1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/MC/SubtargetFeature.h" 31 #include "llvm/Support/CallSite.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 /***/ 37 38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 39 switch (CC) { 40 default: return llvm::CallingConv::C; 41 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 42 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 43 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 44 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 45 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 46 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 47 // TODO: add support for CC_X86Pascal to llvm 48 } 49 } 50 51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 52 /// qualification. 53 /// FIXME: address space qualification? 54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 55 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 56 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 57 } 58 59 /// Returns the canonical formal type of the given C++ method. 60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 61 return MD->getType()->getCanonicalTypeUnqualified() 62 .getAs<FunctionProtoType>(); 63 } 64 65 /// Returns the "extra-canonicalized" return type, which discards 66 /// qualifiers on the return type. Codegen doesn't care about them, 67 /// and it makes ABI code a little easier to be able to assume that 68 /// all parameter and return types are top-level unqualified. 69 static CanQualType GetReturnType(QualType RetTy) { 70 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 71 } 72 73 /// Arrange the argument and result information for a value of the given 74 /// unprototyped freestanding function type. 75 const CGFunctionInfo & 76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 77 // When translating an unprototyped function type, always use a 78 // variadic type. 79 return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 80 None, FTNP->getExtInfo(), RequiredArgs(0)); 81 } 82 83 /// Arrange the LLVM function layout for a value of the given function 84 /// type, on top of any implicit parameters already stored. Use the 85 /// given ExtInfo instead of the ExtInfo from the function type. 86 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 87 SmallVectorImpl<CanQualType> &prefix, 88 CanQual<FunctionProtoType> FTP, 89 FunctionType::ExtInfo extInfo) { 90 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 91 // FIXME: Kill copy. 92 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 93 prefix.push_back(FTP->getArgType(i)); 94 CanQualType resultType = FTP->getResultType().getUnqualifiedType(); 95 return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required); 96 } 97 98 /// Arrange the argument and result information for a free function (i.e. 99 /// not a C++ or ObjC instance method) of the given type. 100 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 101 SmallVectorImpl<CanQualType> &prefix, 102 CanQual<FunctionProtoType> FTP) { 103 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo()); 104 } 105 106 /// Given the formal ext-info of a C++ instance method, adjust it 107 /// according to the C++ ABI in effect. 108 static void adjustCXXMethodInfo(CodeGenTypes &CGT, 109 FunctionType::ExtInfo &extInfo, 110 bool isVariadic) { 111 if (extInfo.getCC() == CC_Default) { 112 CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic); 113 extInfo = extInfo.withCallingConv(CC); 114 } 115 } 116 117 /// Arrange the argument and result information for a free function (i.e. 118 /// not a C++ or ObjC instance method) of the given type. 119 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 120 SmallVectorImpl<CanQualType> &prefix, 121 CanQual<FunctionProtoType> FTP) { 122 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 123 adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic()); 124 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo); 125 } 126 127 /// Arrange the argument and result information for a value of the 128 /// given freestanding function type. 129 const CGFunctionInfo & 130 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 131 SmallVector<CanQualType, 16> argTypes; 132 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 133 } 134 135 static CallingConv getCallingConventionForDecl(const Decl *D) { 136 // Set the appropriate calling convention for the Function. 137 if (D->hasAttr<StdCallAttr>()) 138 return CC_X86StdCall; 139 140 if (D->hasAttr<FastCallAttr>()) 141 return CC_X86FastCall; 142 143 if (D->hasAttr<ThisCallAttr>()) 144 return CC_X86ThisCall; 145 146 if (D->hasAttr<PascalAttr>()) 147 return CC_X86Pascal; 148 149 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 150 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 151 152 if (D->hasAttr<PnaclCallAttr>()) 153 return CC_PnaclCall; 154 155 if (D->hasAttr<IntelOclBiccAttr>()) 156 return CC_IntelOclBicc; 157 158 return CC_C; 159 } 160 161 /// Arrange the argument and result information for a call to an 162 /// unknown C++ non-static member function of the given abstract type. 163 /// The member function must be an ordinary function, i.e. not a 164 /// constructor or destructor. 165 const CGFunctionInfo & 166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 167 const FunctionProtoType *FTP) { 168 SmallVector<CanQualType, 16> argTypes; 169 170 // Add the 'this' pointer. 171 argTypes.push_back(GetThisType(Context, RD)); 172 173 return ::arrangeCXXMethodType(*this, argTypes, 174 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 175 } 176 177 /// Arrange the argument and result information for a declaration or 178 /// definition of the given C++ non-static member function. The 179 /// member function must be an ordinary function, i.e. not a 180 /// constructor or destructor. 181 const CGFunctionInfo & 182 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 183 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 184 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 185 186 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 187 188 if (MD->isInstance()) { 189 // The abstract case is perfectly fine. 190 return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr()); 191 } 192 193 return arrangeFreeFunctionType(prototype); 194 } 195 196 /// Arrange the argument and result information for a declaration 197 /// or definition to the given constructor variant. 198 const CGFunctionInfo & 199 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 200 CXXCtorType ctorKind) { 201 SmallVector<CanQualType, 16> argTypes; 202 argTypes.push_back(GetThisType(Context, D->getParent())); 203 204 GlobalDecl GD(D, ctorKind); 205 CanQualType resultType = 206 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 207 208 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 209 210 CanQual<FunctionProtoType> FTP = GetFormalType(D); 211 212 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 213 214 // Add the formal parameters. 215 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 216 argTypes.push_back(FTP->getArgType(i)); 217 218 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 219 adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic()); 220 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required); 221 } 222 223 /// Arrange the argument and result information for a declaration, 224 /// definition, or call to the given destructor variant. It so 225 /// happens that all three cases produce the same information. 226 const CGFunctionInfo & 227 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 228 CXXDtorType dtorKind) { 229 SmallVector<CanQualType, 2> argTypes; 230 argTypes.push_back(GetThisType(Context, D->getParent())); 231 232 GlobalDecl GD(D, dtorKind); 233 CanQualType resultType = 234 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 235 236 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 237 238 CanQual<FunctionProtoType> FTP = GetFormalType(D); 239 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 240 assert(FTP->isVariadic() == 0 && "dtor with formal parameters"); 241 242 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 243 adjustCXXMethodInfo(*this, extInfo, false); 244 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, 245 RequiredArgs::All); 246 } 247 248 /// Arrange the argument and result information for the declaration or 249 /// definition of the given function. 250 const CGFunctionInfo & 251 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 252 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 253 if (MD->isInstance()) 254 return arrangeCXXMethodDeclaration(MD); 255 256 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 257 258 assert(isa<FunctionType>(FTy)); 259 260 // When declaring a function without a prototype, always use a 261 // non-variadic type. 262 if (isa<FunctionNoProtoType>(FTy)) { 263 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 264 return arrangeLLVMFunctionInfo(noProto->getResultType(), None, 265 noProto->getExtInfo(), RequiredArgs::All); 266 } 267 268 assert(isa<FunctionProtoType>(FTy)); 269 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 270 } 271 272 /// Arrange the argument and result information for the declaration or 273 /// definition of an Objective-C method. 274 const CGFunctionInfo & 275 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 276 // It happens that this is the same as a call with no optional 277 // arguments, except also using the formal 'self' type. 278 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 279 } 280 281 /// Arrange the argument and result information for the function type 282 /// through which to perform a send to the given Objective-C method, 283 /// using the given receiver type. The receiver type is not always 284 /// the 'self' type of the method or even an Objective-C pointer type. 285 /// This is *not* the right method for actually performing such a 286 /// message send, due to the possibility of optional arguments. 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 289 QualType receiverType) { 290 SmallVector<CanQualType, 16> argTys; 291 argTys.push_back(Context.getCanonicalParamType(receiverType)); 292 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 293 // FIXME: Kill copy? 294 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 295 e = MD->param_end(); i != e; ++i) { 296 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 297 } 298 299 FunctionType::ExtInfo einfo; 300 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 301 302 if (getContext().getLangOpts().ObjCAutoRefCount && 303 MD->hasAttr<NSReturnsRetainedAttr>()) 304 einfo = einfo.withProducesResult(true); 305 306 RequiredArgs required = 307 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 308 309 return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys, 310 einfo, required); 311 } 312 313 const CGFunctionInfo & 314 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 315 // FIXME: Do we need to handle ObjCMethodDecl? 316 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 317 318 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 319 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 320 321 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 322 return arrangeCXXDestructor(DD, GD.getDtorType()); 323 324 return arrangeFunctionDeclaration(FD); 325 } 326 327 /// Arrange a call as unto a free function, except possibly with an 328 /// additional number of formal parameters considered required. 