Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #define DEBUG_TYPE "loop-simplify"
     41 #include "llvm/Transforms/Scalar.h"
     42 #include "llvm/ADT/DepthFirstIterator.h"
     43 #include "llvm/ADT/SetOperations.h"
     44 #include "llvm/ADT/SetVector.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/Analysis/AliasAnalysis.h"
     47 #include "llvm/Analysis/DependenceAnalysis.h"
     48 #include "llvm/Analysis/Dominators.h"
     49 #include "llvm/Analysis/InstructionSimplify.h"
     50 #include "llvm/Analysis/LoopPass.h"
     51 #include "llvm/Analysis/ScalarEvolution.h"
     52 #include "llvm/IR/Constants.h"
     53 #include "llvm/IR/Function.h"
     54 #include "llvm/IR/Instructions.h"
     55 #include "llvm/IR/IntrinsicInst.h"
     56 #include "llvm/IR/LLVMContext.h"
     57 #include "llvm/IR/Type.h"
     58 #include "llvm/Support/CFG.h"
     59 #include "llvm/Support/Debug.h"
     60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     61 #include "llvm/Transforms/Utils/Local.h"
     62 #include "llvm/Transforms/Utils/LoopUtils.h"
     63 using namespace llvm;
     64 
     65 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     66 STATISTIC(NumNested  , "Number of nested loops split out");
     67 
     68 namespace {
     69   struct LoopSimplify : public LoopPass {
     70     static char ID; // Pass identification, replacement for typeid
     71     LoopSimplify() : LoopPass(ID) {
     72       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
     73     }
     74 
     75     // AA - If we have an alias analysis object to update, this is it, otherwise
     76     // this is null.
     77     AliasAnalysis *AA;
     78     LoopInfo *LI;
     79     DominatorTree *DT;
     80     ScalarEvolution *SE;
     81     Loop *L;
     82     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     83 
     84     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     85       // We need loop information to identify the loops...
     86       AU.addRequired<DominatorTree>();
     87       AU.addPreserved<DominatorTree>();
     88 
     89       AU.addRequired<LoopInfo>();
     90       AU.addPreserved<LoopInfo>();
     91 
     92       AU.addPreserved<AliasAnalysis>();
     93       AU.addPreserved<ScalarEvolution>();
     94       AU.addPreserved<DependenceAnalysis>();
     95       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
     96     }
     97 
     98     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
     99     void verifyAnalysis() const;
    100 
    101   private:
    102     bool ProcessLoop(Loop *L, LPPassManager &LPM);
    103     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
    104     Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
    105                              BasicBlock *Preheader);
    106     BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
    107   };
    108 }
    109 
    110 static void PlaceSplitBlockCarefully(BasicBlock *NewBB,
    111                                      SmallVectorImpl<BasicBlock*> &SplitPreds,
    112                                      Loop *L);
    113 
    114 char LoopSimplify::ID = 0;
    115 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    116                 "Canonicalize natural loops", true, false)
    117 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    118 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    119 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    120                 "Canonicalize natural loops", true, false)
    121 
    122 // Publicly exposed interface to pass...
    123 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    124 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    125 
    126 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
    127 /// it in any convenient order) inserting preheaders...
    128 ///
    129 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
    130   L = l;
    131   bool Changed = false;
    132   LI = &getAnalysis<LoopInfo>();
    133   AA = getAnalysisIfAvailable<AliasAnalysis>();
    134   DT = &getAnalysis<DominatorTree>();
    135   SE = getAnalysisIfAvailable<ScalarEvolution>();
    136 
    137   Changed |= ProcessLoop(L, LPM);
    138 
    139   return Changed;
    140 }
    141 
    142 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
    143 /// all loops have preheaders.
    144 ///
    145 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
    146   bool Changed = false;
    147 ReprocessLoop:
    148 
    149   // Check to see that no blocks (other than the header) in this loop have
    150   // predecessors that are not in the loop.  This is not valid for natural
    151   // loops, but can occur if the blocks are unreachable.  Since they are
    152   // unreachable we can just shamelessly delete those CFG edges!
    153   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    154        BB != E; ++BB) {
    155     if (*BB == L->getHeader()) continue;
    156 
    157     SmallPtrSet<BasicBlock*, 4> BadPreds;
    158     for (pred_iterator PI = pred_begin(*BB),
    159          PE = pred_end(*BB); PI != PE; ++PI) {
    160       BasicBlock *P = *PI;
    161       if (!L->contains(P))
    162         BadPreds.insert(P);
    163     }
    164 
    165     // Delete each unique out-of-loop (and thus dead) predecessor.
