Home | History | Annotate | Download | only in CodeGen
      1 //===---- LiveRangeCalc.h - Calculate live ranges ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LiveRangeCalc class can be used to compute live ranges from scratch.  It
     11 // caches information about values in the CFG to speed up repeated operations
     12 // on the same live range.  The cache can be shared by non-overlapping live
     13 // ranges.  SplitKit uses that when computing the live range of split products.
     14 //
     15 // A low-level interface is available to clients that know where a variable is
     16 // live, but don't know which value it has as every point.  LiveRangeCalc will
     17 // propagate values down the dominator tree, and even insert PHI-defs where
     18 // needed.  SplitKit uses this faster interface when possible.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_CODEGEN_LIVERANGECALC_H
     23 #define LLVM_CODEGEN_LIVERANGECALC_H
     24 
     25 #include "llvm/ADT/BitVector.h"
     26 #include "llvm/ADT/IndexedMap.h"
     27 #include "llvm/CodeGen/LiveInterval.h"
     28 
     29 namespace llvm {
     30 
     31 /// Forward declarations for MachineDominators.h:
     32 class MachineDominatorTree;
     33 template <class NodeT> class DomTreeNodeBase;
     34 typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
     35 
     36 class LiveRangeCalc {
     37   const MachineFunction *MF;
     38   const MachineRegisterInfo *MRI;
     39   SlotIndexes *Indexes;
     40   MachineDominatorTree *DomTree;
     41   VNInfo::Allocator *Alloc;
     42 
     43   /// Seen - Bit vector of active entries in LiveOut, also used as a visited
     44   /// set by findReachingDefs.  One entry per basic block, indexed by block
     45   /// number.  This is kept as a separate bit vector because it can be cleared
     46   /// quickly when switching live ranges.
     47   BitVector Seen;
     48 
     49   /// LiveOutPair - A value and the block that defined it.  The domtree node is
     50   /// redundant, it can be computed as: MDT[Indexes.getMBBFromIndex(VNI->def)].
     51   typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
     52 
     53   /// LiveOutMap - Map basic blocks to the value leaving the block.
     54   typedef IndexedMap<LiveOutPair, MBB2NumberFunctor> LiveOutMap;
     55 
     56   /// LiveOut - Map each basic block where a live range is live out to the
     57   /// live-out value and its defining block.
     58   ///
     59   /// For every basic block, MBB, one of these conditions shall be true:
     60   ///
     61   ///  1. !Seen.count(MBB->getNumber())
     62   ///     Blocks without a Seen bit are ignored.
     63   ///  2. LiveOut[MBB].second.getNode() == MBB
     64   ///     The live-out value is defined in MBB.
     65   ///  3. forall P in preds(MBB): LiveOut[P] == LiveOut[MBB]
     66   ///     The live-out value passses through MBB. All predecessors must carry
     67   ///     the same value.
     68   ///
     69   /// The domtree node may be null, it can be computed.
     70   ///
     71   /// The map can be shared by multiple live ranges as long as no two are
     72   /// live-out of the same block.
     73   LiveOutMap LiveOut;
     74 
     75   /// LiveInBlock - Information about a basic block where a live range is known
     76   /// to be live-in, but the value has not yet been determined.
     77   struct LiveInBlock {
     78     // LI - The live range that is live-in to this block.  The algorithms can
     79     // handle multiple non-overlapping live ranges simultaneously.
     80     LiveInterval *LI;
     81 
     82     // DomNode - Dominator tree node for the block.
     83     // Cleared when the final value has been determined and LI has been updated.
     84     MachineDomTreeNode *DomNode;
     85 
     86     // Position in block where the live-in range ends, or SlotIndex() if the
     87     // range passes through the block.  When the final value has been
     88     // determined, the range from the block start to Kill will be added to LI.
     89     SlotIndex Kill;
     90 
     91     // Live-in value filled in by updateSSA once it is known.
     92     VNInfo *Value;
     93 
     94     LiveInBlock(LiveInterval *li, MachineDomTreeNode *node, SlotIndex kill)
     95       : LI(li), DomNode(node), Kill(kill), Value(0) {}
     96   };
     97 
     98   /// LiveIn - Work list of blocks where the live-in value has yet to be
     99   /// determined.  This list is typically computed by findReachingDefs() and
    100   /// used as a work list by updateSSA().  The low-level interface may also be
    101   /// used to add entries directly.
    102   SmallVector<LiveInBlock, 16> LiveIn;
    103 
    104   /// Assuming that LI is live-in to KillMBB and killed at Kill, find the set
    105   /// of defs that can reach it.
    106   ///
    107   /// If only one def can reach Kill, all paths from the def to kill are added
    108   /// to LI, and the function returns true.
    109   ///
    110   /// If multiple values can reach Kill, the blocks that need LI to be live in
    111   /// are added to the LiveIn array, and the function returns false.
    112   ///
    113   /// PhysReg, when set, is used to verify live-in lists on basic blocks.
    114   bool findReachingDefs(LiveInterval *LI,
    115                         MachineBasicBlock *KillMBB,
    116                         SlotIndex Kill,
    117                         unsigned PhysReg);
    118 
    119   /// updateSSA - Compute the values that will be live in to all requested
    120   /// blocks in LiveIn.  Create PHI-def values as required to preserve SSA form.