329 static const CGFunctionInfo & 330 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 331 const CallArgList &args, 332 const FunctionType *fnType, 333 unsigned numExtraRequiredArgs) { 334 assert(args.size() >= numExtraRequiredArgs); 335 336 // In most cases, there are no optional arguments. 337 RequiredArgs required = RequiredArgs::All; 338 339 // If we have a variadic prototype, the required arguments are the 340 // extra prefix plus the arguments in the prototype. 341 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 342 if (proto->isVariadic()) 343 required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs); 344 345 // If we don't have a prototype at all, but we're supposed to 346 // explicitly use the variadic convention for unprototyped calls, 347 // treat all of the arguments as required but preserve the nominal 348 // possibility of variadics. 349 } else if (CGT.CGM.getTargetCodeGenInfo() 350 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { 351 required = RequiredArgs(args.size()); 352 } 353 354 return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args, 355 fnType->getExtInfo(), required); 356 } 357 358 /// Figure out the rules for calling a function with the given formal 359 /// type using the given arguments. The arguments are necessary 360 /// because the function might be unprototyped, in which case it's 361 /// target-dependent in crazy ways. 362 const CGFunctionInfo & 363 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 364 const FunctionType *fnType) { 365 return arrangeFreeFunctionLikeCall(*this, args, fnType, 0); 366 } 367 368 /// A block function call is essentially a free-function call with an 369 /// extra implicit argument. 370 const CGFunctionInfo & 371 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 372 const FunctionType *fnType) { 373 return arrangeFreeFunctionLikeCall(*this, args, fnType, 1); 374 } 375 376 const CGFunctionInfo & 377 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 378 const CallArgList &args, 379 FunctionType::ExtInfo info, 380 RequiredArgs required) { 381 // FIXME: Kill copy. 382 SmallVector<CanQualType, 16> argTypes; 383 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 384 i != e; ++i) 385 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 386 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 387 required); 388 } 389 390 /// Arrange a call to a C++ method, passing the given arguments. 391 const CGFunctionInfo & 392 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 393 const FunctionProtoType *FPT, 394 RequiredArgs required) { 395 // FIXME: Kill copy. 396 SmallVector<CanQualType, 16> argTypes; 397 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 398 i != e; ++i) 399 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 400 401 FunctionType::ExtInfo info = FPT->getExtInfo(); 402 adjustCXXMethodInfo(*this, info, FPT->isVariadic()); 403 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()), 404 argTypes, info, required); 405 } 406 407 const CGFunctionInfo & 408 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, 409 const FunctionArgList &args, 410 const FunctionType::ExtInfo &info, 411 bool isVariadic) { 412 // FIXME: Kill copy. 413 SmallVector<CanQualType, 16> argTypes; 414 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 415 i != e; ++i) 416 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 417 418 RequiredArgs required = 419 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 420 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 421 required); 422 } 423 424 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 425 return arrangeLLVMFunctionInfo(getContext().VoidTy, None, 426 FunctionType::ExtInfo(), RequiredArgs::All); 427 } 428 429 /// Arrange the argument and result information for an abstract value 430 /// of a given function type. This is the method which all of the 431 /// above functions ultimately defer to. 432 const CGFunctionInfo & 433 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 434 ArrayRef<CanQualType> argTypes, 435 FunctionType::ExtInfo info, 436 RequiredArgs required) { 437 #ifndef NDEBUG 438 for (ArrayRef<CanQualType>::const_iterator 439 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 440 assert(I->isCanonicalAsParam()); 441 #endif 442 443 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 444 445 // Lookup or create unique function info. 446 llvm::FoldingSetNodeID ID; 447 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); 448 449 void *insertPos = 0; 450 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 451 if (FI) 452 return *FI; 453 454 // Construct the function info. We co-allocate the ArgInfos. 455 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); 456 FunctionInfos.InsertNode(FI, insertPos); 457 458 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 459 assert(inserted && "Recursively being processed?"); 460 461 // Compute ABI information. 462 getABIInfo().computeInfo(*FI); 463 464 // Loop over all of the computed argument and return value info. If any of 465 // them are direct or extend without a specified coerce type, specify the 466 // default now. 467 ABIArgInfo &retInfo = FI->getReturnInfo(); 468 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 469 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 470 471 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 472 I != E; ++I) 473 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 474 I->info.setCoerceToType(ConvertType(I->type)); 475 476 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 477 assert(erased && "Not in set?"); 478 479 return *FI; 480 } 481 482 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 483 const FunctionType::ExtInfo &info, 484 CanQualType resultType, 485 ArrayRef<CanQualType> argTypes, 486 RequiredArgs required) { 487 void *buffer = operator new(sizeof(CGFunctionInfo) + 488 sizeof(ArgInfo) * (argTypes.size() + 1)); 489 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 490 FI->CallingConvention = llvmCC; 491 FI->EffectiveCallingConvention = llvmCC; 492 FI->ASTCallingConvention = info.getCC(); 493 FI->NoReturn = info.getNoReturn(); 494 FI->ReturnsRetained = info.getProducesResult(); 495 FI->Required = required; 496 FI->HasRegParm = info.getHasRegParm(); 497 FI->RegParm = info.getRegParm(); 498 FI->NumArgs = argTypes.size(); 499 FI->getArgsBuffer()[0].type = resultType; 500 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 501 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 502 return FI; 503 } 504 505 /***/ 506 507 void CodeGenTypes::GetExpandedTypes(QualType type, 508 SmallVectorImpl<llvm::Type*> &expandedTypes) { 509 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 510 uint64_t NumElts = AT->getSize().getZExtValue(); 511 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 512 GetExpandedTypes(AT->getElementType(), expandedTypes); 513 } else if (const RecordType *RT = type->getAs<RecordType>()) { 514 const RecordDecl *RD = RT->getDecl(); 515 assert(!RD->hasFlexibleArrayMember() && 516 "Cannot expand structure with flexible array."); 517 if (RD->isUnion()) { 518 // Unions can be here only in degenerative cases - all the fields are same 519 // after flattening. Thus we have to use the "largest" field. 520 const FieldDecl *LargestFD = 0; 521 CharUnits UnionSize = CharUnits::Zero(); 522 523 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 524 i != e; ++i) { 525 const FieldDecl *FD = *i; 526 assert(!FD->isBitField() && 527 "Cannot expand structure with bit-field members."); 528 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 529 if (UnionSize < FieldSize) { 530 UnionSize = FieldSize; 531 LargestFD = FD; 532 } 533 } 534 if (LargestFD) 535 GetExpandedTypes(LargestFD->getType(), expandedTypes); 536 } else { 537 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 538 i != e; ++i) { 539 assert(!i->isBitField() && 540 "Cannot expand structure with bit-field members."); 541 GetExpandedTypes(i->getType(), expandedTypes); 542 } 543 } 544 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 545 llvm::Type *EltTy = ConvertType(CT->getElementType()); 546 expandedTypes.push_back(EltTy); 547 expandedTypes.push_back(EltTy); 548 } else 549 expandedTypes.push_back(ConvertType(type)); 550 } 551 552 llvm::Function::arg_iterator 553 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 554 llvm::Function::arg_iterator AI) { 555 assert(LV.isSimple() && 556 "Unexpected non-simple lvalue during struct expansion."); 557 558 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 559 unsigned NumElts = AT->getSize().getZExtValue(); 560 QualType EltTy = AT->getElementType(); 561 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 562 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 563 LValue LV = MakeAddrLValue(EltAddr, EltTy); 564 AI = ExpandTypeFromArgs(EltTy, LV, AI); 565 } 566 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 567 RecordDecl *RD = RT->getDecl(); 568 if (RD->isUnion()) { 569 // Unions can be here only in degenerative cases - all the fields are same 570 // after flattening. Thus we have to use the "largest" field. 571 const FieldDecl *LargestFD = 0; 572 CharUnits UnionSize = CharUnits::Zero(); 573 574 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 575 i != e; ++i) { 576 const FieldDecl *FD = *i; 577 assert(!FD->isBitField() && 578 "Cannot expand structure with bit-field members."); 579 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 580 if (UnionSize < FieldSize) { 581 UnionSize = FieldSize; 582 LargestFD = FD; 583 } 584 } 585 if (LargestFD) { 586 // FIXME: What are the right qualifiers here? 587 LValue SubLV = EmitLValueForField(LV, LargestFD); 588 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 589 } 590 } else { 591 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 592 i != e; ++i) { 593 FieldDecl *FD = *i; 594 QualType FT = FD->getType(); 595 596 // FIXME: What are the right qualifiers here? 597 LValue SubLV = EmitLValueForField(LV, FD); 598 AI = ExpandTypeFromArgs(FT, SubLV, AI); 599 } 600 } 601 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 602 QualType EltTy = CT->getElementType(); 603 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 604 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 605 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 606 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 607 } else { 608 EmitStoreThroughLValue(RValue::get(AI), LV); 609 ++AI; 610 } 611 612 return AI; 613 } 614 615 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 616 /// accessing some number of bytes out of it, try to gep into the struct to get 617 /// at its inner goodness. Dive as deep as possible without entering an element 618 /// with an in-memory size smaller than DstSize. 619 static llvm::Value * 620 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 621 llvm::StructType *SrcSTy, 622 uint64_t DstSize, CodeGenFunction &CGF) { 623 // We can't dive into a zero-element struct. 