kPointerSize); 1831 return reinterpret_cast<FreeListNode**>(address() + kNextOffset); 1832 } else { 1833 return reinterpret_cast<FreeListNode**>(address() + kPointerSize); 1834 } 1835 } 1836 1837 1838 void FreeListNode::set_next(FreeListNode* next) { 1839 ASSERT(IsFreeListNode(this)); 1840 // While we are booting the VM the free space map will actually be null. So 1841 // we have to make sure that we don't try to use it for anything at that 1842 // stage. 1843 if (map() == HEAP->raw_unchecked_free_space_map()) { 1844 ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); 1845 Memory::Address_at(address() + kNextOffset) = 1846 reinterpret_cast<Address>(next); 1847 } else { 1848 Memory::Address_at(address() + kPointerSize) = 1849 reinterpret_cast<Address>(next); 1850 } 1851 } 1852 1853 1854 FreeList::FreeList(PagedSpace* owner) 1855 : owner_(owner), heap_(owner->heap()) { 1856 Reset(); 1857 } 1858 1859 1860 void FreeList::Reset() { 1861 available_ = 0; 1862 small_list_ = NULL; 1863 medium_list_ = NULL; 1864 large_list_ = NULL; 1865 huge_list_ = NULL; 1866 } 1867 1868 1869 int FreeList::Free(Address start, int size_in_bytes) { 1870 if (size_in_bytes == 0) return 0; 1871 FreeListNode* node = FreeListNode::FromAddress(start); 1872 node->set_size(heap_, size_in_bytes); 1873 1874 // Early return to drop too-small blocks on the floor. 1875 if (size_in_bytes < kSmallListMin) return size_in_bytes; 1876 1877 // Insert other blocks at the head of a free list of the appropriate 1878 // magnitude. 1879 if (size_in_bytes <= kSmallListMax) { 1880 node->set_next(small_list_); 1881 small_list_ = node; 1882 } else if (size_in_bytes <= kMediumListMax) { 1883 node->set_next(medium_list_); 1884 medium_list_ = node; 1885 } else if (size_in_bytes <= kLargeListMax) { 1886 node->set_next(large_list_); 1887 large_list_ = node; 1888 } else { 1889 node->set_next(huge_list_); 1890 huge_list_ = node; 1891 } 1892 available_ += size_in_bytes; 1893 ASSERT(IsVeryLong() || available_ == SumFreeLists()); 1894 return 0; 1895 } 1896 1897 1898 FreeListNode* FreeList::PickNodeFromList(FreeListNode** list, int* node_size) { 1899 FreeListNode* node = *list; 1900 1901 if (node == NULL) return NULL; 1902 1903 while (node != NULL && 1904 Page::FromAddress(node->address())->IsEvacuationCandidate()) { 1905 available_ -= node->Size(); 1906 node = node->next(); 1907 } 1908 1909 if (node != NULL) { 1910 *node_size = node->Size(); 1911 *list = node->next(); 1912 } else { 1913 *list = NULL; 1914 } 1915 1916 return node; 1917 } 1918 1919 1920 FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) { 1921 FreeListNode* node = NULL; 1922 1923 if (size_in_bytes <= kSmallAllocationMax) { 1924 node = PickNodeFromList(&small_list_, node_size); 1925 if (node != NULL) return node; 1926 } 1927 1928 if (size_in_bytes <= kMediumAllocationMax) { 1929 node = PickNodeFromList(&medium_list_, node_size); 1930 if (node != NULL) return node; 1931 } 1932 1933 if (size_in_bytes <= kLargeAllocationMax) { 1934 node = PickNodeFromList(&large_list_, node_size); 1935 if (node != NULL) return node; 1936 } 1937 1938 for (FreeListNode** cur = &huge_list_; 1939 *cur != NULL; 1940 cur = (*cur)->next_address()) { 1941 FreeListNode* cur_node = *cur; 1942 while (cur_node != NULL && 1943 Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) { 1944 available_ -= reinterpret_cast<FreeSpace*>(cur_node)->Size(); 1945 cur_node = cur_node->next(); 1946 } 1947 1948 *cur = cur_node; 1949 if (cur_node == NULL) break; 1950 1951 ASSERT((*cur)->map() == HEAP->raw_unchecked_free_space_map()); 1952 FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur); 1953 int size = cur_as_free_space->Size(); 1954 if (size >= size_in_bytes) { 1955 // Large enough node found. Unlink it from the list. 1956 node = *cur; 1957 *node_size = size; 1958 *cur = node->next(); 1959 break; 1960 } 1961 } 1962 1963 return node; 1964 } 1965 1966 1967 // Allocation on the old space free list. If it succeeds then a new linear 1968 // allocation space has been set up with the top and limit of the space. If 1969 // the allocation fails then NULL is returned, and the caller can perform a GC 1970 // or allocate a new page before retrying. 