Home | History | Annotate | Download | only in Utils
      1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/CFG.h"
     18 #include "llvm/Analysis/Dominators.h"
     19 #include "llvm/Analysis/LoopInfo.h"
     20 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     21 #include "llvm/IR/Constant.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/ValueHandle.h"
     29 #include "llvm/Transforms/Scalar.h"
     30 #include "llvm/Transforms/Utils/Local.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 /// DeleteDeadBlock - Delete the specified block, which must have no
     35 /// predecessors.
     36 void llvm::DeleteDeadBlock(BasicBlock *BB) {
     37   assert((pred_begin(BB) == pred_end(BB) ||
     38          // Can delete self loop.
     39          BB->getSinglePredecessor() == BB) && "Block is not dead!");
     40   TerminatorInst *BBTerm = BB->getTerminator();
     41 
     42   // Loop through all of our successors and make sure they know that one
     43   // of their predecessors is going away.
     44   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
     45     BBTerm->getSuccessor(i)->removePredecessor(BB);
     46 
     47   // Zap all the instructions in the block.
     48   while (!BB->empty()) {
     49     Instruction &I = BB->back();
     50     // If this instruction is used, replace uses with an arbitrary value.
     51     // Because control flow can't get here, we don't care what we replace the
     52     // value with.  Note that since this block is unreachable, and all values
     53     // contained within it must dominate their uses, that all uses will
     54     // eventually be removed (they are themselves dead).
     55     if (!I.use_empty())
     56       I.replaceAllUsesWith(UndefValue::get(I.getType()));
     57     BB->getInstList().pop_back();
     58   }
     59 
     60   // Zap the block!
     61   BB->eraseFromParent();
     62 }
     63 
     64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
     65 /// any single-entry PHI nodes in it, fold them away.  This handles the case
     66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
     67 /// when the block has exactly one predecessor.
     68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
     69   if (!isa<PHINode>(BB->begin())) return;
     70 
     71   AliasAnalysis *AA = 0;
     72   MemoryDependenceAnalysis *MemDep = 0;
     73   if (P) {
     74     AA = P->getAnalysisIfAvailable<AliasAnalysis>();
     75     MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
     76   }
     77 
     78   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
     79     if (PN->getIncomingValue(0) != PN)
     80       PN->replaceAllUsesWith(PN->getIncomingValue(0));
     81     else
     82       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
     83 
     84     if (MemDep)
     85       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
     86     else if (AA && isa<PointerType>(PN->getType()))
     87       AA->deleteValue(PN);
     88 
     89     PN->eraseFromParent();
     90   }
     91 }
     92 
     93 
     94 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
     95 /// is dead. Also recursively delete any operands that become dead as
     96 /// a result. This includes tracing the def-use list from the PHI to see if
     97 /// it is ultimately unused or if it reaches an unused cycle.
     98 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
     99   // Recursively deleting a PHI may cause multiple PHIs to be deleted
    100   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
    101   SmallVector<WeakVH, 8> PHIs;
    102   for (BasicBlock::iterator I = BB->begin();
    103        PHINode *PN = dyn_cast<PHINode>(I); ++I)
    104     PHIs.push_back(PN);
    105 
    106   bool Changed = false;
    107   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    108     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
    109       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
    110 
    111   return Changed;
    112 }
    113 
    114 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
    115 /// if possible.  The return value indicates success or failure.
    116 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
    117   // Don't merge away blocks who have their address taken.
    118   if (BB->hasAddressTaken()) return false;
    119 
    120   // Can't merge if there are multiple predecessors, or no predecessors.
    121   BasicBlock *PredBB = BB->getUniquePredecessor();
    122   if (!PredBB) return false;
    123 
    124   // Don't break self-loops.
    125   if (PredBB == BB) return false;
    126   // Don't break invokes.
    127   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
    128 
    129   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
    130   BasicBlock *OnlySucc = BB;
    131   for (; SI != SE; ++SI)
    132     if (*SI != OnlySucc) {
    133       OnlySucc = 0;     // There are multiple distinct successors!
    134       break;
    135     }
    136 
    137   // Can't merge if there are multiple successors.
    138   if (!OnlySucc) return false;
    139 
    140   // Can't merge if there is PHI loop.
    141   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
    142     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
    143       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    144         if (PN->getIncomingValue(i) == PN)
    145           return false;
    146     } else
    147       break;
    148   }
    149 
    150   // Begin by getting rid of unneeded PHIs.