624 if (SrcSTy->getNumElements() == 0) return SrcPtr; 625 626 llvm::Type *FirstElt = SrcSTy->getElementType(0); 627 628 // If the first elt is at least as large as what we're looking for, or if the 629 // first element is the same size as the whole struct, we can enter it. 630 uint64_t FirstEltSize = 631 CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt); 632 if (FirstEltSize < DstSize && 633 FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy)) 634 return SrcPtr; 635 636 // GEP into the first element. 637 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 638 639 // If the first element is a struct, recurse. 640 llvm::Type *SrcTy = 641 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 642 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 643 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 644 645 return SrcPtr; 646 } 647 648 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 649 /// are either integers or pointers. This does a truncation of the value if it 650 /// is too large or a zero extension if it is too small. 651 /// 652 /// This behaves as if the value were coerced through memory, so on big-endian 653 /// targets the high bits are preserved in a truncation, while little-endian 654 /// targets preserve the low bits. 655 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 656 llvm::Type *Ty, 657 CodeGenFunction &CGF) { 658 if (Val->getType() == Ty) 659 return Val; 660 661 if (isa<llvm::PointerType>(Val->getType())) { 662 // If this is Pointer->Pointer avoid conversion to and from int. 663 if (isa<llvm::PointerType>(Ty)) 664 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 665 666 // Convert the pointer to an integer so we can play with its width. 667 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 668 } 669 670 llvm::Type *DestIntTy = Ty; 671 if (isa<llvm::PointerType>(DestIntTy)) 672 DestIntTy = CGF.IntPtrTy; 673 674 if (Val->getType() != DestIntTy) { 675 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 676 if (DL.isBigEndian()) { 677 // Preserve the high bits on big-endian targets. 678 // That is what memory coercion does. 679 uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType()); 680 uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy); 681 if (SrcSize > DstSize) { 682 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 683 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 684 } else { 685 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 686 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 687 } 688 } else { 689 // Little-endian targets preserve the low bits. No shifts required. 690 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 691 } 692 } 693 694 if (isa<llvm::PointerType>(Ty)) 695 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 696 return Val; 697 } 698 699 700 701 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 702 /// a pointer to an object of type \arg Ty. 703 /// 704 /// This safely handles the case when the src type is smaller than the 705 /// destination type; in this situation the values of bits which not 706 /// present in the src are undefined. 707 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 708 llvm::Type *Ty, 709 CodeGenFunction &CGF) { 710 llvm::Type *SrcTy = 711 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 712 713 // If SrcTy and Ty are the same, just do a load. 714 if (SrcTy == Ty) 715 return CGF.Builder.CreateLoad(SrcPtr); 716 717 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 718 719 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 720 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 721 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 722 } 723 724 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 725 726 // If the source and destination are integer or pointer types, just do an 727 // extension or truncation to the desired type. 728 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 729 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 730 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 731 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 732 } 733 734 // If load is legal, just bitcast the src pointer. 735 if (SrcSize >= DstSize) { 736 // Generally SrcSize is never greater than DstSize, since this means we are 737 // losing bits. However, this can happen in cases where the structure has 738 // additional padding, for example due to a user specified alignment. 739 // 740 // FIXME: Assert that we aren't truncating non-padding bits when have access 741 // to that information. 742 llvm::Value *Casted = 743 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 744 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 745 // FIXME: Use better alignment / avoid requiring aligned load. 746 Load->setAlignment(1); 747 return Load; 748 } 749 750 // Otherwise do coercion through memory. This is stupid, but 751 // simple. 752 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 753 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 754 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 755 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 756 // FIXME: Use better alignment. 757 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 758 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 759 1, false); 760 return CGF.Builder.CreateLoad(Tmp); 761 } 762 763 // Function to store a first-class aggregate into memory. We prefer to 764 // store the elements rather than the aggregate to be more friendly to 765 // fast-isel. 766 // FIXME: Do we need to recurse here? 767 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 768 llvm::Value *DestPtr, bool DestIsVolatile, 769 bool LowAlignment) { 770 // Prefer scalar stores to first-class aggregate stores. 771 if (llvm::StructType *STy = 772 dyn_cast<llvm::StructType>(Val->getType())) { 773 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 774 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 775 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 776 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 777 DestIsVolatile); 778 if (LowAlignment) 779 SI->setAlignment(1); 780 } 781 } else { 782 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 783 if (LowAlignment) 784 SI->setAlignment(1); 785 } 786 } 787 788 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 789 /// where the source and destination may have different types. 790 /// 791 /// This safely handles the case when the src type is larger than the 792 /// destination type; the upper bits of the src will be lost. 793 static void CreateCoercedStore(llvm::Value *Src, 794 llvm::Value *DstPtr, 795 bool DstIsVolatile, 796 CodeGenFunction &CGF) { 797 llvm::Type *SrcTy = Src->getType(); 798 llvm::Type *DstTy = 799 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 800 if (SrcTy == DstTy) { 801 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 802 return; 803 } 804 805 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 806 807 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 808 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 809 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 810 } 811 812 // If the source and destination are integer or pointer types, just do an 813 // extension or truncation to the desired type. 814 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 815 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 816 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 817 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 818 return; 819 } 820 821 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 822 823 // If store is legal, just bitcast the src pointer. 824 if (SrcSize <= DstSize) { 825 llvm::Value *Casted = 826 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 827 // FIXME: Use better alignment / avoid requiring aligned store. 828 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 829 } else { 830 // Otherwise do coercion through memory. This is stupid, but 831 // simple. 832 833 // Generally SrcSize is never greater than DstSize, since this means we are 834 // losing bits. However, this can happen in cases where the structure has 835 // additional padding, for example due to a user specified alignment. 836 // 837 // FIXME: Assert that we aren't truncating non-padding bits when have access 838 // to that information. 839 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 840 CGF.Builder.CreateStore(Src, Tmp); 841 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 842 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 843 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 844 // FIXME: Use better alignment. 845 CGF.Builder.CreateMemCpy(DstCasted, Casted, 846 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 847 1, false); 848 } 849 } 850 851 /***/ 852 853 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 854 return FI.getReturnInfo().isIndirect(); 855 } 856 857 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 858 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 859 switch (BT->getKind()) { 860 default: 861 return false; 862 case BuiltinType::Float: 863 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 864 case BuiltinType::Double: 865 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 866 case BuiltinType::LongDouble: 867 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 868 } 869 } 870 871 return false; 872 } 873 874 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 875 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 876 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 877 if (BT->getKind() == BuiltinType::LongDouble) 878 return getTarget().useObjCFP2RetForComplexLongDouble(); 879 } 880 } 881 882 return false; 883 } 884 885 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 886 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 887 return GetFunctionType(FI); 888 } 889 890 llvm::FunctionType * 891 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 892 893 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 894 assert(Inserted && "Recursively being processed?"); 895 896 SmallVector<llvm::Type*, 8> argTypes; 897 llvm::Type *resultType = 0; 898 899 const ABIArgInfo &retAI = FI.getReturnInfo(); 900 switch (retAI.getKind()) { 901 case ABIArgInfo::Expand: 902 llvm_unreachable("Invalid ABI kind for return argument"); 903 904 case ABIArgInfo::Extend: 905 case ABIArgInfo::Direct: 906 resultType = retAI.getCoerceToType(); 907 break; 908 909 case ABIArgInfo::Indirect: { 910 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 911 resultType = llvm::Type::getVoidTy(getLLVMContext()); 912 913 QualType ret = FI.getReturnType(); 914 llvm::Type *ty = ConvertType(ret); 915 unsigned addressSpace = Context.getTargetAddressSpace(ret); 916 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 917 break; 918 } 919 920 case ABIArgInfo::Ignore: 921 resultType = llvm::Type::getVoidTy(getLLVMContext()); 922 break; 923 } 924 925 // Add in all of the required arguments. 926 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie; 927 if (FI.isVariadic()) { 928 ie = it + FI.getRequiredArgs().getNumRequiredArgs(); 929 } else { 930 ie = FI.arg_end(); 931 } 932 for (; it != ie; ++it) { 933 const ABIArgInfo &argAI = it->info; 934 935 // Insert a padding type to ensure proper alignment. 