    166     for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
    167          E = BadPreds.end(); I != E; ++I) {
    168 
    169       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    170                    << (*I)->getName() << "\n");
    171 
    172       // Inform each successor of each dead pred.
    173       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
    174         (*SI)->removePredecessor(*I);
    175       // Zap the dead pred's terminator and replace it with unreachable.
    176       TerminatorInst *TI = (*I)->getTerminator();
    177        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
    178       (*I)->getTerminator()->eraseFromParent();
    179       new UnreachableInst((*I)->getContext(), *I);
    180       Changed = true;
    181     }
    182   }
    183 
    184   // If there are exiting blocks with branches on undef, resolve the undef in
    185   // the direction which will exit the loop. This will help simplify loop
    186   // trip count computations.
    187   SmallVector<BasicBlock*, 8> ExitingBlocks;
    188   L->getExitingBlocks(ExitingBlocks);
    189   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
    190        E = ExitingBlocks.end(); I != E; ++I)
    191     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
    192       if (BI->isConditional()) {
    193         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    194 
    195           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    196                        << (*I)->getName() << "\n");
    197 
    198           BI->setCondition(ConstantInt::get(Cond->getType(),
    199                                             !L->contains(BI->getSuccessor(0))));
    200 
    201           // This may make the loop analyzable, force SCEV recomputation.
    202           if (SE)
    203             SE->forgetLoop(L);
    204 
    205           Changed = true;
    206         }
    207       }
    208 
    209   // Does the loop already have a preheader?  If so, don't insert one.
    210   BasicBlock *Preheader = L->getLoopPreheader();
    211   if (!Preheader) {
    212     Preheader = InsertPreheaderForLoop(L, this);
    213     if (Preheader) {
    214       ++NumInserted;
    215       Changed = true;
    216     }
    217   }
    218 
    219   // Next, check to make sure that all exit nodes of the loop only have
    220   // predecessors that are inside of the loop.  This check guarantees that the
    221   // loop preheader/header will dominate the exit blocks.  If the exit block has
    222   // predecessors from outside of the loop, split the edge now.
    223   SmallVector<BasicBlock*, 8> ExitBlocks;
    224   L->getExitBlocks(ExitBlocks);
    225 
    226   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    227                                                ExitBlocks.end());
    228   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
    229          E = ExitBlockSet.end(); I != E; ++I) {
    230     BasicBlock *ExitBlock = *I;
    231     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    232          PI != PE; ++PI)
    233       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    234       // allowed.
    235       if (!L->contains(*PI)) {
    236         if (RewriteLoopExitBlock(L, ExitBlock)) {
    237           ++NumInserted;
    238           Changed = true;
    239         }
    240         break;
    241       }
    242   }
    243 
    244   // If the header has more than two predecessors at this point (from the
    245   // preheader and from multiple backedges), we must adjust the loop.
    246   BasicBlock *LoopLatch = L->getLoopLatch();
    247   if (!LoopLatch) {
    248     // If this is really a nested loop, rip it out into a child loop.  Don't do
    249     // this for loops with a giant number of backedges, just factor them into a
    250     // common backedge instead.
    251     if (L->getNumBackEdges() < 8) {
    252       if (SeparateNestedLoop(L, LPM, Preheader)) {
    253         ++NumNested;
    254         // This is a big restructuring change, reprocess the whole loop.
    255         Changed = true;
    256         // GCC doesn't tail recursion eliminate this.
    257         goto ReprocessLoop;
    258       }
    259     }
    260 
    261     // If we either couldn't, or didn't want to, identify nesting of the loops,
    262     // insert a new block that all backedges target, then make it jump to the
    263     // loop header.
    264     LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
    265     if (LoopLatch) {
    266       ++NumInserted;
    267       Changed = true;
    268     }
    269   }
    270 
    271   // Scan over the PHI nodes in the loop header.  Since they now have only two
    272   // incoming values (the loop is canonicalized), we may have simplified the PHI
    273   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    274   PHINode *PN;
    275   for (BasicBlock::iterator I = L->getHeader()->begin();
    276        (PN = dyn_cast<PHINode>(I++)); )
    277     if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
    278       if (AA) AA->deleteValue(PN);
    279       if (SE) SE->forgetValue(PN);
    280       PN->replaceAllUsesWith(V);
    281       PN->eraseFromParent();
    282     }
    283 
    284   // If this loop has multiple exits and the exits all go to the same
    285   // block, attempt to merge the exits. This helps several passes, such
    286   // as LoopRotation, which do not support loops with multiple exits.