    151   if (isa<PHINode>(BB->front()))
    152     FoldSingleEntryPHINodes(BB, P);
    153 
    154   // Delete the unconditional branch from the predecessor...
    155   PredBB->getInstList().pop_back();
    156 
    157   // Make all PHI nodes that referred to BB now refer to Pred as their
    158   // source...
    159   BB->replaceAllUsesWith(PredBB);
    160 
    161   // Move all definitions in the successor to the predecessor...
    162   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
    163 
    164   // Inherit predecessors name if it exists.
    165   if (!PredBB->hasName())
    166     PredBB->takeName(BB);
    167 
    168   // Finally, erase the old block and update dominator info.
    169   if (P) {
    170     if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
    171       if (DomTreeNode *DTN = DT->getNode(BB)) {
    172         DomTreeNode *PredDTN = DT->getNode(PredBB);
    173         SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
    174         for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
    175              DE = Children.end(); DI != DE; ++DI)
    176           DT->changeImmediateDominator(*DI, PredDTN);
    177 
    178         DT->eraseNode(BB);
    179       }
    180 
    181       if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
    182         LI->removeBlock(BB);
    183 
    184       if (MemoryDependenceAnalysis *MD =
    185             P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
    186         MD->invalidateCachedPredecessors();
    187     }
    188   }
    189 
    190   BB->eraseFromParent();
    191   return true;
    192 }
    193 
    194 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
    195 /// with a value, then remove and delete the original instruction.
    196 ///
    197 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
    198                                 BasicBlock::iterator &BI, Value *V) {
    199   Instruction &I = *BI;
    200   // Replaces all of the uses of the instruction with uses of the value
    201   I.replaceAllUsesWith(V);
    202 
    203   // Make sure to propagate a name if there is one already.
    204   if (I.hasName() && !V->hasName())
    205     V->takeName(&I);
    206 
    207   // Delete the unnecessary instruction now...
    208   BI = BIL.erase(BI);
    209 }
    210 
    211 
    212 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
    213 /// instruction specified by I.  The original instruction is deleted and BI is
    214 /// updated to point to the new instruction.
    215 ///
    216 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
    217                                BasicBlock::iterator &BI, Instruction *I) {
    218   assert(I->getParent() == 0 &&
    219          "ReplaceInstWithInst: Instruction already inserted into basic block!");
    220 
    221   // Insert the new instruction into the basic block...
    222   BasicBlock::iterator New = BIL.insert(BI, I);
    223 
    224   // Replace all uses of the old instruction, and delete it.
    225   ReplaceInstWithValue(BIL, BI, I);
    226 
    227   // Move BI back to point to the newly inserted instruction
    228   BI = New;
    229 }
    230 
    231 /// ReplaceInstWithInst - Replace the instruction specified by From with the
    232 /// instruction specified by To.
    233 ///
    234 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
    235   BasicBlock::iterator BI(From);
    236   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
    237 }
    238 
    239 /// SplitEdge -  Split the edge connecting specified block. Pass P must
    240 /// not be NULL.
    241 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
    242   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
    243 
    244   // If this is a critical edge, let SplitCriticalEdge do it.
    245   TerminatorInst *LatchTerm = BB->getTerminator();
    246   if (SplitCriticalEdge(LatchTerm, SuccNum, P))
    247     return LatchTerm->getSuccessor(SuccNum);
    248 
    249   // If the edge isn't critical, then BB has a single successor or Succ has a
    250   // single pred.  Split the block.
    251   BasicBlock::iterator SplitPoint;
    252   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    253     // If the successor only has a single pred, split the top of the successor
    254     // block.
    255     assert(SP == BB && "CFG broken");
    256     SP = NULL;
    257     return SplitBlock(Succ, Succ->begin(), P);
    258   }
    259 
    260   // Otherwise, if BB has a single successor, split it at the bottom of the
    261   // block.
    262   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
    263          "Should have a single succ!");
    264   return SplitBlock(BB, BB->getTerminator(), P);
    265 }
    266 
    267 /// SplitBlock - Split the specified block at the specified instruction - every
    268 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
    269 /// to a new block.  The two blocks are joined by an unconditional branch and
    270 /// the loop info is updated.
    271 ///
    272 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
    273   BasicBlock::iterator SplitIt = SplitPt;
    274   while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
    275     ++SplitIt;
    276   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
    277 
    278   // The new block lives in whichever loop the old one did. This preserves
    279   // LCSSA as well, because we force the split point to be after any PHI nodes.