936 if (llvm::Type *PaddingType = argAI.getPaddingType()) 937 argTypes.push_back(PaddingType); 938 939 switch (argAI.getKind()) { 940 case ABIArgInfo::Ignore: 941 break; 942 943 case ABIArgInfo::Indirect: { 944 // indirect arguments are always on the stack, which is addr space #0. 945 llvm::Type *LTy = ConvertTypeForMem(it->type); 946 argTypes.push_back(LTy->getPointerTo()); 947 break; 948 } 949 950 case ABIArgInfo::Extend: 951 case ABIArgInfo::Direct: { 952 // If the coerce-to type is a first class aggregate, flatten it. Either 953 // way is semantically identical, but fast-isel and the optimizer 954 // generally likes scalar values better than FCAs. 955 llvm::Type *argType = argAI.getCoerceToType(); 956 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 957 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 958 argTypes.push_back(st->getElementType(i)); 959 } else { 960 argTypes.push_back(argType); 961 } 962 break; 963 } 964 965 case ABIArgInfo::Expand: 966 GetExpandedTypes(it->type, argTypes); 967 break; 968 } 969 } 970 971 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 972 assert(Erased && "Not in set?"); 973 974 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 975 } 976 977 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 978 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 979 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 980 981 if (!isFuncTypeConvertible(FPT)) 982 return llvm::StructType::get(getLLVMContext()); 983 984 const CGFunctionInfo *Info; 985 if (isa<CXXDestructorDecl>(MD)) 986 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 987 else 988 Info = &arrangeCXXMethodDeclaration(MD); 989 return GetFunctionType(*Info); 990 } 991 992 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 993 const Decl *TargetDecl, 994 AttributeListType &PAL, 995 unsigned &CallingConv, 996 bool AttrOnCallSite) { 997 llvm::AttrBuilder FuncAttrs; 998 llvm::AttrBuilder RetAttrs; 999 1000 CallingConv = FI.getEffectiveCallingConvention(); 1001 1002 if (FI.isNoReturn()) 1003 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1004 1005 // FIXME: handle sseregparm someday... 1006 if (TargetDecl) { 1007 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1008 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1009 if (TargetDecl->hasAttr<NoThrowAttr>()) 1010 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1011 if (TargetDecl->hasAttr<NoReturnAttr>()) 1012 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1013 1014 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1015 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1016 if (FPT && FPT->isNothrow(getContext())) 1017 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1018 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1019 // These attributes are not inherited by overloads. 1020 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1021 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1022 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1023 } 1024 1025 // 'const' and 'pure' attribute functions are also nounwind. 1026 if (TargetDecl->hasAttr<ConstAttr>()) { 1027 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1028 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1029 } else if (TargetDecl->hasAttr<PureAttr>()) { 1030 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1031 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1032 } 1033 if (TargetDecl->hasAttr<MallocAttr>()) 1034 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1035 } 1036 1037 if (CodeGenOpts.OptimizeSize) 1038 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1039 if (CodeGenOpts.OptimizeSize == 2) 1040 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1041 if (CodeGenOpts.DisableRedZone) 1042 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1043 if (CodeGenOpts.NoImplicitFloat) 1044 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1045 1046 if (AttrOnCallSite) { 1047 // Attributes that should go on the call site only. 1048 if (!CodeGenOpts.SimplifyLibCalls) 1049 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1050 } else { 1051 // Attributes that should go on the function, but not the call site. 1052 if (!CodeGenOpts.DisableFPElim) { 1053 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1054 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false"); 1055 } else if (CodeGenOpts.OmitLeafFramePointer) { 1056 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1057 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true"); 1058 } else { 1059 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1060 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true"); 1061 } 1062 1063 FuncAttrs.addAttribute("less-precise-fpmad", 1064 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1065 FuncAttrs.addAttribute("no-infs-fp-math", 1066 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1067 FuncAttrs.addAttribute("no-nans-fp-math", 1068 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1069 FuncAttrs.addAttribute("unsafe-fp-math", 1070 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1071 FuncAttrs.addAttribute("use-soft-float", 1072 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1073 FuncAttrs.addAttribute("stack-protector-buffer-size", 1074 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1075 1076 bool NoFramePointerElimNonLeaf; 1077 if (!CodeGenOpts.DisableFPElim) { 1078 NoFramePointerElimNonLeaf = false; 1079 } else if (CodeGenOpts.OmitLeafFramePointer) { 1080 NoFramePointerElimNonLeaf = true; 1081 } else { 1082 NoFramePointerElimNonLeaf = true; 1083 } 1084 1085 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", 1086 llvm::toStringRef(NoFramePointerElimNonLeaf)); 1087 1088 if (!CodeGenOpts.StackRealignment) 1089 FuncAttrs.addAttribute("no-realign-stack"); 1090 } 1091 1092 QualType RetTy = FI.getReturnType(); 1093 unsigned Index = 1; 1094 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1095 switch (RetAI.getKind()) { 1096 case ABIArgInfo::Extend: 1097 if (RetTy->hasSignedIntegerRepresentation()) 1098 RetAttrs.addAttribute(llvm::Attribute::SExt); 1099 else if (RetTy->hasUnsignedIntegerRepresentation()) 1100 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1101 // FALL THROUGH 1102 case ABIArgInfo::Direct: 1103 if (RetAI.getInReg()) 1104 RetAttrs.addAttribute(llvm::Attribute::InReg); 1105 break; 1106 case ABIArgInfo::Ignore: 1107 break; 1108 1109 case ABIArgInfo::Indirect: { 1110 llvm::AttrBuilder SRETAttrs; 1111 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1112 if (RetAI.getInReg()) 1113 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1114 PAL.push_back(llvm:: 1115 AttributeSet::get(getLLVMContext(), Index, SRETAttrs)); 1116 1117 ++Index; 1118 // sret disables readnone and readonly 1119 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1120 .removeAttribute(llvm::Attribute::ReadNone); 1121 break; 1122 } 1123 1124 case ABIArgInfo::Expand: 1125 llvm_unreachable("Invalid ABI kind for return argument"); 1126 } 1127 1128 if (RetAttrs.hasAttributes()) 1129 PAL.push_back(llvm:: 1130 AttributeSet::get(getLLVMContext(), 1131 llvm::AttributeSet::ReturnIndex, 1132 RetAttrs)); 1133 1134 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1135 ie = FI.arg_end(); it != ie; ++it) { 1136 QualType ParamType = it->type; 1137 const ABIArgInfo &AI = it->info; 1138 llvm::AttrBuilder Attrs; 1139 1140 if (AI.getPaddingType()) { 1141 if (AI.getPaddingInReg()) 1142 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, 1143 llvm::Attribute::InReg)); 1144 // Increment Index if there is padding. 1145 ++Index; 1146 } 1147 1148 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1149 // have the corresponding parameter variable. It doesn't make 1150 // sense to do it here because parameters are so messed up. 1151 switch (AI.getKind()) { 1152 case ABIArgInfo::Extend: 1153 if (ParamType->isSignedIntegerOrEnumerationType()) 1154 Attrs.addAttribute(llvm::Attribute::SExt); 1155 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1156 Attrs.addAttribute(llvm::Attribute::ZExt); 1157 // FALL THROUGH 1158 case ABIArgInfo::Direct: 1159 if (AI.getInReg()) 1160 Attrs.addAttribute(llvm::Attribute::InReg); 1161 1162 // FIXME: handle sseregparm someday... 1163 1164 if (llvm::StructType *STy = 1165 dyn_cast<llvm::StructType>(AI.getCoerceToType())) { 1166 unsigned Extra = STy->getNumElements()-1; // 1 will be added below. 1167 if (Attrs.hasAttributes()) 1168 for (unsigned I = 0; I < Extra; ++I) 1169 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I, 1170 Attrs)); 1171 Index += Extra; 1172 } 1173 break; 1174 1175 case ABIArgInfo::Indirect: 1176 if (AI.getInReg()) 1177 Attrs.addAttribute(llvm::Attribute::InReg); 1178 1179 if (AI.getIndirectByVal()) 1180 Attrs.addAttribute(llvm::Attribute::ByVal); 1181 1182 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1183 1184 // byval disables readnone and readonly. 1185 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1186 .removeAttribute(llvm::Attribute::ReadNone); 1187 break; 1188 1189 case ABIArgInfo::Ignore: 1190 // Skip increment, no matching LLVM parameter. 1191 continue; 1192 1193 case ABIArgInfo::Expand: { 1194 SmallVector<llvm::Type*, 8> types; 1195 // FIXME: This is rather inefficient. Do we ever actually need to do 1196 // anything here? The result should be just reconstructed on the other 1197 // side, so extension should be a non-issue. 1198 getTypes().GetExpandedTypes(ParamType, types); 1199 Index += types.size(); 1200 continue; 1201 } 1202 } 1203 1204 if (Attrs.hasAttributes()) 1205 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1206 ++Index; 1207 } 1208 if (FuncAttrs.hasAttributes()) 1209 PAL.push_back(llvm:: 1210 AttributeSet::get(getLLVMContext(), 1211 llvm::AttributeSet::FunctionIndex, 1212 FuncAttrs)); 1213 } 1214 1215 /// An argument came in as a promoted argument; demote it back to its 1216 /// declared type. 1217 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1218 const VarDecl *var, 1219 llvm::Value *value) { 1220 llvm::Type *varType = CGF.ConvertType(var->getType()); 1221 1222 // This can happen with promotions that actually don't change the 1223 // underlying type, like the enum promotions. 1224 if (value->getType() == varType) return value; 1225 1226 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1227 && "unexpected promotion type"); 1228 1229 if (isa<llvm::IntegerType>(varType)) 1230 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1231 1232 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1233 } 1234 1235 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1236 llvm::Function *Fn, 1237 const FunctionArgList &Args) { 1238 // If this is an implicit-return-zero function, go ahead and 1239 // initialize the return value. TODO: it might be nice to have 1240 // a more general mechanism for this that didn't require synthesized 1241 // return statements. 1242 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1243 if (FD->hasImplicitReturnZero()) { 1244 QualType RetTy = FD->getResultType().getUnqualifiedType(); 1245 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1246 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1247 Builder.CreateStore(Zero, ReturnValue); 1248 } 1249 } 1250 1251 // FIXME: We no longer need the types from FunctionArgList; lift up and 1252 // simplify. 