Home | History | Annotate | Download | only in tests
      1 # Copyright 2013 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import its.image
     16 import its.device
     17 import its.objects
     18 import pylab
     19 import os.path
     20 import matplotlib
     21 import matplotlib.pyplot
     22 
     23 def main():
     24     """Test that the android.noiseReduction.mode param is applied when set.
     25 
     26     Capture images with the camera dimly lit. Uses a long exposure
     27     and a high analog gain to ensure the captured image is noisy.
     28 
     29     Captures three images, for NR off, "fast", and "high quality".
     30     Also captures an image with low gain and NR off, and uses the variance
     31     of this as the baseline.
     32     """
     33     NAME = os.path.basename(__file__).split(".")[0]
     34 
     35     THRESHOLD_MIN_VARIANCE_RATIO = 0.7
     36 
     37     req = its.objects.capture_request( {
     38         "android.control.mode": 0,
     39         "android.control.aeMode": 0,
     40         "android.control.awbMode": 0,
     41         "android.control.afMode": 0,
     42         "android.sensor.frameDuration": 0
     43         })
     44 
     45     # List of variances for Y,U,V.
     46     variances = [[],[],[]]
     47 
     48     # Reference (baseline) variance for each of Y,U,V.
     49     ref_variance = []
     50 
     51     nr_modes_reported = []
     52 
     53     with its.device.ItsSession() as cam:
     54         # NR mode 0 with low gain
     55         req["captureRequest"]["android.noiseReduction.mode"] = 0
     56         req["captureRequest"]["android.sensor.sensitivity"] = 100
     57         req["captureRequest"]["android.sensor.exposureTime"] = 20*1000*1000
     58         fname, w, h, md_obj = cam.do_capture(req)
     59         its.image.write_image(
     60                 its.image.load_yuv420_to_rgb_image(fname, w, h),
     61                 "%s_low_gain.jpg" % (NAME))
     62         planes = its.image.load_yuv420_to_yuv_planes(fname, w, h)
     63         for j in range(3):
     64             img = planes[j]
     65             tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
     66             ref_variance.append(its.image.compute_image_variances(tile)[0])
     67 
     68         for i in range(3):
     69             # NR modes 0, 1, 2 with high gain
     70             req["captureRequest"]["android.noiseReduction.mode"] = i
     71             req["captureRequest"]["android.sensor.sensitivity"] = 100*16
     72             req["captureRequest"]["android.sensor.exposureTime"] = (
     73                     20*1000*1000/16)
     74             fname, w, h, md_obj = cam.do_capture(req)
     75             nr_modes_reported.append(
     76                     md_obj["captureResult"]["android.noiseReduction.mode"])
     77             its.image.write_image(
     78                     its.image.load_yuv420_to_rgb_image(fname, w, h),
     79                     "%s_high_gain_nr=%d.jpg" % (NAME, i))
     80             planes = its.image.load_yuv420_to_yuv_planes(fname, w, h)
     81             for j in range(3):
     82                 img = planes[j]
     83                 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
     84                 variance = its.image.compute_image_variances(tile)[0]
     85                 variances[j].append(variance / ref_variance[j])
     86 
     87     # Draw a plot.
     88     for j in range(3):
     89         pylab.plot(range(3), variances[j], "rgb"[j])
     90     matplotlib.pyplot.savefig("%s_plot_variances.png" % (NAME))
     91 
     92     assert(nr_modes_reported == [0,1,2])
     93 
     94     # Check that the variance of the NR=0 image is much higher than for the
     95     # NR=1 and NR=2 images.
     96     for j in range(3):
     97         for i in range(1,3):
     98             assert(variances[j][i] / variances[j][0] <
     99                    THRESHOLD_MIN_VARIANCE_RATIO)
    100 
    101 if __name__ == '__main__':
    102     main()
    103 
    104