1971 HeapObject* FreeList::Allocate(int size_in_bytes) { 1972 ASSERT(0 < size_in_bytes); 1973 ASSERT(size_in_bytes <= kMaxBlockSize); 1974 ASSERT(IsAligned(size_in_bytes, kPointerSize)); 1975 // Don't free list allocate if there is linear space available. 1976 ASSERT(owner_->limit() - owner_->top() < size_in_bytes); 1977 1978 int new_node_size = 0; 1979 FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); 1980 if (new_node == NULL) return NULL; 1981 1982 available_ -= new_node_size; 1983 ASSERT(IsVeryLong() || available_ == SumFreeLists()); 1984 1985 int bytes_left = new_node_size - size_in_bytes; 1986 ASSERT(bytes_left >= 0); 1987 1988 int old_linear_size = static_cast<int>(owner_->limit() - owner_->top()); 1989 // Mark the old linear allocation area with a free space map so it can be 1990 // skipped when scanning the heap. This also puts it back in the free list 1991 // if it is big enough. 1992 owner_->Free(owner_->top(), old_linear_size); 1993 1994 #ifdef DEBUG 1995 for (int i = 0; i < size_in_bytes / kPointerSize; i++) { 1996 reinterpret_cast<Object**>(new_node->address())[i] = Smi::FromInt(0); 1997 } 1998 #endif 1999 2000 owner_->heap()->incremental_marking()->OldSpaceStep( 2001 size_in_bytes - old_linear_size); 2002 2003 // The old-space-step might have finished sweeping and restarted marking. 2004 // Verify that it did not turn the page of the new node into an evacuation 2005 // candidate. 2006 ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_node)); 2007 2008 const int kThreshold = IncrementalMarking::kAllocatedThreshold; 2009 2010 // Memory in the linear allocation area is counted as allocated. We may free 2011 // a little of this again immediately - see below. 2012 owner_->Allocate(new_node_size); 2013 2014 if (bytes_left > kThreshold && 2015 owner_->heap()->incremental_marking()->IsMarkingIncomplete() && 2016 FLAG_incremental_marking_steps) { 2017 int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold); 2018 // We don't want to give too large linear areas to the allocator while 2019 // incremental marking is going on, because we won't check again whether 2020 // we want to do another increment until the linear area is used up. 2021 owner_->Free(new_node->address() + size_in_bytes + linear_size, 2022 new_node_size - size_in_bytes - linear_size); 2023 owner_->SetTop(new_node->address() + size_in_bytes, 2024 new_node->address() + size_in_bytes + linear_size); 2025 } else if (bytes_left > 0) { 2026 // Normally we give the rest of the node to the allocator as its new 2027 // linear allocation area. 2028 owner_->SetTop(new_node->address() + size_in_bytes, 2029 new_node->address() + new_node_size); 2030 } else { 2031 // TODO(gc) Try not freeing linear allocation region when bytes_left 2032 // are zero. 2033 owner_->SetTop(NULL, NULL); 2034 } 2035 2036 return new_node; 2037 } 2038 2039 2040 static intptr_t CountFreeListItemsInList(FreeListNode* n, Page* p) { 2041 intptr_t sum = 0; 2042 while (n != NULL) { 2043 if (Page::FromAddress(n->address()) == p) { 2044 FreeSpace* free_space = reinterpret_cast<FreeSpace*>(n); 2045 sum += free_space->Size(); 2046 } 2047 n = n->next(); 2048 } 2049 return sum; 2050 } 2051 2052 2053 void FreeList::CountFreeListItems(Page* p, SizeStats* sizes) { 2054 sizes->huge_size_ = CountFreeListItemsInList(huge_list_, p); 2055 if (sizes->huge_size_ < p->area_size()) { 2056 sizes->small_size_ = CountFreeListItemsInList(small_list_, p); 2057 sizes->medium_size_ = CountFreeListItemsInList(medium_list_, p); 2058 sizes->large_size_ = CountFreeListItemsInList(large_list_, p); 2059 } else { 2060 sizes->small_size_ = 0; 2061 sizes->medium_size_ = 0; 2062 sizes->large_size_ = 0; 2063 } 2064 } 2065 2066 2067 static intptr_t EvictFreeListItemsInList(FreeListNode** n, Page* p) { 2068 intptr_t sum = 0; 2069 while (*n != NULL) { 2070 if (Page::FromAddress((*n)->address()) == p) { 2071 FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n); 2072 sum += free_space->Size(); 2073 *n = (*n)->next(); 2074 } else { 2075 n = (*n)->next_address(); 2076 } 2077 } 2078 return sum; 2079 } 2080 2081 2082 intptr_t FreeList::EvictFreeListItems(Page* p) { 2083 