1253 1254 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1255 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1256 1257 // Name the struct return argument. 1258 if (CGM.ReturnTypeUsesSRet(FI)) { 1259 AI->setName("agg.result"); 1260 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1261 AI->getArgNo() + 1, 1262 llvm::Attribute::NoAlias)); 1263 ++AI; 1264 } 1265 1266 assert(FI.arg_size() == Args.size() && 1267 "Mismatch between function signature & arguments."); 1268 unsigned ArgNo = 1; 1269 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1270 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1271 i != e; ++i, ++info_it, ++ArgNo) { 1272 const VarDecl *Arg = *i; 1273 QualType Ty = info_it->type; 1274 const ABIArgInfo &ArgI = info_it->info; 1275 1276 bool isPromoted = 1277 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1278 1279 // Skip the dummy padding argument. 1280 if (ArgI.getPaddingType()) 1281 ++AI; 1282 1283 switch (ArgI.getKind()) { 1284 case ABIArgInfo::Indirect: { 1285 llvm::Value *V = AI; 1286 1287 if (!hasScalarEvaluationKind(Ty)) { 1288 // Aggregates and complex variables are accessed by reference. All we 1289 // need to do is realign the value, if requested 1290 if (ArgI.getIndirectRealign()) { 1291 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1292 1293 // Copy from the incoming argument pointer to the temporary with the 1294 // appropriate alignment. 1295 // 1296 // FIXME: We should have a common utility for generating an aggregate 1297 // copy. 1298 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1299 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1300 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1301 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1302 Builder.CreateMemCpy(Dst, 1303 Src, 1304 llvm::ConstantInt::get(IntPtrTy, 1305 Size.getQuantity()), 1306 ArgI.getIndirectAlign(), 1307 false); 1308 V = AlignedTemp; 1309 } 1310 } else { 1311 // Load scalar value from indirect argument. 1312 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1313 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 1314 1315 if (isPromoted) 1316 V = emitArgumentDemotion(*this, Arg, V); 1317 } 1318 EmitParmDecl(*Arg, V, ArgNo); 1319 break; 1320 } 1321 1322 case ABIArgInfo::Extend: 1323 case ABIArgInfo::Direct: { 1324 1325 // If we have the trivial case, handle it with no muss and fuss. 1326 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1327 ArgI.getCoerceToType() == ConvertType(Ty) && 1328 ArgI.getDirectOffset() == 0) { 1329 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1330 llvm::Value *V = AI; 1331 1332 if (Arg->getType().isRestrictQualified()) 1333 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1334 AI->getArgNo() + 1, 1335 llvm::Attribute::NoAlias)); 1336 1337 // Ensure the argument is the correct type. 1338 if (V->getType() != ArgI.getCoerceToType()) 1339 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1340 1341 if (isPromoted) 1342 V = emitArgumentDemotion(*this, Arg, V); 1343 1344 // Because of merging of function types from multiple decls it is 1345 // possible for the type of an argument to not match the corresponding 1346 // type in the function type. Since we are codegening the callee 1347 // in here, add a cast to the argument type. 1348 llvm::Type *LTy = ConvertType(Arg->getType()); 1349 if (V->getType() != LTy) 1350 V = Builder.CreateBitCast(V, LTy); 1351 1352 EmitParmDecl(*Arg, V, ArgNo); 1353 break; 1354 } 1355 1356 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1357 1358 // The alignment we need to use is the max of the requested alignment for 1359 // the argument plus the alignment required by our access code below. 1360 unsigned AlignmentToUse = 1361 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 1362 AlignmentToUse = std::max(AlignmentToUse, 1363 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1364 1365 Alloca->setAlignment(AlignmentToUse); 1366 llvm::Value *V = Alloca; 1367 llvm::Value *Ptr = V; // Pointer to store into. 1368 1369 // If the value is offset in memory, apply the offset now. 1370 if (unsigned Offs = ArgI.getDirectOffset()) { 1371 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1372 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1373 Ptr = Builder.CreateBitCast(Ptr, 1374 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1375 } 1376 1377 // If the coerce-to type is a first class aggregate, we flatten it and 1378 // pass the elements. Either way is semantically identical, but fast-isel 1379 // and the optimizer generally likes scalar values better than FCAs. 1380 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1381 if (STy && STy->getNumElements() > 1) { 1382 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 1383 llvm::Type *DstTy = 1384 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1385 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 1386 1387 if (SrcSize <= DstSize) { 1388 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1389 1390 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1391 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1392 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1393 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1394 Builder.CreateStore(AI++, EltPtr); 1395 } 1396 } else { 1397 llvm::AllocaInst *TempAlloca = 1398 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1399 TempAlloca->setAlignment(AlignmentToUse); 1400 llvm::Value *TempV = TempAlloca; 1401 1402 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1403 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1404 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1405 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1406 Builder.CreateStore(AI++, EltPtr); 1407 } 1408 1409 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1410 } 1411 } else { 1412 // Simple case, just do a coerced store of the argument into the alloca. 1413 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1414 AI->setName(Arg->getName() + ".coerce"); 1415 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1416 } 1417 1418 1419 // Match to what EmitParmDecl is expecting for this type. 1420 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1421 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1422 if (isPromoted) 1423 V = emitArgumentDemotion(*this, Arg, V); 1424 } 1425 EmitParmDecl(*Arg, V, ArgNo); 1426 continue; // Skip ++AI increment, already done. 1427 } 1428 1429 case ABIArgInfo::Expand: { 1430 // If this structure was expanded into multiple arguments then 1431 // we need to create a temporary and reconstruct it from the 1432 // arguments. 1433 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1434 CharUnits Align = getContext().getDeclAlign(Arg); 1435 Alloca->setAlignment(Align.getQuantity()); 1436 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1437 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1438 EmitParmDecl(*Arg, Alloca, ArgNo); 1439 1440 // Name the arguments used in expansion and increment AI. 1441 unsigned Index = 0; 1442 for (; AI != End; ++AI, ++Index) 1443 AI->setName(Arg->getName() + "." + Twine(Index)); 1444 continue; 1445 } 1446 1447 case ABIArgInfo::Ignore: 1448 // Initialize the local variable appropriately. 1449 if (!hasScalarEvaluationKind(Ty)) 1450 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1451 else 1452 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1453 ArgNo); 1454 1455 // Skip increment, no matching LLVM parameter. 1456 continue; 1457 } 1458 1459 ++AI; 1460 } 1461 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1462 } 1463 1464 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1465 while (insn->use_empty()) { 1466 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1467 if (!bitcast) return; 1468 1469 // This is "safe" because we would have used a ConstantExpr otherwise. 1470 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1471 bitcast->eraseFromParent(); 1472 } 1473 } 1474 1475 /// Try to emit a fused autorelease of a return result. 1476 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1477 llvm::Value *result) { 1478 // We must be immediately followed the cast. 1479 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1480 if (BB->empty()) return 0; 1481 if (&BB->back() != result) return 0; 1482 1483 llvm::Type *resultType = result->getType(); 1484 1485 // result is in a BasicBlock and is therefore an Instruction. 1486 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1487 1488 SmallVector<llvm::Instruction*,4> insnsToKill; 1489 1490 // Look for: 1491 // %generator = bitcast %type1* %generator2 to %type2* 1492 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1493 // We would have emitted this as a constant if the operand weren't 1494 // an Instruction. 1495 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1496 1497 // Require the generator to be immediately followed by the cast. 1498 if (generator->getNextNode() != bitcast) 1499 return 0; 1500 1501 insnsToKill.push_back(bitcast); 1502 } 1503 1504 // Look for: 1505 // %generator = call i8* @objc_retain(i8* %originalResult) 1506 // or 1507 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1508 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1509 if (!call) return 0; 1510 1511 bool doRetainAutorelease; 1512 1513 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1514 doRetainAutorelease = true; 1515 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1516 .objc_retainAutoreleasedReturnValue) { 1517 doRetainAutorelease = false; 1518 1519 // If we emitted an assembly marker for this call (and the 1520 // ARCEntrypoints field should have been set if so), go looking 1521 // for that call. If we can't find it, we can't do this 1522 // optimization. But it should always be the immediately previous 1523 // instruction, unless we needed bitcasts around the call. 1524 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 1525 llvm::Instruction *prev = call->getPrevNode(); 1526 assert(prev); 1527 if (isa<llvm::BitCastInst>(prev)) { 1528 prev = prev->getPrevNode(); 1529 assert(prev); 1530 } 1531 assert(isa<llvm::CallInst>(prev)); 1532 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 1533 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 1534 insnsToKill.push_back(prev); 1535 } 1536 } else { 1537 return 0; 1538 } 1539 1540 result = call->getArgOperand(0); 1541 insnsToKill.push_back(call); 1542 1543 // Keep killing bitcasts, for sanity. Note that we no longer care 1544 // about precise ordering as long as there's exactly one use. 1545 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1546 if (!bitcast->hasOneUse()) break; 1547 insnsToKill.push_back(bitcast); 1548 result = bitcast->getOperand(0); 1549 } 1550 1551 // Delete all the unnecessary instructions, from latest to earliest. 1552 for (SmallVectorImpl<llvm::Instruction*>::iterator 1553 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1554 (*i)->eraseFromParent(); 1555 1556 // Do the fused retain/autorelease if we were asked to. 1557 if (doRetainAutorelease) 1558 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1559 1560 // Cast back to the result type. 1561 return CGF.Builder.CreateBitCast(result, resultType); 1562 } 1563 1564 /// If this is a +1 of the value of an immutable 'self', remove it. 1565 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1566 llvm::Value *result) { 1567 // This is only applicable to a method with an immutable 'self'. 