    287   // SimplifyCFG also does this (and this code uses the same utility
    288   // function), however this code is loop-aware, where SimplifyCFG is
    289   // not. That gives it the advantage of being able to hoist
    290   // loop-invariant instructions out of the way to open up more
    291   // opportunities, and the disadvantage of having the responsibility
    292   // to preserve dominator information.
    293   bool UniqueExit = true;
    294   if (!ExitBlocks.empty())
    295     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    296       if (ExitBlocks[i] != ExitBlocks[0]) {
    297         UniqueExit = false;
    298         break;
    299       }
    300   if (UniqueExit) {
    301     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    302       BasicBlock *ExitingBlock = ExitingBlocks[i];
    303       if (!ExitingBlock->getSinglePredecessor()) continue;
    304       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    305       if (!BI || !BI->isConditional()) continue;
    306       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    307       if (!CI || CI->getParent() != ExitingBlock) continue;
    308 
    309       // Attempt to hoist out all instructions except for the
    310       // comparison and the branch.
    311       bool AllInvariant = true;
    312       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    313         Instruction *Inst = I++;
    314         // Skip debug info intrinsics.
    315         if (isa<DbgInfoIntrinsic>(Inst))
    316           continue;
    317         if (Inst == CI)
    318           continue;
    319         if (!L->makeLoopInvariant(Inst, Changed,
    320                                   Preheader ? Preheader->getTerminator() : 0)) {
    321           AllInvariant = false;
    322           break;
    323         }
    324       }
    325       if (!AllInvariant) continue;
    326 
    327       // The block has now been cleared of all instructions except for
    328       // a comparison and a conditional branch. SimplifyCFG may be able
    329       // to fold it now.
    330       if (!FoldBranchToCommonDest(BI)) continue;
    331 
    332       // Success. The block is now dead, so remove it from the loop,
    333       // update the dominator tree and delete it.
    334       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    335                    << ExitingBlock->getName() << "\n");
    336 
    337       // If any reachable control flow within this loop has changed, notify
    338       // ScalarEvolution. Currently assume the parent loop doesn't change
    339       // (spliting edges doesn't count). If blocks, CFG edges, or other values
    340       // in the parent loop change, then we need call to forgetLoop() for the
    341       // parent instead.
    342       if (SE)
    343         SE->forgetLoop(L);
    344 
    345       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    346       Changed = true;
    347       LI->removeBlock(ExitingBlock);
    348 
    349       DomTreeNode *Node = DT->getNode(ExitingBlock);
    350       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    351         Node->getChildren();
    352       while (!Children.empty()) {
    353         DomTreeNode *Child = Children.front();
    354         DT->changeImmediateDominator(Child, Node->getIDom());
    355       }
    356       DT->eraseNode(ExitingBlock);
    357 
    358       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
    359       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
    360       ExitingBlock->eraseFromParent();
    361     }
    362   }
    363 
    364   return Changed;
    365 }
    366 
    367 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    368 /// preheader, this method is called to insert one.  This method has two phases:
    369 /// preheader insertion and analysis updating.
    370 ///
    371 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
    372   BasicBlock *Header = L->getHeader();
    373 
    374   // Compute the set of predecessors of the loop that are not in the loop.
    375   SmallVector<BasicBlock*, 8> OutsideBlocks;
    376   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    377        PI != PE; ++PI) {
    378     BasicBlock *P = *PI;
    379     if (!L->contains(P)) {         // Coming in from outside the loop?
    380       // If the loop is branched to from an indirect branch, we won't
    381       // be able to fully transform the loop, because it prohibits
    382       // edge splitting.
    383       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    384 
    385       // Keep track of it.
    386       OutsideBlocks.push_back(P);
    387     }
    388   }
    389 
    390   // Split out the loop pre-header.
    391   BasicBlock *PreheaderBB;
    392   if (!Header->isLandingPad()) {
    393     PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
    394                                          PP);
    395   } else {
    396     SmallVector<BasicBlock*, 2> NewBBs;
    397     SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
    398                                 ".split-lp", PP, NewBBs);
    399     PreheaderBB = NewBBs[0];
    400   }
    401 
    402   PreheaderBB->getTerminator()->setDebugLoc(
    403                                       Header->getFirstNonPHI()->getDebugLoc());
    404   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    405                << PreheaderBB->getName() << "\n");
    406 
    407   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    408   // code layout too horribly.