intptr_t sum = EvictFreeListItemsInList(&huge_list_, p); 2084 2085 if (sum < p->area_size()) { 2086 sum += EvictFreeListItemsInList(&small_list_, p) + 2087 EvictFreeListItemsInList(&medium_list_, p) + 2088 EvictFreeListItemsInList(&large_list_, p); 2089 } 2090 2091 available_ -= static_cast<int>(sum); 2092 2093 return sum; 2094 } 2095 2096 2097 #ifdef DEBUG 2098 intptr_t FreeList::SumFreeList(FreeListNode* cur) { 2099 intptr_t sum = 0; 2100 while (cur != NULL) { 2101 ASSERT(cur->map() == HEAP->raw_unchecked_free_space_map()); 2102 FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur); 2103 sum += cur_as_free_space->Size(); 2104 cur = cur->next(); 2105 } 2106 return sum; 2107 } 2108 2109 2110 static const int kVeryLongFreeList = 500; 2111 2112 2113 int FreeList::FreeListLength(FreeListNode* cur) { 2114 int length = 0; 2115 while (cur != NULL) { 2116 length++; 2117 cur = cur->next(); 2118 if (length == kVeryLongFreeList) return length; 2119 } 2120 return length; 2121 } 2122 2123 2124 bool FreeList::IsVeryLong() { 2125 if (FreeListLength(small_list_) == kVeryLongFreeList) return true; 2126 if (FreeListLength(medium_list_) == kVeryLongFreeList) return true; 2127 if (FreeListLength(large_list_) == kVeryLongFreeList) return true; 2128 if (FreeListLength(huge_list_) == kVeryLongFreeList) return true; 2129 return false; 2130 } 2131 2132 2133 // This can take a very long time because it is linear in the number of entries 2134 // on the free list, so it should not be called if FreeListLength returns 2135 // kVeryLongFreeList. 2136 intptr_t FreeList::SumFreeLists() { 2137 intptr_t sum = SumFreeList(small_list_); 2138 sum += SumFreeList(medium_list_); 2139 sum += SumFreeList(large_list_); 2140 sum += SumFreeList(huge_list_); 2141 return sum; 2142 } 2143 #endif 2144 2145 2146 // ----------------------------------------------------------------------------- 2147 // OldSpace implementation 2148 2149 bool NewSpace::ReserveSpace(int bytes) { 2150 // We can't reliably unpack a partial snapshot that needs more new space 2151 // space than the minimum NewSpace size. The limit can be set lower than 2152 // the end of new space either because there is more space on the next page 2153 // or because we have lowered the limit in order to get periodic incremental 2154 // marking. The most reliable way to ensure that there is linear space is 2155 // to do the allocation, then rewind the limit. 2156 ASSERT(bytes <= InitialCapacity()); 2157 MaybeObject* maybe = AllocateRaw(bytes); 2158 Object* object = NULL; 2159 if (!maybe->ToObject(&object)) return false; 2160 HeapObject* allocation = HeapObject::cast(object); 2161 Address top = allocation_info_.top; 2162 if ((top - bytes) == allocation->address()) { 2163 allocation_info_.top = allocation->address(); 2164 return true; 2165 } 2166 // There may be a borderline case here where the allocation succeeded, but 2167 // the limit and top have moved on to a new page. In that case we try again. 2168 return ReserveSpace(bytes); 2169 } 2170 2171 2172 void PagedSpace::PrepareForMarkCompact() { 2173 // We don't have a linear allocation area while sweeping. It will be restored 2174 // on the first allocation after the sweep. 2175 // Mark the old linear allocation area with a free space map so it can be 2176 // skipped when scanning the heap. 2177 int old_linear_size = static_cast<int>(limit() - top()); 2178 Free(top(), old_linear_size); 2179 SetTop(NULL, NULL); 2180 2181 // Stop lazy sweeping and clear marking bits for unswept pages. 2182 if (first_unswept_page_ != NULL) { 2183 Page* p = first_unswept_page_; 2184 do { 2185 // Do not use ShouldBeSweptLazily predicate here. 2186 // New evacuation candidates were selected but they still have 2187 // to be swept before collection starts. 2188 if (!p->WasSwept()) { 2189 Bitmap::Clear(p); 2190 if (FLAG_gc_verbose) { 2191 PrintF("Sweeping 0x%" V8PRIxPTR " lazily abandoned.\n", 2192 reinterpret_cast<intptr_t>(p)); 2193 } 2194 } 2195 p = p->next_page(); 2196 } while (p != anchor()); 2197 } 2198 first_unswept_page_ = Page::FromAddress(NULL); 2199 unswept_free_bytes_ = 0; 2200 2201 // Clear the free list before a full GC---it will be rebuilt afterward. 