    280   if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
    281     if (Loop *L = LI->getLoopFor(Old))
    282       L->addBasicBlockToLoop(New, LI->getBase());
    283 
    284   if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
    285     // Old dominates New. New node dominates all other nodes dominated by Old.
    286     if (DomTreeNode *OldNode = DT->getNode(Old)) {
    287       std::vector<DomTreeNode *> Children;
    288       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
    289            I != E; ++I)
    290         Children.push_back(*I);
    291 
    292       DomTreeNode *NewNode = DT->addNewBlock(New,Old);
    293       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
    294              E = Children.end(); I != E; ++I)
    295         DT->changeImmediateDominator(*I, NewNode);
    296     }
    297   }
    298 
    299   return New;
    300 }
    301 
    302 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
    303 /// analysis information.
    304 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
    305                                       ArrayRef<BasicBlock *> Preds,
    306                                       Pass *P, bool &HasLoopExit) {
    307   if (!P) return;
    308 
    309   LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
    310   Loop *L = LI ? LI->getLoopFor(OldBB) : 0;
    311 
    312   // If we need to preserve loop analyses, collect some information about how
    313   // this split will affect loops.
    314   bool IsLoopEntry = !!L;
    315   bool SplitMakesNewLoopHeader = false;
    316   if (LI) {
    317     bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
    318     for (ArrayRef<BasicBlock*>::iterator
    319            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
    320       BasicBlock *Pred = *i;
    321 
    322       // If we need to preserve LCSSA, determine if any of the preds is a loop
    323       // exit.
    324       if (PreserveLCSSA)
    325         if (Loop *PL = LI->getLoopFor(Pred))
    326           if (!PL->contains(OldBB))
    327             HasLoopExit = true;
    328 
    329       // If we need to preserve LoopInfo, note whether any of the preds crosses
    330       // an interesting loop boundary.
    331       if (!L) continue;
    332       if (L->contains(Pred))
    333         IsLoopEntry = false;
    334       else
    335         SplitMakesNewLoopHeader = true;
    336     }
    337   }
    338 
    339   // Update dominator tree if available.
    340   DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
    341   if (DT)
    342     DT->splitBlock(NewBB);
    343 
    344   if (!L) return;
    345 
    346   if (IsLoopEntry) {
    347     // Add the new block to the nearest enclosing loop (and not an adjacent
    348     // loop). To find this, examine each of the predecessors and determine which
    349     // loops enclose them, and select the most-nested loop which contains the
    350     // loop containing the block being split.
    351     Loop *InnermostPredLoop = 0;
    352     for (ArrayRef<BasicBlock*>::iterator
    353            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
    354       BasicBlock *Pred = *i;
    355       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
    356         // Seek a loop which actually contains the block being split (to avoid
    357         // adjacent loops).
    358         while (PredLoop && !PredLoop->contains(OldBB))
    359           PredLoop = PredLoop->getParentLoop();
    360 
    361         // Select the most-nested of these loops which contains the block.
    362         if (PredLoop && PredLoop->contains(OldBB) &&
    363             (!InnermostPredLoop ||
    364              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
    365           InnermostPredLoop = PredLoop;
    366       }
    367     }
    368 
    369     if (InnermostPredLoop)
    370       InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
    371   } else {
    372     L->addBasicBlockToLoop(NewBB, LI->getBase());
    373     if (SplitMakesNewLoopHeader)
    374       L->moveToHeader(NewBB);
    375   }
    376 }
    377 
    378 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
    379 /// from NewBB. This also updates AliasAnalysis, if available.
    380 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
    381                            ArrayRef<BasicBlock*> Preds, BranchInst *BI,
    382                            Pass *P, bool HasLoopExit) {
    383   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
    384   AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
    385   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
    386     PHINode *PN = cast<PHINode>(I++);
    387 
    388     // Check to see if all of the values coming in are the same.  If so, we
    389     // don't need to create a new PHI node, unless it's needed for LCSSA.
    390     Value *InVal = 0;
    391     if (!HasLoopExit) {
    392       InVal = PN->getIncomingValueForBlock(Preds[0]);
    393       for (unsigned i = 1, e = Preds.size(); i != e; ++i)
    394         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
    395           InVal = 0;
    396           break;
    397         }
    398     }
    399 
    400     if (InVal) {
    401       // If all incoming values for the new PHI would be the same, just don't
    402       // make a new PHI.  Instead, just remove the incoming values from the old
    403       // PHI.