    409   PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    410 
    411   return PreheaderBB;
    412 }
    413 
    414 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
    415 /// blocks.  This method is used to split exit blocks that have predecessors
    416 /// outside of the loop.
    417 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
    418   SmallVector<BasicBlock*, 8> LoopBlocks;
    419   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    420     BasicBlock *P = *I;
    421     if (L->contains(P)) {
    422       // Don't do this if the loop is exited via an indirect branch.
    423       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    424 
    425       LoopBlocks.push_back(P);
    426     }
    427   }
    428 
    429   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    430   BasicBlock *NewExitBB = 0;
    431 
    432   if (Exit->isLandingPad()) {
    433     SmallVector<BasicBlock*, 2> NewBBs;
    434     SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
    435                                                             LoopBlocks.size()),
    436                                 ".loopexit", ".nonloopexit",
    437                                 this, NewBBs);
    438     NewExitBB = NewBBs[0];
    439   } else {
    440     NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
    441   }
    442 
    443   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    444                << NewExitBB->getName() << "\n");
    445   return NewExitBB;
    446 }
    447 
    448 /// AddBlockAndPredsToSet - Add the specified block, and all of its
    449 /// predecessors, to the specified set, if it's not already in there.  Stop
    450 /// predecessor traversal when we reach StopBlock.
    451 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    452                                   std::set<BasicBlock*> &Blocks) {
    453   std::vector<BasicBlock *> WorkList;
    454   WorkList.push_back(InputBB);
    455   do {
    456     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
    457     if (Blocks.insert(BB).second && BB != StopBlock)
    458       // If BB is not already processed and it is not a stop block then
    459       // insert its predecessor in the work list
    460       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    461         BasicBlock *WBB = *I;
    462         WorkList.push_back(WBB);
    463       }
    464   } while(!WorkList.empty());
    465 }
    466 
    467 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
    468 /// PHI node that tells us how to partition the loops.
    469 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
    470                                         AliasAnalysis *AA, LoopInfo *LI) {
    471   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    472     PHINode *PN = cast<PHINode>(I);
    473     ++I;
    474     if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
    475       // This is a degenerate PHI already, don't modify it!
    476       PN->replaceAllUsesWith(V);
    477       if (AA) AA->deleteValue(PN);
    478       PN->eraseFromParent();
    479       continue;
    480     }
    481 
    482     // Scan this PHI node looking for a use of the PHI node by itself.
    483     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    484       if (PN->getIncomingValue(i) == PN &&
    485           L->contains(PN->getIncomingBlock(i)))
    486         // We found something tasty to remove.
    487         return PN;
    488   }
    489   return 0;
    490 }
    491 
    492 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
    493 // right after some 'outside block' block.  This prevents the preheader from
    494 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
    495 void PlaceSplitBlockCarefully(BasicBlock *NewBB,
    496                               SmallVectorImpl<BasicBlock*> &SplitPreds,
    497                               Loop *L) {
    498   // Check to see if NewBB is already well placed.
    499   Function::iterator BBI = NewBB; --BBI;
    500   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    501     if (&*BBI == SplitPreds[i])
    502       return;
    503   }
    504 
    505   // If it isn't already after an outside block, move it after one.  This is
    506   // always good as it makes the uncond branch from the outside block into a
    507   // fall-through.
    508 
    509   // Figure out *which* outside block to put this after.  Prefer an outside
    510   // block that neighbors a BB actually in the loop.
    511   BasicBlock *FoundBB = 0;
    512   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    513     Function::iterator BBI = SplitPreds[i];
    514     if (++BBI != NewBB->getParent()->end() &&
    515         L->contains(BBI)) {
    516       FoundBB = SplitPreds[i];
    517       break;
    518     }
    519   }
    520 
    521   // If our heuristic for a *good* bb to place this after doesn't find
    522   // anything, just pick something.  It's likely better than leaving it within
    523   // the loop.
    524   if (!FoundBB)
    525     FoundBB = SplitPreds[0];
    526   NewBB->moveAfter(FoundBB);
    527 }
    528 
    529 
    530 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
    531 /// them out into a nested loop.  This is important for code that looks like
    532 /// this:
    533 ///
    534 ///  Loop:
    535 ///     ...
    536 ///     br cond, Loop, Next
    537 ///     ...