2202 free_list_.Reset(); 2203 } 2204 2205 2206 bool PagedSpace::ReserveSpace(int size_in_bytes) { 2207 ASSERT(size_in_bytes <= AreaSize()); 2208 ASSERT(size_in_bytes == RoundSizeDownToObjectAlignment(size_in_bytes)); 2209 Address current_top = allocation_info_.top; 2210 Address new_top = current_top + size_in_bytes; 2211 if (new_top <= allocation_info_.limit) return true; 2212 2213 HeapObject* new_area = free_list_.Allocate(size_in_bytes); 2214 if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes); 2215 if (new_area == NULL) return false; 2216 2217 int old_linear_size = static_cast<int>(limit() - top()); 2218 // Mark the old linear allocation area with a free space so it can be 2219 // skipped when scanning the heap. This also puts it back in the free list 2220 // if it is big enough. 2221 Free(top(), old_linear_size); 2222 2223 SetTop(new_area->address(), new_area->address() + size_in_bytes); 2224 Allocate(size_in_bytes); 2225 return true; 2226 } 2227 2228 2229 // You have to call this last, since the implementation from PagedSpace 2230 // doesn't know that memory was 'promised' to large object space. 2231 bool LargeObjectSpace::ReserveSpace(int bytes) { 2232 return heap()->OldGenerationCapacityAvailable() >= bytes && 2233 (!heap()->incremental_marking()->IsStopped() || 2234 heap()->OldGenerationSpaceAvailable() >= bytes); 2235 } 2236 2237 2238 bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) { 2239 if (IsSweepingComplete()) return true; 2240 2241 intptr_t freed_bytes = 0; 2242 Page* p = first_unswept_page_; 2243 do { 2244 Page* next_page = p->next_page(); 2245 if (ShouldBeSweptLazily(p)) { 2246 if (FLAG_gc_verbose) { 2247 PrintF("Sweeping 0x%" V8PRIxPTR " lazily advanced.\n", 2248 reinterpret_cast<intptr_t>(p)); 2249 } 2250 DecreaseUnsweptFreeBytes(p); 2251 freed_bytes += MarkCompactCollector::SweepConservatively(this, p); 2252 } 2253 p = next_page; 2254 } while (p != anchor() && freed_bytes < bytes_to_sweep); 2255 2256 if (p == anchor()) { 2257 first_unswept_page_ = Page::FromAddress(NULL); 2258 } else { 2259 first_unswept_page_ = p; 2260 } 2261 2262 heap()->LowerOldGenLimits(freed_bytes); 2263 2264 heap()->FreeQueuedChunks(); 2265 2266 return IsSweepingComplete(); 2267 } 2268 2269 2270 void PagedSpace::EvictEvacuationCandidatesFromFreeLists() { 2271 if (allocation_info_.top >= allocation_info_.limit) return; 2272 2273 if (Page::FromAllocationTop(allocation_info_.top)->IsEvacuationCandidate()) { 2274 // Create filler object to keep page iterable if it was iterable. 2275 int remaining = 2276 static_cast<int>(allocation_info_.limit - allocation_info_.top); 2277 heap()->CreateFillerObjectAt(allocation_info_.top, remaining); 2278 2279 allocation_info_.top = NULL; 2280 allocation_info_.limit = NULL; 2281 } 2282 } 2283 2284 2285 HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) { 2286 // Allocation in this space has failed. 2287 2288 // If there are unswept pages advance lazy sweeper then sweep one page before 2289 // allocating a new page. 2290 if (first_unswept_page_->is_valid()) { 2291 AdvanceSweeper(size_in_bytes); 2292 2293 // Retry the free list allocation. 2294 HeapObject* object = free_list_.Allocate(size_in_bytes); 2295 if (object != NULL) return object; 2296 } 2297 2298 // Free list allocation failed and there is no next page. Fail if we have 2299 // hit the old generation size limit that should cause a garbage 2300 // collection. 2301 if (!heap()->always_allocate() && 2302 heap()->OldGenerationAllocationLimitReached()) { 2303 return NULL; 2304 } 2305 2306 // Try to expand the space and allocate in the new next page. 2307 if (Expand()) { 2308 return free_list_.Allocate(size_in_bytes); 2309 } 2310 2311 // Last ditch, sweep all the remaining pages to try to find space. This may 2312 // cause a pause. 2313 if (!IsSweepingComplete()) { 2314 AdvanceSweeper(kMaxInt); 2315 2316 // Retry the free list allocation. 