    404       for (unsigned i = 0, e = Preds.size(); i != e; ++i)
    405         PN->removeIncomingValue(Preds[i], false);
    406     } else {
    407       // If the values coming into the block are not the same, we need a PHI.
    408       // Create the new PHI node, insert it into NewBB at the end of the block
    409       PHINode *NewPHI =
    410         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
    411       if (AA) AA->copyValue(PN, NewPHI);
    412 
    413       // Move all of the PHI values for 'Preds' to the new PHI.
    414       for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    415         Value *V = PN->removeIncomingValue(Preds[i], false);
    416         NewPHI->addIncoming(V, Preds[i]);
    417       }
    418 
    419       InVal = NewPHI;
    420     }
    421 
    422     // Add an incoming value to the PHI node in the loop for the preheader
    423     // edge.
    424     PN->addIncoming(InVal, NewBB);
    425   }
    426 }
    427 
    428 /// SplitBlockPredecessors - This method transforms BB by introducing a new
    429 /// basic block into the function, and moving some of the predecessors of BB to
    430 /// be predecessors of the new block.  The new predecessors are indicated by the
    431 /// Preds array, which has NumPreds elements in it.  The new block is given a
    432 /// suffix of 'Suffix'.
    433 ///
    434 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    435 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
    436 /// preserve LoopSimplify (because it's complicated to handle the case where one
    437 /// of the edges being split is an exit of a loop with other exits).
    438 ///
    439 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
    440                                          ArrayRef<BasicBlock*> Preds,
    441                                          const char *Suffix, Pass *P) {
    442   // Create new basic block, insert right before the original block.
    443   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
    444                                          BB->getParent(), BB);
    445 
    446   // The new block unconditionally branches to the old block.
    447   BranchInst *BI = BranchInst::Create(BB, NewBB);
    448 
    449   // Move the edges from Preds to point to NewBB instead of BB.
    450   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    451     // This is slightly more strict than necessary; the minimum requirement
    452     // is that there be no more than one indirectbr branching to BB. And
    453     // all BlockAddress uses would need to be updated.
    454     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    455            "Cannot split an edge from an IndirectBrInst");
    456     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
    457   }
    458 
    459   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
    460   // node becomes an incoming value for BB's phi node.  However, if the Preds
    461   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
    462   // account for the newly created predecessor.
    463   if (Preds.size() == 0) {
    464     // Insert dummy values as the incoming value.
    465     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
    466       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
    467     return NewBB;
    468   }
    469 
    470   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    471   bool HasLoopExit = false;
    472   UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
    473 
    474   // Update the PHI nodes in BB with the values coming from NewBB.
    475   UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
    476   return NewBB;
    477 }
    478 
    479 /// SplitLandingPadPredecessors - This method transforms the landing pad,
    480 /// OrigBB, by introducing two new basic blocks into the function. One of those
    481 /// new basic blocks gets the predecessors listed in Preds. The other basic
    482 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
    483 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
    484 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
    485 ///
    486 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    487 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
    488 /// it does not preserve LoopSimplify (because it's complicated to handle the
    489 /// case where one of the edges being split is an exit of a loop with other
    490 /// exits).
    491 ///
    492 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
    493                                        ArrayRef<BasicBlock*> Preds,
    494                                        const char *Suffix1, const char *Suffix2,
    495                                        Pass *P,
    496                                        SmallVectorImpl<BasicBlock*> &NewBBs) {
    497   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
    498 
    499   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
    500   // it right before the original block.
    501   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
    502                                           OrigBB->getName() + Suffix1,
    503                                           OrigBB->getParent(), OrigBB);
    504   NewBBs.push_back(NewBB1);
    505 
    506   // The new block unconditionally branches to the old block.
    507   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
    508 
    509   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
    510   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    511     // This is slightly more strict than necessary; the minimum requirement
    512     // is that there be no more than one indirectbr branching to BB. And
    513     // all BlockAddress uses would need to be updated.
    514     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    515            "Cannot split an edge from an IndirectBrInst");
    516     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
    517   }
    518 
    519   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    520   bool HasLoopExit = false;
    521   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
    522 
    523   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
    524   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
    525 
    526   // Move the remaining edges from OrigBB to point to NewBB2.