    538 ///     br cond2, Loop, Out
    539 ///
    540 /// To identify this common case, we look at the PHI nodes in the header of the
    541 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    542 /// that change in the "outer" loop, but not in the "inner" loop.
    543 ///
    544 /// If we are able to separate out a loop, return the new outer loop that was
    545 /// created.
    546 ///
    547 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
    548                                        BasicBlock *Preheader) {
    549   // Don't try to separate loops without a preheader.
    550   if (!Preheader)
    551     return 0;
    552 
    553   // The header is not a landing pad; preheader insertion should ensure this.
    554   assert(!L->getHeader()->isLandingPad() &&
    555          "Can't insert backedge to landing pad");
    556 
    557   PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
    558   if (PN == 0) return 0;  // No known way to partition.
    559 
    560   // Pull out all predecessors that have varying values in the loop.  This
    561   // handles the case when a PHI node has multiple instances of itself as
    562   // arguments.
    563   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    564   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    565     if (PN->getIncomingValue(i) != PN ||
    566         !L->contains(PN->getIncomingBlock(i))) {
    567       // We can't split indirectbr edges.
    568       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    569         return 0;
    570       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    571     }
    572   }
    573   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    574 
    575   // If ScalarEvolution is around and knows anything about values in
    576   // this loop, tell it to forget them, because we're about to
    577   // substantially change it.
    578   if (SE)
    579     SE->forgetLoop(L);
    580 
    581   BasicBlock *Header = L->getHeader();
    582   BasicBlock *NewBB =
    583     SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", this);
    584 
    585   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    586   // code layout too horribly.
    587   PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    588 
    589   // Create the new outer loop.
    590   Loop *NewOuter = new Loop();
    591 
    592   // Change the parent loop to use the outer loop as its child now.
    593   if (Loop *Parent = L->getParentLoop())
    594     Parent->replaceChildLoopWith(L, NewOuter);
    595   else
    596     LI->changeTopLevelLoop(L, NewOuter);
    597 
    598   // L is now a subloop of our outer loop.
    599   NewOuter->addChildLoop(L);
    600 
    601   // Add the new loop to the pass manager queue.
    602   LPM.insertLoopIntoQueue(NewOuter);
    603 
    604   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    605        I != E; ++I)
    606     NewOuter->addBlockEntry(*I);
    607 
    608   // Now reset the header in L, which had been moved by
    609   // SplitBlockPredecessors for the outer loop.
    610   L->moveToHeader(Header);
    611 
    612   // Determine which blocks should stay in L and which should be moved out to
    613   // the Outer loop now.
    614   std::set<BasicBlock*> BlocksInL;
    615   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    616     BasicBlock *P = *PI;
    617     if (DT->dominates(Header, P))
    618       AddBlockAndPredsToSet(P, Header, BlocksInL);
    619   }
    620 
    621   // Scan all of the loop children of L, moving them to OuterLoop if they are
    622   // not part of the inner loop.
    623   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    624   for (size_t I = 0; I != SubLoops.size(); )
    625     if (BlocksInL.count(SubLoops[I]->getHeader()))
    626       ++I;   // Loop remains in L
    627     else
    628       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    629 
    630   // Now that we know which blocks are in L and which need to be moved to
    631   // OuterLoop, move any blocks that need it.
    632   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    633     BasicBlock *BB = L->getBlocks()[i];
    634     if (!BlocksInL.count(BB)) {
    635       // Move this block to the parent, updating the exit blocks sets
    636       L->removeBlockFromLoop(BB);
    637       if ((*LI)[BB] == L)
    638         LI->changeLoopFor(BB, NewOuter);
    639       --i;
    640     }
    641   }
    642 
    643   return NewOuter;
    644 }
    645 
    646 
    647 
    648 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
    649 /// has more than one backedge in it.  If this occurs, revector all of these
    650 /// backedges to target a new basic block and have that block branch to the loop
    651 /// header.  This ensures that loops have exactly one backedge.
    652 ///
    653 BasicBlock *
    654 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
    655   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    656 
    657   // Get information about the loop
    658   BasicBlock *Header = L->getHeader();
    659   Function *F = Header->getParent();
    660 
    661   // Unique backedge insertion currently depends on having a preheader.
    662   if (!Preheader)
    663     return 0;
    664 
    665   // The header is not a landing pad; preheader insertion should ensure this.
    666   assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
    667 
    668   // Figure out which basic blocks contain back-edges to the loop header.
    669   std::vector<BasicBlock*> BackedgeBlocks;
    670   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    671     BasicBlock *P = *I;
    672 
    673     // Indirectbr edges cannot be split, so we must fail if we find one.