2317 HeapObject* object = free_list_.Allocate(size_in_bytes); 2318 if (object != NULL) return object; 2319 } 2320 2321 // Finally, fail. 2322 return NULL; 2323 } 2324 2325 2326 #ifdef DEBUG 2327 void PagedSpace::ReportCodeStatistics() { 2328 Isolate* isolate = Isolate::Current(); 2329 CommentStatistic* comments_statistics = 2330 isolate->paged_space_comments_statistics(); 2331 ReportCodeKindStatistics(); 2332 PrintF("Code comment statistics (\" [ comment-txt : size/ " 2333 "count (average)\"):\n"); 2334 for (int i = 0; i <= CommentStatistic::kMaxComments; i++) { 2335 const CommentStatistic& cs = comments_statistics[i]; 2336 if (cs.size > 0) { 2337 PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, 2338 cs.size/cs.count); 2339 } 2340 } 2341 PrintF("\n"); 2342 } 2343 2344 2345 void PagedSpace::ResetCodeStatistics() { 2346 Isolate* isolate = Isolate::Current(); 2347 CommentStatistic* comments_statistics = 2348 isolate->paged_space_comments_statistics(); 2349 ClearCodeKindStatistics(); 2350 for (int i = 0; i < CommentStatistic::kMaxComments; i++) { 2351 comments_statistics[i].Clear(); 2352 } 2353 comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown"; 2354 comments_statistics[CommentStatistic::kMaxComments].size = 0; 2355 comments_statistics[CommentStatistic::kMaxComments].count = 0; 2356 } 2357 2358 2359 // Adds comment to 'comment_statistics' table. Performance OK as long as 2360 // 'kMaxComments' is small 2361 static void EnterComment(Isolate* isolate, const char* comment, int delta) { 2362 CommentStatistic* comments_statistics = 2363 isolate->paged_space_comments_statistics(); 2364 // Do not count empty comments 2365 if (delta <= 0) return; 2366 CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments]; 2367 // Search for a free or matching entry in 'comments_statistics': 'cs' 2368 // points to result. 2369 for (int i = 0; i < CommentStatistic::kMaxComments; i++) { 2370 if (comments_statistics[i].comment == NULL) { 2371 cs = &comments_statistics[i]; 2372 cs->comment = comment; 2373 break; 2374 } else if (strcmp(comments_statistics[i].comment, comment) == 0) { 2375 cs = &comments_statistics[i]; 2376 break; 2377 } 2378 } 2379 // Update entry for 'comment' 2380 cs->size += delta; 2381 cs->count += 1; 2382 } 2383 2384 2385 // Call for each nested comment start (start marked with '[ xxx', end marked 2386 // with ']'. RelocIterator 'it' must point to a comment reloc info. 2387 static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) { 2388 ASSERT(!it->done()); 2389 ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT); 2390 const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); 2391 if (tmp[0] != '[') { 2392 // Not a nested comment; skip 2393 return; 2394 } 2395 2396 // Search for end of nested comment or a new nested comment 2397 const char* const comment_txt = 2398 reinterpret_cast<const char*>(it->rinfo()->data()); 2399 const byte* prev_pc = it->rinfo()->pc(); 2400 int flat_delta = 0; 2401 it->next(); 2402 while (true) { 2403 // All nested comments must be terminated properly, and therefore exit 2404 // from loop. 2405 ASSERT(!it->done()); 2406 if (it->rinfo()->rmode() == RelocInfo::COMMENT) { 2407 const char* const txt = 2408 reinterpret_cast<const char*>(it->rinfo()->data()); 2409 flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc); 2410 if (txt[0] == ']') break; // End of nested comment 2411 // A new comment 2412 CollectCommentStatistics(isolate, it); 2413 // Skip code that was covered with previous comment 2414 prev_pc = it->rinfo()->pc(); 2415 } 2416 it->next(); 2417 } 2418 EnterComment(isolate, comment_txt, flat_delta); 2419 } 2420 2421 2422 // Collects code size statistics: 2423 // - by code kind 2424 // - by code comment 2425 void PagedSpace::CollectCodeStatistics() { 2426 Isolate* isolate = heap()->isolate(); 2427 HeapObjectIterator obj_it(this); 2428 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { 2429 if (obj->IsCode()) { 2430 Code* code = Code::cast(obj); 2431 isolate->code_kind_statistics()[code->kind()] += code->Size(); 2432 RelocIterator it(code); 2433 int delta = 0; 2434 const byte* prev_pc = code->instruction_start(); 2435 while (!it.done()) { 2436 if (it.rinfo()->rmode() == RelocInfo::COMMENT) { 2437 delta += static_cast<int>(it.rinfo()->pc() - prev_pc); 2438 CollectCommentStatistics(isolate, &it); 2439 prev_pc = it.rinfo()->pc(); 2440 } 2441 it.next(); 2442 } 2443 2444 