    527   SmallVector<BasicBlock*, 8> NewBB2Preds;
    528   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
    529        i != e; ) {
    530     BasicBlock *Pred = *i++;
    531     if (Pred == NewBB1) continue;
    532     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
    533            "Cannot split an edge from an IndirectBrInst");
    534     NewBB2Preds.push_back(Pred);
    535     e = pred_end(OrigBB);
    536   }
    537 
    538   BasicBlock *NewBB2 = 0;
    539   if (!NewBB2Preds.empty()) {
    540     // Create another basic block for the rest of OrigBB's predecessors.
    541     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
    542                                 OrigBB->getName() + Suffix2,
    543                                 OrigBB->getParent(), OrigBB);
    544     NewBBs.push_back(NewBB2);
    545 
    546     // The new block unconditionally branches to the old block.
    547     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
    548 
    549     // Move the remaining edges from OrigBB to point to NewBB2.
    550     for (SmallVectorImpl<BasicBlock*>::iterator
    551            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
    552       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
    553 
    554     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    555     HasLoopExit = false;
    556     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
    557 
    558     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
    559     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
    560   }
    561 
    562   LandingPadInst *LPad = OrigBB->getLandingPadInst();
    563   Instruction *Clone1 = LPad->clone();
    564   Clone1->setName(Twine("lpad") + Suffix1);
    565   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
    566 
    567   if (NewBB2) {
    568     Instruction *Clone2 = LPad->clone();
    569     Clone2->setName(Twine("lpad") + Suffix2);
    570     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
    571 
    572     // Create a PHI node for the two cloned landingpad instructions.
    573     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
    574     PN->addIncoming(Clone1, NewBB1);
    575     PN->addIncoming(Clone2, NewBB2);
    576     LPad->replaceAllUsesWith(PN);
    577     LPad->eraseFromParent();
    578   } else {
    579     // There is no second clone. Just replace the landing pad with the first
    580     // clone.
    581     LPad->replaceAllUsesWith(Clone1);
    582     LPad->eraseFromParent();
    583   }
    584 }
    585 
    586 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
    587 /// instruction into a predecessor which ends in an unconditional branch. If
    588 /// the return instruction returns a value defined by a PHI, propagate the
    589 /// right value into the return. It returns the new return instruction in the
    590 /// predecessor.
    591 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    592                                              BasicBlock *Pred) {
    593   Instruction *UncondBranch = Pred->getTerminator();
    594   // Clone the return and add it to the end of the predecessor.
    595   Instruction *NewRet = RI->clone();
    596   Pred->getInstList().push_back(NewRet);
    597 
    598   // If the return instruction returns a value, and if the value was a
    599   // PHI node in "BB", propagate the right value into the return.
    600   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
    601        i != e; ++i) {
    602     Value *V = *i;
    603     Instruction *NewBC = 0;
    604     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
    605       // Return value might be bitcasted. Clone and insert it before the
    606       // return instruction.
    607       V = BCI->getOperand(0);
    608       NewBC = BCI->clone();
    609       Pred->getInstList().insert(NewRet, NewBC);
    610       *i = NewBC;
    611     }
    612     if (PHINode *PN = dyn_cast<PHINode>(V)) {
    613       if (PN->getParent() == BB) {
    614         if (NewBC)
    615           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
    616         else
    617           *i = PN->getIncomingValueForBlock(Pred);
    618       }
    619     }
    620   }
    621 
    622   // Update any PHI nodes in the returning block to realize that we no
    623   // longer branch to them.
    624   BB->removePredecessor(Pred);
    625   UncondBranch->eraseFromParent();
    626   return cast<ReturnInst>(NewRet);
    627 }
    628 
    629 /// SplitBlockAndInsertIfThen - Split the containing block at the
    630 /// specified instruction - everything before and including Cmp stays
    631 /// in the old basic block, and everything after Cmp is moved to a
    632 /// new block. The two blocks are connected by a conditional branch
    633 /// (with value of Cmp being the condition).
    634 /// Before:
    635 ///   Head
    636 ///   Cmp
    637 ///   Tail
    638 /// After:
    639 ///   Head
    640 ///   Cmp
    641 ///   if (Cmp)
    642 ///     ThenBlock
    643 ///   Tail
    644 ///
    645 /// If Unreachable is true, then ThenBlock ends with
    646 /// UnreachableInst, otherwise it branches to Tail.
    647 /// Returns the NewBasicBlock's terminator.