1568 const ObjCMethodDecl *method = 1569 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 1570 if (!method) return 0; 1571 const VarDecl *self = method->getSelfDecl(); 1572 if (!self->getType().isConstQualified()) return 0; 1573 1574 // Look for a retain call. 1575 llvm::CallInst *retainCall = 1576 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1577 if (!retainCall || 1578 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1579 return 0; 1580 1581 // Look for an ordinary load of 'self'. 1582 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1583 llvm::LoadInst *load = 1584 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1585 if (!load || load->isAtomic() || load->isVolatile() || 1586 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1587 return 0; 1588 1589 // Okay! Burn it all down. This relies for correctness on the 1590 // assumption that the retain is emitted as part of the return and 1591 // that thereafter everything is used "linearly". 1592 llvm::Type *resultType = result->getType(); 1593 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1594 assert(retainCall->use_empty()); 1595 retainCall->eraseFromParent(); 1596 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1597 1598 return CGF.Builder.CreateBitCast(load, resultType); 1599 } 1600 1601 /// Emit an ARC autorelease of the result of a function. 1602 /// 1603 /// \return the value to actually return from the function 1604 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1605 llvm::Value *result) { 1606 // If we're returning 'self', kill the initial retain. This is a 1607 // heuristic attempt to "encourage correctness" in the really unfortunate 1608 // case where we have a return of self during a dealloc and we desperately 1609 // need to avoid the possible autorelease. 1610 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1611 return self; 1612 1613 // At -O0, try to emit a fused retain/autorelease. 1614 if (CGF.shouldUseFusedARCCalls()) 1615 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1616 return fused; 1617 1618 return CGF.EmitARCAutoreleaseReturnValue(result); 1619 } 1620 1621 /// Heuristically search for a dominating store to the return-value slot. 1622 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1623 // If there are multiple uses of the return-value slot, just check 1624 // for something immediately preceding the IP. Sometimes this can 1625 // happen with how we generate implicit-returns; it can also happen 1626 // with noreturn cleanups. 1627 if (!CGF.ReturnValue->hasOneUse()) { 1628 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1629 if (IP->empty()) return 0; 1630 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1631 if (!store) return 0; 1632 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1633 assert(!store->isAtomic() && !store->isVolatile()); // see below 1634 return store; 1635 } 1636 1637 llvm::StoreInst *store = 1638 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1639 if (!store) return 0; 1640 1641 // These aren't actually possible for non-coerced returns, and we 1642 // only care about non-coerced returns on this code path. 1643 assert(!store->isAtomic() && !store->isVolatile()); 1644 1645 // Now do a first-and-dirty dominance check: just walk up the 1646 // single-predecessors chain from the current insertion point. 1647 llvm::BasicBlock *StoreBB = store->getParent(); 1648 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1649 while (IP != StoreBB) { 1650 if (!(IP = IP->getSinglePredecessor())) 1651 return 0; 1652 } 1653 1654 // Okay, the store's basic block dominates the insertion point; we 1655 // can do our thing. 1656 return store; 1657 } 1658 1659 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 1660 bool EmitRetDbgLoc) { 1661 // Functions with no result always return void. 1662 if (ReturnValue == 0) { 1663 Builder.CreateRetVoid(); 1664 return; 1665 } 1666 1667 llvm::DebugLoc RetDbgLoc; 1668 llvm::Value *RV = 0; 1669 QualType RetTy = FI.getReturnType(); 1670 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1671 1672 switch (RetAI.getKind()) { 1673 case ABIArgInfo::Indirect: { 1674 switch (getEvaluationKind(RetTy)) { 1675 case TEK_Complex: { 1676 ComplexPairTy RT = 1677 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy)); 1678 EmitStoreOfComplex(RT, 1679 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1680 /*isInit*/ true); 1681 break; 1682 } 1683 case TEK_Aggregate: 1684 // Do nothing; aggregrates get evaluated directly into the destination. 1685 break; 1686 case TEK_Scalar: 1687 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 1688 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1689 /*isInit*/ true); 1690 break; 1691 } 1692 break; 1693 } 1694 1695 case ABIArgInfo::Extend: 1696 case ABIArgInfo::Direct: 1697 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1698 RetAI.getDirectOffset() == 0) { 1699 // The internal return value temp always will have pointer-to-return-type 1700 // type, just do a load. 1701 1702 // If there is a dominating store to ReturnValue, we can elide 1703 // the load, zap the store, and usually zap the alloca. 1704 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1705 // Reuse the debug location from the store unless there is 1706 // cleanup code to be emitted between the store and return 1707 // instruction. 1708 if (EmitRetDbgLoc && !AutoreleaseResult) 1709 RetDbgLoc = SI->getDebugLoc(); 1710 // Get the stored value and nuke the now-dead store. 1711 RV = SI->getValueOperand(); 1712 SI->eraseFromParent(); 1713 1714 // If that was the only use of the return value, nuke it as well now. 1715 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1716 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1717 ReturnValue = 0; 1718 } 1719 1720 // Otherwise, we have to do a simple load. 1721 } else { 1722 RV = Builder.CreateLoad(ReturnValue); 1723 } 1724 } else { 1725 llvm::Value *V = ReturnValue; 1726 // If the value is offset in memory, apply the offset now. 1727 if (unsigned Offs = RetAI.getDirectOffset()) { 1728 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1729 V = Builder.CreateConstGEP1_32(V, Offs); 1730 V = Builder.CreateBitCast(V, 1731 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1732 } 1733 1734 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1735 } 1736 1737 // In ARC, end functions that return a retainable type with a call 1738 // to objc_autoreleaseReturnValue. 1739 if (AutoreleaseResult) { 1740 assert(getLangOpts().ObjCAutoRefCount && 1741 !FI.isReturnsRetained() && 1742 RetTy->isObjCRetainableType()); 1743 RV = emitAutoreleaseOfResult(*this, RV); 1744 } 1745 1746 break; 1747 1748 case ABIArgInfo::Ignore: 1749 break; 1750 1751 case ABIArgInfo::Expand: 1752 llvm_unreachable("Invalid ABI kind for return argument"); 1753 } 1754 1755 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1756 if (!RetDbgLoc.isUnknown()) 1757 Ret->setDebugLoc(RetDbgLoc); 1758 } 1759 1760 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1761 const VarDecl *param) { 1762 // StartFunction converted the ABI-lowered parameter(s) into a 1763 // local alloca. We need to turn that into an r-value suitable 1764 // for EmitCall. 1765 llvm::Value *local = GetAddrOfLocalVar(param); 1766 1767 QualType type = param->getType(); 1768 1769 // For the most part, we just need to load the alloca, except: 1770 // 1) aggregate r-values are actually pointers to temporaries, and 1771 // 2) references to non-scalars are pointers directly to the aggregate. 1772 // I don't know why references to scalars are different here. 1773 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1774 if (!hasScalarEvaluationKind(ref->getPointeeType())) 1775 return args.add(RValue::getAggregate(local), type); 1776 1777 // Locals which are references to scalars are represented 1778 // with allocas holding the pointer. 1779 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1780 } 1781 1782 args.add(convertTempToRValue(local, type), type); 1783 } 1784 1785 static bool isProvablyNull(llvm::Value *addr) { 1786 return isa<llvm::ConstantPointerNull>(addr); 1787 } 1788 1789 static bool isProvablyNonNull(llvm::Value *addr) { 1790 return isa<llvm::AllocaInst>(addr); 1791 } 1792 1793 /// Emit the actual writing-back of a writeback. 1794 static void emitWriteback(CodeGenFunction &CGF, 1795 const CallArgList::Writeback &writeback) { 1796 const LValue &srcLV = writeback.Source; 1797 llvm::Value *srcAddr = srcLV.getAddress(); 1798 assert(!isProvablyNull(srcAddr) && 1799 "shouldn't have writeback for provably null argument"); 1800 1801 llvm::BasicBlock *contBB = 0; 1802 1803 // If the argument wasn't provably non-null, we need to null check 1804 // before doing the store. 1805 bool provablyNonNull = isProvablyNonNull(srcAddr); 1806 if (!provablyNonNull) { 1807 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1808 contBB = CGF.createBasicBlock("icr.done"); 1809 1810 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1811 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1812 CGF.EmitBlock(writebackBB); 1813 } 1814 1815 // Load the value to writeback. 1816 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1817 1818 // Cast it back, in case we're writing an id to a Foo* or something. 1819 value = CGF.Builder.CreateBitCast(value, 1820 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1821 "icr.writeback-cast"); 1822 1823 // Perform the writeback. 1824 1825 // If we have a "to use" value, it's something we need to emit a use 1826 // of. This has to be carefully threaded in: if it's done after the 1827 // release it's potentially undefined behavior (and the optimizer 1828 // will ignore it), and if it happens before the retain then the 1829 // optimizer could move the release there. 1830 if (writeback.ToUse) { 1831 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 1832 1833 // Retain the new value. No need to block-copy here: the block's 1834 // being passed up the stack. 1835 value = CGF.EmitARCRetainNonBlock(value); 1836 1837 // Emit the intrinsic use here. 1838 CGF.EmitARCIntrinsicUse(writeback.ToUse); 1839 1840 // Load the old value (primitively). 1841 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV); 1842 1843 // Put the new value in place (primitively). 1844 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 1845 1846 // Release the old value. 1847 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 1848 1849 // Otherwise, we can just do a normal lvalue store. 1850 } else { 1851 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 1852 } 1853 1854 // Jump to the continuation block. 1855 if (!provablyNonNull) 1856 CGF.EmitBlock(contBB); 1857 } 1858 1859 static void emitWritebacks(CodeGenFunction &CGF, 1860 const CallArgList &args) { 1861 for (CallArgList::writeback_iterator 1862 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1863 emitWriteback(CGF, *i); 1864 } 1865 1866 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 1867 const CallArgList &CallArgs) { 1868 assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee()); 1869 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 1870 CallArgs.getCleanupsToDeactivate(); 1871 // Iterate in reverse to increase the likelihood of popping the cleanup. 