ASSERT(code->instruction_start() <= prev_pc && 2445 prev_pc <= code->instruction_end()); 2446 delta += static_cast<int>(code->instruction_end() - prev_pc); 2447 EnterComment(isolate, "NoComment", delta); 2448 } 2449 } 2450 } 2451 2452 2453 void PagedSpace::ReportStatistics() { 2454 int pct = static_cast<int>(Available() * 100 / Capacity()); 2455 PrintF(" capacity: %" V8_PTR_PREFIX "d" 2456 ", waste: %" V8_PTR_PREFIX "d" 2457 ", available: %" V8_PTR_PREFIX "d, %%%d\n", 2458 Capacity(), Waste(), Available(), pct); 2459 2460 if (was_swept_conservatively_) return; 2461 ClearHistograms(); 2462 HeapObjectIterator obj_it(this); 2463 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) 2464 CollectHistogramInfo(obj); 2465 ReportHistogram(true); 2466 } 2467 #endif 2468 2469 // ----------------------------------------------------------------------------- 2470 // FixedSpace implementation 2471 2472 void FixedSpace::PrepareForMarkCompact() { 2473 // Call prepare of the super class. 2474 PagedSpace::PrepareForMarkCompact(); 2475 2476 // During a non-compacting collection, everything below the linear 2477 // allocation pointer except wasted top-of-page blocks is considered 2478 // allocated and we will rediscover available bytes during the 2479 // collection. 2480 accounting_stats_.AllocateBytes(free_list_.available()); 2481 2482 // Clear the free list before a full GC---it will be rebuilt afterward. 2483 free_list_.Reset(); 2484 } 2485 2486 2487 // ----------------------------------------------------------------------------- 2488 // MapSpace implementation 2489 2490 #ifdef DEBUG 2491 void MapSpace::VerifyObject(HeapObject* object) { 2492 // The object should be a map or a free-list node. 2493 ASSERT(object->IsMap() || object->IsFreeSpace()); 2494 } 2495 #endif 2496 2497 2498 // ----------------------------------------------------------------------------- 2499 // GlobalPropertyCellSpace implementation 2500 2501 #ifdef DEBUG 2502 void CellSpace::VerifyObject(HeapObject* object) { 2503 // The object should be a global object property cell or a free-list node. 2504 ASSERT(object->IsJSGlobalPropertyCell() || 2505 object->map() == heap()->two_pointer_filler_map()); 2506 } 2507 #endif 2508 2509 2510 // ----------------------------------------------------------------------------- 2511 // LargeObjectIterator 2512 2513 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { 2514 current_ = space->first_page_; 2515 size_func_ = NULL; 2516 } 2517 2518 2519 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, 2520 HeapObjectCallback size_func) { 2521 current_ = space->first_page_; 2522 size_func_ = size_func; 2523 } 2524 2525 2526 HeapObject* LargeObjectIterator::Next() { 2527 if (current_ == NULL) return NULL; 2528 2529 HeapObject* object = current_->GetObject(); 2530 current_ = current_->next_page(); 2531 return object; 2532 } 2533 2534 2535 // ----------------------------------------------------------------------------- 2536 // LargeObjectSpace 2537 static bool ComparePointers(void* key1, void* key2) { 2538 return key1 == key2; 2539 } 2540 2541 2542 LargeObjectSpace::LargeObjectSpace(Heap* heap, 2543 intptr_t max_capacity, 2544 AllocationSpace id) 2545 : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis 2546 max_capacity_(max_capacity), 2547 first_page_(NULL), 2548 size_(0), 2549 page_count_(0), 2550 objects_size_(0), 2551 chunk_map_(ComparePointers, 1024) {} 2552 2553 2554 bool LargeObjectSpace::SetUp() { 2555 first_page_ = NULL; 2556 size_ = 0; 2557 page_count_ = 0; 2558 objects_size_ = 0; 2559 chunk_map_.Clear(); 2560 return true; 2561 } 2562 2563 2564 void LargeObjectSpace::TearDown() { 2565 while (first_page_ != NULL) { 2566 LargePage* page = first_page_; 2567 first_page_ = first_page_->next_page(); 2568 LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address())); 2569 2570 ObjectSpace space = static_cast<ObjectSpace>(1 << identity()); 2571 heap()->isolate()->memory_allocator()->PerformAllocationCallback( 2572 space, kAllocationActionFree, page->size()); 2573 heap()->isolate()->memory_allocator()->Free(page); 2574 } 2575 SetUp(); 2576 } 2577 2578 2579 MaybeObject* LargeObjectSpace::AllocateRaw(int object_size, 2580 Executability executable) { 2581 // Check if we want to force a GC before growing the old space further. 