    121   ///
    122   /// Every live-in block must be jointly dominated by the added live-out
    123   /// blocks.  No values are read from the live ranges.
    124   void updateSSA();
    125 
    126   /// Add liveness as specified in the LiveIn vector.
    127   void updateLiveIns();
    128 
    129 public:
    130   LiveRangeCalc() : MF(0), MRI(0), Indexes(0), DomTree(0), Alloc(0) {}
    131 
    132   //===--------------------------------------------------------------------===//
    133   // High-level interface.
    134   //===--------------------------------------------------------------------===//
    135   //
    136   // Calculate live ranges from scratch.
    137   //
    138 
    139   /// reset - Prepare caches for a new set of non-overlapping live ranges.  The
    140   /// caches must be reset before attempting calculations with a live range
    141   /// that may overlap a previously computed live range, and before the first
    142   /// live range in a function.  If live ranges are not known to be
    143   /// non-overlapping, call reset before each.
    144   void reset(const MachineFunction *MF,
    145              SlotIndexes*,
    146              MachineDominatorTree*,
    147              VNInfo::Allocator*);
    148 
    149   /// calculate - Calculate the live range of a virtual register from its defs
    150   /// and uses.  LI must be empty with no values.
    151   void calculate(LiveInterval *LI);
    152 
    153   //===--------------------------------------------------------------------===//
    154   // Mid-level interface.
    155   //===--------------------------------------------------------------------===//
    156   //
    157   // Modify existing live ranges.
    158   //
    159 
    160   /// extend - Extend the live range of LI to reach Kill.
    161   ///
    162   /// The existing values in LI must be live so they jointly dominate Kill.  If
    163   /// Kill is not dominated by a single existing value, PHI-defs are inserted
    164   /// as required to preserve SSA form.  If Kill is known to be dominated by a
    165   /// single existing value, Alloc may be null.
    166   ///
    167   /// PhysReg, when set, is used to verify live-in lists on basic blocks.
    168   void extend(LiveInterval *LI, SlotIndex Kill, unsigned PhysReg = 0);
    169 
    170   /// createDeadDefs - Create a dead def in LI for every def operand of Reg.
    171   /// Each instruction defining Reg gets a new VNInfo with a corresponding
    172   /// minimal live range.
    173   void createDeadDefs(LiveInterval *LI, unsigned Reg);
    174 
    175   /// createDeadDefs - Create a dead def in LI for every def of LI->reg.
    176   void createDeadDefs(LiveInterval *LI) {
    177     createDeadDefs(LI, LI->reg);
    178   }
    179 
    180   /// extendToUses - Extend the live range of LI to reach all uses of Reg.
    181   ///
    182   /// All uses must be jointly dominated by existing liveness.  PHI-defs are
    183   /// inserted as needed to preserve SSA form.
    184   void extendToUses(LiveInterval *LI, unsigned Reg);
    185 
    186   /// extendToUses - Extend the live range of LI to reach all uses of LI->reg.
    187   void extendToUses(LiveInterval *LI) {
    188     extendToUses(LI, LI->reg);
    189   }
    190 
    191   //===--------------------------------------------------------------------===//
    192   // Low-level interface.
    193   //===--------------------------------------------------------------------===//
    194   //
    195   // These functions can be used to compute live ranges where the live-in and
    196   // live-out blocks are already known, but the SSA value in each block is
    197   // unknown.
    198   //
    199   // After calling reset(), add known live-out values and known live-in blocks.
    200   // Then call calculateValues() to compute the actual value that is
    201   // live-in to each block, and add liveness to the live ranges.
    202   //
    203 
    204   /// setLiveOutValue - Indicate that VNI is live out from MBB.  The
    205   /// calculateValues() function will not add liveness for MBB, the caller
    206   /// should take care of that.
    207   ///
    208   /// VNI may be null only if MBB is a live-through block also passed to
    209   /// addLiveInBlock().
    210   void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) {
    211     Seen.set(MBB->getNumber());
    212     LiveOut[MBB] = LiveOutPair(VNI, (MachineDomTreeNode *)0);
    213   }
    214 
    215   /// addLiveInBlock - Add a block with an unknown live-in value.  This
    216   /// function can only be called once per basic block.  Once the live-in value
    217   /// has been determined, calculateValues() will add liveness to LI.
    218   ///
    219   /// @param LI      The live range that is live-in to the block.
    220   /// @param DomNode The domtree node for the block.
    221   /// @param Kill    Index in block where LI is killed.  If the value is
    222   ///                live-through, set Kill = SLotIndex() and also call
    223   ///                setLiveOutValue(MBB, 0).
    224   void addLiveInBlock(LiveInterval *LI,
    225                       MachineDomTreeNode *DomNode,
    226                       SlotIndex Kill = SlotIndex()) {
    227     LiveIn.push_back(LiveInBlock(LI, DomNode, Kill));
    228   }
    229 
    230   /// calculateValues - Calculate the value that will be live-in to each block
    231   /// added with addLiveInBlock.  Add PHI-def values as needed to preserve SSA
    232   /// form.  Add liveness to all live-in blocks up to the Kill point, or the
    233   /// whole block for live-through blocks.
    234   ///
    235   /// Every predecessor of a live-in block must have been given a value with
    236   /// setLiveOutValue, the value may be null for live-trough blocks.
    237   void calculateValues();
    238 };
    239 
    240 } // end namespace llvm
    241 
    242 #endif
    243