1872 for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator 1873 I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) { 1874 CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP); 1875 I->IsActiveIP->eraseFromParent(); 1876 } 1877 } 1878 1879 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 1880 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 1881 if (uop->getOpcode() == UO_AddrOf) 1882 return uop->getSubExpr(); 1883 return 0; 1884 } 1885 1886 /// Emit an argument that's being passed call-by-writeback. That is, 1887 /// we are passing the address of 1888 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1889 const ObjCIndirectCopyRestoreExpr *CRE) { 1890 LValue srcLV; 1891 1892 // Make an optimistic effort to emit the address as an l-value. 1893 // This can fail if the the argument expression is more complicated. 1894 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 1895 srcLV = CGF.EmitLValue(lvExpr); 1896 1897 // Otherwise, just emit it as a scalar. 1898 } else { 1899 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1900 1901 QualType srcAddrType = 1902 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1903 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType); 1904 } 1905 llvm::Value *srcAddr = srcLV.getAddress(); 1906 1907 // The dest and src types don't necessarily match in LLVM terms 1908 // because of the crazy ObjC compatibility rules. 1909 1910 llvm::PointerType *destType = 1911 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1912 1913 // If the address is a constant null, just pass the appropriate null. 1914 if (isProvablyNull(srcAddr)) { 1915 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1916 CRE->getType()); 1917 return; 1918 } 1919 1920 // Create the temporary. 1921 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1922 "icr.temp"); 1923 // Loading an l-value can introduce a cleanup if the l-value is __weak, 1924 // and that cleanup will be conditional if we can't prove that the l-value 1925 // isn't null, so we need to register a dominating point so that the cleanups 1926 // system will make valid IR. 1927 CodeGenFunction::ConditionalEvaluation condEval(CGF); 1928 1929 // Zero-initialize it if we're not doing a copy-initialization. 1930 bool shouldCopy = CRE->shouldCopy(); 1931 if (!shouldCopy) { 1932 llvm::Value *null = 1933 llvm::ConstantPointerNull::get( 1934 cast<llvm::PointerType>(destType->getElementType())); 1935 CGF.Builder.CreateStore(null, temp); 1936 } 1937 1938 llvm::BasicBlock *contBB = 0; 1939 llvm::BasicBlock *originBB = 0; 1940 1941 // If the address is *not* known to be non-null, we need to switch. 1942 llvm::Value *finalArgument; 1943 1944 bool provablyNonNull = isProvablyNonNull(srcAddr); 1945 if (provablyNonNull) { 1946 finalArgument = temp; 1947 } else { 1948 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1949 1950 finalArgument = CGF.Builder.CreateSelect(isNull, 1951 llvm::ConstantPointerNull::get(destType), 1952 temp, "icr.argument"); 1953 1954 // If we need to copy, then the load has to be conditional, which 1955 // means we need control flow. 1956 if (shouldCopy) { 1957 originBB = CGF.Builder.GetInsertBlock(); 1958 contBB = CGF.createBasicBlock("icr.cont"); 1959 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1960 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1961 CGF.EmitBlock(copyBB); 1962 condEval.begin(CGF); 1963 } 1964 } 1965 1966 llvm::Value *valueToUse = 0; 1967 1968 // Perform a copy if necessary. 1969 if (shouldCopy) { 1970 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1971 assert(srcRV.isScalar()); 1972 1973 llvm::Value *src = srcRV.getScalarVal(); 1974 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1975 "icr.cast"); 1976 1977 // Use an ordinary store, not a store-to-lvalue. 1978 CGF.Builder.CreateStore(src, temp); 1979 1980 // If optimization is enabled, and the value was held in a 1981 // __strong variable, we need to tell the optimizer that this 1982 // value has to stay alive until we're doing the store back. 1983 // This is because the temporary is effectively unretained, 1984 // and so otherwise we can violate the high-level semantics. 1985 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 1986 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 1987 valueToUse = src; 1988 } 1989 } 1990 1991 // Finish the control flow if we needed it. 1992 if (shouldCopy && !provablyNonNull) { 1993 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 1994 CGF.EmitBlock(contBB); 1995 1996 // Make a phi for the value to intrinsically use. 1997 if (valueToUse) { 1998 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 1999 "icr.to-use"); 2000 phiToUse->addIncoming(valueToUse, copyBB); 2001 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2002 originBB); 2003 valueToUse = phiToUse; 2004 } 2005 2006 condEval.end(CGF); 2007 } 2008 2009 args.addWriteback(srcLV, temp, valueToUse); 2010 args.add(RValue::get(finalArgument), CRE->getType()); 2011 } 2012 2013 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2014 QualType type) { 2015 if (const ObjCIndirectCopyRestoreExpr *CRE 2016 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2017 assert(getLangOpts().ObjCAutoRefCount); 2018 assert(getContext().hasSameType(E->getType(), type)); 2019 return emitWritebackArg(*this, args, CRE); 2020 } 2021 2022 assert(type->isReferenceType() == E->isGLValue() && 2023 "reference binding to unmaterialized r-value!"); 2024 2025 if (E->isGLValue()) { 2026 assert(E->getObjectKind() == OK_Ordinary); 2027 return args.add(EmitReferenceBindingToExpr(E), type); 2028 } 2029 2030 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2031 2032 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2033 // However, we still have to push an EH-only cleanup in case we unwind before 2034 // we make it to the call. 2035 if (HasAggregateEvalKind && 2036 CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) { 2037 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2038 if (RD && RD->hasNonTrivialDestructor()) { 2039 AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp"); 2040 Slot.setExternallyDestructed(); 2041 EmitAggExpr(E, Slot); 2042 RValue RV = Slot.asRValue(); 2043 args.add(RV, type); 2044 2045 pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject, 2046 /*useEHCleanupForArray*/ true); 2047 // This unreachable is a temporary marker which will be removed later. 2048 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2049 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2050 return; 2051 } 2052 } 2053 2054 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2055 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2056 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2057 assert(L.isSimple()); 2058 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2059 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2060 } else { 2061 // We can't represent a misaligned lvalue in the CallArgList, so copy 2062 // to an aligned temporary now. 2063 llvm::Value *tmp = CreateMemTemp(type); 2064 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(), 2065 L.getAlignment()); 2066 args.add(RValue::getAggregate(tmp), type); 2067 } 2068 return; 2069 } 2070 2071 args.add(EmitAnyExprToTemp(E), type); 2072 } 2073 2074 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2075 // optimizer it can aggressively ignore unwind edges. 2076 void 2077 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2078 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2079 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2080 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2081 CGM.getNoObjCARCExceptionsMetadata()); 2082 } 2083 2084 /// Emits a call to the given no-arguments nounwind runtime function. 2085 llvm::CallInst * 2086 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2087 const llvm::Twine &name) { 2088 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2089 } 2090 2091 /// Emits a call to the given nounwind runtime function. 2092 llvm::CallInst * 2093 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2094 ArrayRef<llvm::Value*> args, 2095 const llvm::Twine &name) { 2096 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2097 call->setDoesNotThrow(); 2098 return call; 2099 } 2100 2101 /// Emits a simple call (never an invoke) to the given no-arguments 2102 /// runtime function. 2103 llvm::CallInst * 2104 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2105 const llvm::Twine &name) { 2106 return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2107 } 2108 2109 /// Emits a simple call (never an invoke) to the given runtime 2110 /// function. 2111 llvm::CallInst * 2112 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2113 ArrayRef<llvm::Value*> args, 2114 const llvm::Twine &name) { 2115 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 2116 call->setCallingConv(getRuntimeCC()); 2117 return call; 2118 } 2119 2120 /// Emits a call or invoke to the given noreturn runtime function. 2121 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2122 ArrayRef<llvm::Value*> args) { 2123 if (getInvokeDest()) { 2124 llvm::InvokeInst *invoke = 2125 Builder.CreateInvoke(callee, 2126 getUnreachableBlock(), 2127 getInvokeDest(), 2128 args); 2129 invoke->setDoesNotReturn(); 2130 invoke->setCallingConv(getRuntimeCC()); 2131 } else { 2132 llvm::CallInst *call = Builder.CreateCall(callee, args); 2133 call->setDoesNotReturn(); 2134 call->setCallingConv(getRuntimeCC()); 2135 Builder.CreateUnreachable(); 2136 } 2137 } 2138 2139 /// Emits a call or invoke instruction to the given nullary runtime 2140 /// function. 2141 llvm::CallSite 2142 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2143 const Twine &name) { 2144 return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name); 2145 } 2146 2147 /// Emits a call or invoke instruction to the given runtime function. 2148 llvm::CallSite 2149 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2150 ArrayRef<llvm::Value*> args, 2151 const Twine &name) { 2152 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 2153 callSite.setCallingConv(getRuntimeCC()); 2154 return callSite; 2155 } 2156 2157 llvm::CallSite 2158 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2159 const Twine &Name) { 2160 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 2161 } 2162 2163 /// Emits a call or invoke instruction to the given function, depending 2164 /// on the current state of the EH stack. 2165 llvm::CallSite 2166 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2167 ArrayRef<llvm::Value *> Args, 2168 const Twine &Name) { 2169 llvm::BasicBlock *InvokeDest = getInvokeDest(); 2170 2171 llvm::Instruction *Inst; 2172 if (!InvokeDest) 2173 Inst = Builder.CreateCall(Callee, Args, Name); 2174 else { 2175 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 2176 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 2177 EmitBlock(ContBB); 2178 } 2179 2180 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2181 // optimizer it can aggressively ignore unwind edges. 