2582 // If so, fail the allocation. 2583 if (!heap()->always_allocate() && 2584 heap()->OldGenerationAllocationLimitReached()) { 2585 return Failure::RetryAfterGC(identity()); 2586 } 2587 2588 if (Size() + object_size > max_capacity_) { 2589 return Failure::RetryAfterGC(identity()); 2590 } 2591 2592 LargePage* page = heap()->isolate()->memory_allocator()-> 2593 AllocateLargePage(object_size, executable, this); 2594 if (page == NULL) return Failure::RetryAfterGC(identity()); 2595 ASSERT(page->area_size() >= object_size); 2596 2597 size_ += static_cast<int>(page->size()); 2598 objects_size_ += object_size; 2599 page_count_++; 2600 page->set_next_page(first_page_); 2601 first_page_ = page; 2602 2603 // Register all MemoryChunk::kAlignment-aligned chunks covered by 2604 // this large page in the chunk map. 2605 uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment; 2606 uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment; 2607 for (uintptr_t key = base; key <= limit; key++) { 2608 HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key), 2609 static_cast<uint32_t>(key), 2610 true); 2611 ASSERT(entry != NULL); 2612 entry->value = page; 2613 } 2614 2615 HeapObject* object = page->GetObject(); 2616 2617 #ifdef DEBUG 2618 // Make the object consistent so the heap can be vefified in OldSpaceStep. 2619 reinterpret_cast<Object**>(object->address())[0] = 2620 heap()->fixed_array_map(); 2621 reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0); 2622 #endif 2623 2624 heap()->incremental_marking()->OldSpaceStep(object_size); 2625 return object; 2626 } 2627 2628 2629 // GC support 2630 MaybeObject* LargeObjectSpace::FindObject(Address a) { 2631 LargePage* page = FindPage(a); 2632 if (page != NULL) { 2633 return page->GetObject(); 2634 } 2635 return Failure::Exception(); 2636 } 2637 2638 2639 LargePage* LargeObjectSpace::FindPage(Address a) { 2640 uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment; 2641 HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key), 2642 static_cast<uint32_t>(key), 2643 false); 2644 if (e != NULL) { 2645 ASSERT(e->value != NULL); 2646 LargePage* page = reinterpret_cast<LargePage*>(e->value); 2647 ASSERT(page->is_valid()); 2648 if (page->Contains(a)) { 2649 return page; 2650 } 2651 } 2652 return NULL; 2653 } 2654 2655 2656 void LargeObjectSpace::FreeUnmarkedObjects() { 2657 LargePage* previous = NULL; 2658 LargePage* current = first_page_; 2659 while (current != NULL) { 2660 HeapObject* object = current->GetObject(); 2661 // Can this large page contain pointers to non-trivial objects. No other 2662 // pointer object is this big. 2663 bool is_pointer_object = object->IsFixedArray(); 2664 MarkBit mark_bit = Marking::MarkBitFrom(object); 2665 if (mark_bit.Get()) { 2666 mark_bit.Clear(); 2667 MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size()); 2668 previous = current; 2669 current = current->next_page(); 2670 } else { 2671 LargePage* page = current; 2672 // Cut the chunk out from the chunk list. 2673 current = current->next_page(); 2674 if (previous == NULL) { 2675 first_page_ = current; 2676 } else { 2677 previous->set_next_page(current); 2678 } 2679 2680 // Free the chunk. 2681 heap()->mark_compact_collector()->ReportDeleteIfNeeded( 2682 object, heap()->isolate()); 2683 size_ -= static_cast<int>(page->size()); 2684 objects_size_ -= object->Size(); 2685 page_count_--; 2686 2687 // Remove entries belonging to this page. 2688 // Use variable alignment to help pass length check (<= 80 characters) 2689 // of single line in tools/presubmit.py. 2690 const intptr_t alignment = MemoryChunk::kAlignment; 2691 uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment; 2692 uintptr_t limit = base + (page->size()-1)/alignment; 2693 for (uintptr_t key = base; key <= limit; key++) { 2694 chunk_map_.Remove(reinterpret_cast<void*>(key), 2695 static_cast<uint32_t>(key)); 2696 } 2697 2698 if (is_pointer_object) { 2699 heap()->QueueMemoryChunkForFree(page); 2700 } else { 2701 heap()->isolate()->memory_allocator()->Free(page); 2702 } 2703 } 2704 } 2705 heap()->FreeQueuedChunks(); 2706 } 2707 2708 2709 bool LargeObjectSpace::Contains(HeapObject* object) { 2710 Address address = object->address(); 2711 MemoryChunk* chunk = MemoryChunk::FromAddress(address); 2712 2713 bool owned = (chunk->owner() == this); 2714 2715 SLOW_ASSERT(!owned || !FindObject(address)->IsFailure()); 2716 2717 return owned; 2718 } 2719 2720 2721 #ifdef DEBUG 2722 // We do not assume that the large object iterator works, because it depends 2723 // on the invariants we are checking during verification. 