    674     if (isa<IndirectBrInst>(P->getTerminator()))
    675       return 0;
    676 
    677     if (P != Preheader) BackedgeBlocks.push_back(P);
    678   }
    679 
    680   // Create and insert the new backedge block...
    681   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    682                                            Header->getName()+".backedge", F);
    683   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    684 
    685   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    686                << BEBlock->getName() << "\n");
    687 
    688   // Move the new backedge block to right after the last backedge block.
    689   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
    690   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    691 
    692   // Now that the block has been inserted into the function, create PHI nodes in
    693   // the backedge block which correspond to any PHI nodes in the header block.
    694   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    695     PHINode *PN = cast<PHINode>(I);
    696     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    697                                      PN->getName()+".be", BETerminator);
    698     if (AA) AA->copyValue(PN, NewPN);
    699 
    700     // Loop over the PHI node, moving all entries except the one for the
    701     // preheader over to the new PHI node.
    702     unsigned PreheaderIdx = ~0U;
    703     bool HasUniqueIncomingValue = true;
    704     Value *UniqueValue = 0;
    705     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    706       BasicBlock *IBB = PN->getIncomingBlock(i);
    707       Value *IV = PN->getIncomingValue(i);
    708       if (IBB == Preheader) {
    709         PreheaderIdx = i;
    710       } else {
    711         NewPN->addIncoming(IV, IBB);
    712         if (HasUniqueIncomingValue) {
    713           if (UniqueValue == 0)
    714             UniqueValue = IV;
    715           else if (UniqueValue != IV)
    716             HasUniqueIncomingValue = false;
    717         }
    718       }
    719     }
    720 
    721     // Delete all of the incoming values from the old PN except the preheader's
    722     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    723     if (PreheaderIdx != 0) {
    724       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    725       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    726     }
    727     // Nuke all entries except the zero'th.
    728     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    729       PN->removeIncomingValue(e-i, false);
    730 
    731     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    732     PN->addIncoming(NewPN, BEBlock);
    733 
    734     // As an optimization, if all incoming values in the new PhiNode (which is a
    735     // subset of the incoming values of the old PHI node) have the same value,
    736     // eliminate the PHI Node.
    737     if (HasUniqueIncomingValue) {
    738       NewPN->replaceAllUsesWith(UniqueValue);
    739       if (AA) AA->deleteValue(NewPN);
    740       BEBlock->getInstList().erase(NewPN);
    741     }
    742   }
    743 
    744   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    745   // backedge blocks to just to the BEBlock instead of the header.
    746   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    747     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    748     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    749       if (TI->getSuccessor(Op) == Header)
    750         TI->setSuccessor(Op, BEBlock);
    751   }
    752 
    753   //===--- Update all analyses which we must preserve now -----------------===//
    754 
    755   // Update Loop Information - we know that this block is now in the current
    756   // loop and all parent loops.
    757   L->addBasicBlockToLoop(BEBlock, LI->getBase());
    758 
    759   // Update dominator information
    760   DT->splitBlock(BEBlock);
    761 
    762   return BEBlock;
    763 }
    764 
    765 void LoopSimplify::verifyAnalysis() const {
    766   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    767   // with the introduction of indirectbr, there are now cases where it's
    768   // not possible to transform a loop as necessary. We can at least check
    769   // that there is an indirectbr near any time there's trouble.
    770 
    771   // Indirectbr can interfere with preheader and unique backedge insertion.
    772   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    773     bool HasIndBrPred = false;
    774     for (pred_iterator PI = pred_begin(L->getHeader()),
    775          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    776       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    777         HasIndBrPred = true;
    778         break;
    779       }
    780     assert(HasIndBrPred &&
    781            "LoopSimplify has no excuse for missing loop header info!");
    782     (void)HasIndBrPred;
    783   }
    784 
    785   // Indirectbr can interfere with exit block canonicalization.
    786   if (!L->hasDedicatedExits()) {
    787     bool HasIndBrExiting = false;
    788     SmallVector<BasicBlock*, 8> ExitingBlocks;
    789     L->getExitingBlocks(ExitingBlocks);
    790     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    791       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    792         HasIndBrExiting = true;
    793         break;
    794       }
    795     }
    796 
    797     assert(HasIndBrExiting &&
    798            "LoopSimplify has no excuse for missing exit block info!");
    799     (void)HasIndBrExiting;
    800   }
    801 }
    802