    648 
    649 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp,
    650     bool Unreachable, MDNode *BranchWeights) {
    651   Instruction *SplitBefore = Cmp->getNextNode();
    652   BasicBlock *Head = SplitBefore->getParent();
    653   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
    654   TerminatorInst *HeadOldTerm = Head->getTerminator();
    655   LLVMContext &C = Head->getContext();
    656   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    657   TerminatorInst *CheckTerm;
    658   if (Unreachable)
    659     CheckTerm = new UnreachableInst(C, ThenBlock);
    660   else
    661     CheckTerm = BranchInst::Create(Tail, ThenBlock);
    662   BranchInst *HeadNewTerm =
    663     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
    664   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    665   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    666   return CheckTerm;
    667 }
    668 
    669 /// GetIfCondition - Given a basic block (BB) with two predecessors,
    670 /// check to see if the merge at this block is due
    671 /// to an "if condition".  If so, return the boolean condition that determines
    672 /// which entry into BB will be taken.  Also, return by references the block
    673 /// that will be entered from if the condition is true, and the block that will
    674 /// be entered if the condition is false.
    675 ///
    676 /// This does no checking to see if the true/false blocks have large or unsavory
    677 /// instructions in them.
    678 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    679                              BasicBlock *&IfFalse) {
    680   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
    681   BasicBlock *Pred1 = NULL;
    682   BasicBlock *Pred2 = NULL;
    683 
    684   if (SomePHI) {
    685     if (SomePHI->getNumIncomingValues() != 2)
    686       return NULL;
    687     Pred1 = SomePHI->getIncomingBlock(0);
    688     Pred2 = SomePHI->getIncomingBlock(1);
    689   } else {
    690     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    691     if (PI == PE) // No predecessor
    692       return NULL;
    693     Pred1 = *PI++;
    694     if (PI == PE) // Only one predecessor
    695       return NULL;
    696     Pred2 = *PI++;
    697     if (PI != PE) // More than two predecessors
    698       return NULL;
    699   }
    700 
    701   // We can only handle branches.  Other control flow will be lowered to
    702   // branches if possible anyway.
    703   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    704   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    705   if (Pred1Br == 0 || Pred2Br == 0)
    706     return 0;
    707 
    708   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    709   // either are.
    710   if (Pred2Br->isConditional()) {
    711     // If both branches are conditional, we don't have an "if statement".  In
    712     // reality, we could transform this case, but since the condition will be
    713     // required anyway, we stand no chance of eliminating it, so the xform is
    714     // probably not profitable.
    715     if (Pred1Br->isConditional())
    716       return 0;
    717 
    718     std::swap(Pred1, Pred2);
    719     std::swap(Pred1Br, Pred2Br);
    720   }
    721 
    722   if (Pred1Br->isConditional()) {
    723     // The only thing we have to watch out for here is to make sure that Pred2
    724     // doesn't have incoming edges from other blocks.  If it does, the condition
    725     // doesn't dominate BB.
    726     if (Pred2->getSinglePredecessor() == 0)
    727       return 0;
    728 
    729     // If we found a conditional branch predecessor, make sure that it branches
    730     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    731     if (Pred1Br->getSuccessor(0) == BB &&
    732         Pred1Br->getSuccessor(1) == Pred2) {
    733       IfTrue = Pred1;
    734       IfFalse = Pred2;
    735     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    736                Pred1Br->getSuccessor(1) == BB) {
    737       IfTrue = Pred2;
    738       IfFalse = Pred1;
    739     } else {
    740       // We know that one arm of the conditional goes to BB, so the other must
    741       // go somewhere unrelated, and this must not be an "if statement".
    742       return 0;
    743     }
    744 
    745     return Pred1Br->getCondition();
    746   }
    747 
    748   // Ok, if we got here, both predecessors end with an unconditional branch to
    749   // BB.  Don't panic!  If both blocks only have a single (identical)
    750   // predecessor, and THAT is a conditional branch, then we're all ok!
    751   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    752   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
    753     return 0;
    754 
    755   // Otherwise, if this is a conditional branch, then we can use it!
    756   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    757   if (BI == 0) return 0;
    758 
    759   assert(BI->isConditional() && "Two successors but not conditional?");
    760   if (BI->getSuccessor(0) == Pred1) {
    761     IfTrue = Pred1;
    762     IfFalse = Pred2;
    763   } else {
    764     IfTrue = Pred2;
    765     IfFalse = Pred1;
    766   }
    767   return BI->getCondition();
    768 }
    769