2724 void LargeObjectSpace::Verify() { 2725 for (LargePage* chunk = first_page_; 2726 chunk != NULL; 2727 chunk = chunk->next_page()) { 2728 // Each chunk contains an object that starts at the large object page's 2729 // object area start. 2730 HeapObject* object = chunk->GetObject(); 2731 Page* page = Page::FromAddress(object->address()); 2732 ASSERT(object->address() == page->area_start()); 2733 2734 // The first word should be a map, and we expect all map pointers to be 2735 // in map space. 2736 Map* map = object->map(); 2737 ASSERT(map->IsMap()); 2738 ASSERT(heap()->map_space()->Contains(map)); 2739 2740 // We have only code, sequential strings, external strings 2741 // (sequential strings that have been morphed into external 2742 // strings), fixed arrays, and byte arrays in large object space. 2743 ASSERT(object->IsCode() || object->IsSeqString() || 2744 object->IsExternalString() || object->IsFixedArray() || 2745 object->IsFixedDoubleArray() || object->IsByteArray()); 2746 2747 // The object itself should look OK. 2748 object->Verify(); 2749 2750 // Byte arrays and strings don't have interior pointers. 2751 if (object->IsCode()) { 2752 VerifyPointersVisitor code_visitor; 2753 object->IterateBody(map->instance_type(), 2754 object->Size(), 2755 &code_visitor); 2756 } else if (object->IsFixedArray()) { 2757 FixedArray* array = FixedArray::cast(object); 2758 for (int j = 0; j < array->length(); j++) { 2759 Object* element = array->get(j); 2760 if (element->IsHeapObject()) { 2761 HeapObject* element_object = HeapObject::cast(element); 2762 ASSERT(heap()->Contains(element_object)); 2763 ASSERT(element_object->map()->IsMap()); 2764 } 2765 } 2766 } 2767 } 2768 } 2769 2770 2771 void LargeObjectSpace::Print() { 2772 LargeObjectIterator it(this); 2773 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { 2774 obj->Print(); 2775 } 2776 } 2777 2778 2779 void LargeObjectSpace::ReportStatistics() { 2780 PrintF(" size: %" V8_PTR_PREFIX "d\n", size_); 2781 int num_objects = 0; 2782 ClearHistograms(); 2783 LargeObjectIterator it(this); 2784 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { 2785 num_objects++; 2786 CollectHistogramInfo(obj); 2787 } 2788 2789 PrintF(" number of objects %d, " 2790 "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_); 2791 if (num_objects > 0) ReportHistogram(false); 2792 } 2793 2794 2795 void LargeObjectSpace::CollectCodeStatistics() { 2796 Isolate* isolate = heap()->isolate(); 2797 LargeObjectIterator obj_it(this); 2798 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { 2799 if (obj->IsCode()) { 2800 Code* code = Code::cast(obj); 2801 isolate->code_kind_statistics()[code->kind()] += code->Size(); 2802 } 2803 } 2804 } 2805 2806 2807 void Page::Print() { 2808 // Make a best-effort to print the objects in the page. 2809 PrintF("Page@%p in %s\n", 2810 this->address(), 2811 AllocationSpaceName(this->owner()->identity())); 2812 printf(" --------------------------------------\n"); 2813 HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction()); 2814 unsigned mark_size = 0; 2815 for (HeapObject* object = objects.Next(); 2816 object != NULL; 2817 object = objects.Next()) { 2818 bool is_marked = Marking::MarkBitFrom(object).Get(); 2819 PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little. 2820 if (is_marked) { 2821 mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object); 2822 } 2823 object->ShortPrint(); 2824 PrintF("\n"); 2825 } 2826 printf(" --------------------------------------\n"); 2827 printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes()); 2828 } 2829 2830 #endif // DEBUG 2831 2832 } } // namespace v8::internal 2833