2182 if (CGM.getLangOpts().ObjCAutoRefCount) 2183 AddObjCARCExceptionMetadata(Inst); 2184 2185 return Inst; 2186 } 2187 2188 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 2189 llvm::FunctionType *FTy) { 2190 if (ArgNo < FTy->getNumParams()) 2191 assert(Elt->getType() == FTy->getParamType(ArgNo)); 2192 else 2193 assert(FTy->isVarArg()); 2194 ++ArgNo; 2195 } 2196 2197 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 2198 SmallVectorImpl<llvm::Value *> &Args, 2199 llvm::FunctionType *IRFuncTy) { 2200 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2201 unsigned NumElts = AT->getSize().getZExtValue(); 2202 QualType EltTy = AT->getElementType(); 2203 llvm::Value *Addr = RV.getAggregateAddr(); 2204 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 2205 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 2206 RValue EltRV = convertTempToRValue(EltAddr, EltTy); 2207 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 2208 } 2209 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 2210 RecordDecl *RD = RT->getDecl(); 2211 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 2212 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 2213 2214 if (RD->isUnion()) { 2215 const FieldDecl *LargestFD = 0; 2216 CharUnits UnionSize = CharUnits::Zero(); 2217 2218 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2219 i != e; ++i) { 2220 const FieldDecl *FD = *i; 2221 assert(!FD->isBitField() && 2222 "Cannot expand structure with bit-field members."); 2223 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 2224 if (UnionSize < FieldSize) { 2225 UnionSize = FieldSize; 2226 LargestFD = FD; 2227 } 2228 } 2229 if (LargestFD) { 2230 RValue FldRV = EmitRValueForField(LV, LargestFD); 2231 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 2232 } 2233 } else { 2234 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2235 i != e; ++i) { 2236 FieldDecl *FD = *i; 2237 2238 RValue FldRV = EmitRValueForField(LV, FD); 2239 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 2240 } 2241 } 2242 } else if (Ty->isAnyComplexType()) { 2243 ComplexPairTy CV = RV.getComplexVal(); 2244 Args.push_back(CV.first); 2245 Args.push_back(CV.second); 2246 } else { 2247 assert(RV.isScalar() && 2248 "Unexpected non-scalar rvalue during struct expansion."); 2249 2250 // Insert a bitcast as needed. 2251 llvm::Value *V = RV.getScalarVal(); 2252 if (Args.size() < IRFuncTy->getNumParams() && 2253 V->getType() != IRFuncTy->getParamType(Args.size())) 2254 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 2255 2256 Args.push_back(V); 2257 } 2258 } 2259 2260 2261 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2262 llvm::Value *Callee, 2263 ReturnValueSlot ReturnValue, 2264 const CallArgList &CallArgs, 2265 const Decl *TargetDecl, 2266 llvm::Instruction **callOrInvoke) { 2267 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2268 SmallVector<llvm::Value*, 16> Args; 2269 2270 // Handle struct-return functions by passing a pointer to the 2271 // location that we would like to return into. 2272 QualType RetTy = CallInfo.getReturnType(); 2273 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2274 2275 // IRArgNo - Keep track of the argument number in the callee we're looking at. 2276 unsigned IRArgNo = 0; 2277 llvm::FunctionType *IRFuncTy = 2278 cast<llvm::FunctionType>( 2279 cast<llvm::PointerType>(Callee->getType())->getElementType()); 2280 2281 // If the call returns a temporary with struct return, create a temporary 2282 // alloca to hold the result, unless one is given to us. 2283 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 2284 llvm::Value *Value = ReturnValue.getValue(); 2285 if (!Value) 2286 Value = CreateMemTemp(RetTy); 2287 Args.push_back(Value); 2288 checkArgMatches(Value, IRArgNo, IRFuncTy); 2289 } 2290 2291 assert(CallInfo.arg_size() == CallArgs.size() && 2292 "Mismatch between function signature & arguments."); 2293 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 2294 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 2295 I != E; ++I, ++info_it) { 2296 const ABIArgInfo &ArgInfo = info_it->info; 2297 RValue RV = I->RV; 2298 2299 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty); 2300 2301 // Insert a padding argument to ensure proper alignment. 2302 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2303 Args.push_back(llvm::UndefValue::get(PaddingType)); 2304 ++IRArgNo; 2305 } 2306 2307 switch (ArgInfo.getKind()) { 2308 case ABIArgInfo::Indirect: { 2309 if (RV.isScalar() || RV.isComplex()) { 2310 // Make a temporary alloca to pass the argument. 2311 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2312 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 2313 AI->setAlignment(ArgInfo.getIndirectAlign()); 2314 Args.push_back(AI); 2315 2316 LValue argLV = 2317 MakeAddrLValue(Args.back(), I->Ty, TypeAlign); 2318 2319 if (RV.isScalar()) 2320 EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true); 2321 else 2322 EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true); 2323 2324 // Validate argument match. 2325 checkArgMatches(AI, IRArgNo, IRFuncTy); 2326 } else { 2327 // We want to avoid creating an unnecessary temporary+copy here; 2328 // however, we need one in three cases: 2329 // 1. If the argument is not byval, and we are required to copy the 2330 // source. (This case doesn't occur on any common architecture.) 2331 // 2. If the argument is byval, RV is not sufficiently aligned, and 2332 // we cannot force it to be sufficiently aligned. 2333 // 3. If the argument is byval, but RV is located in an address space 2334 // different than that of the argument (0). 2335 llvm::Value *Addr = RV.getAggregateAddr(); 2336 unsigned Align = ArgInfo.getIndirectAlign(); 2337 const llvm::DataLayout *TD = &CGM.getDataLayout(); 2338 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace(); 2339 const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ? 2340 IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0); 2341 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 2342 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align && 2343 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) || 2344 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 2345 // Create an aligned temporary, and copy to it. 2346 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2347 if (Align > AI->getAlignment()) 2348 AI->setAlignment(Align); 2349 Args.push_back(AI); 2350 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 2351 2352 // Validate argument match. 2353 checkArgMatches(AI, IRArgNo, IRFuncTy); 2354 } else { 2355 // Skip the extra memcpy call. 2356 Args.push_back(Addr); 2357 2358 // Validate argument match. 2359 checkArgMatches(Addr, IRArgNo, IRFuncTy); 2360 } 2361 } 2362 break; 2363 } 2364 2365 case ABIArgInfo::Ignore: 2366 break; 2367 2368 case ABIArgInfo::Extend: 2369 case ABIArgInfo::Direct: { 2370 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2371 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2372 ArgInfo.getDirectOffset() == 0) { 2373 llvm::Value *V; 2374 if (RV.isScalar()) 2375 V = RV.getScalarVal(); 2376 else 2377 V = Builder.CreateLoad(RV.getAggregateAddr()); 2378 2379 // If the argument doesn't match, perform a bitcast to coerce it. This 2380 // can happen due to trivial type mismatches. 2381 if (IRArgNo < IRFuncTy->getNumParams() && 2382 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2383 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2384 Args.push_back(V); 2385 2386 checkArgMatches(V, IRArgNo, IRFuncTy); 2387 break; 2388 } 2389 2390 // FIXME: Avoid the conversion through memory if possible. 2391 llvm::Value *SrcPtr; 2392 if (RV.isScalar() || RV.isComplex()) { 2393 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2394 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign); 2395 if (RV.isScalar()) { 2396 EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true); 2397 } else { 2398 EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true); 2399 } 2400 } else 2401 SrcPtr = RV.getAggregateAddr(); 2402 2403 // If the value is offset in memory, apply the offset now. 2404 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2405 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2406 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2407 SrcPtr = Builder.CreateBitCast(SrcPtr, 2408 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2409 2410 } 2411 2412 // If the coerce-to type is a first class aggregate, we flatten it and 2413 // pass the elements. Either way is semantically identical, but fast-isel 2414 // and the optimizer generally likes scalar values better than FCAs. 2415 if (llvm::StructType *STy = 2416 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2417 llvm::Type *SrcTy = 2418 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 2419 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 2420 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 2421 2422 // If the source type is smaller than the destination type of the 2423 // coerce-to logic, copy the source value into a temp alloca the size 2424 // of the destination type to allow loading all of it. The bits past 2425 // the source value are left undef. 2426 if (SrcSize < DstSize) { 2427 llvm::AllocaInst *TempAlloca 2428 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 2429 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 2430 SrcPtr = TempAlloca; 2431 } else { 2432 SrcPtr = Builder.CreateBitCast(SrcPtr, 2433 llvm::PointerType::getUnqual(STy)); 2434 } 2435 2436 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2437 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2438 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2439 // We don't know what we're loading from. 2440 LI->setAlignment(1); 2441 Args.push_back(LI); 2442 2443 // Validate argument match. 2444 checkArgMatches(LI, IRArgNo, IRFuncTy); 2445 } 2446 } else { 2447 // In the simple case, just pass the coerced loaded value. 2448 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2449 *this)); 2450 2451 // Validate argument match. 2452 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2453 } 2454 2455 break; 2456 } 2457 2458 case ABIArgInfo::Expand: 2459 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2460 IRArgNo = Args.size(); 2461 break; 2462 } 2463 } 2464 2465 if (!CallArgs.getCleanupsToDeactivate().empty()) 2466 deactivateArgCleanupsBeforeCall(*this, CallArgs); 2467 2468 // If the callee is a bitcast of a function to a varargs pointer to function 2469 // type, check to see if we can remove the bitcast. This handles some cases 2470 // with unprototyped functions. 2471 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2472 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2473 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2474 llvm::FunctionType *CurFT = 2475 cast<llvm::FunctionType>(CurPT->getElementType()); 2476 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2477 2478 if (CE->getOpcode() == llvm::Instruction::BitCast && 2479 ActualFT->getReturnType() == CurFT->getReturnType() && 2480 ActualFT->getNumParams() == CurFT->getNumParams() && 2481 ActualFT->getNumParams() == Args.size() && 2482 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2483 bool ArgsMatch = true; 2484 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2485 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2486 ArgsMatch = false; 2487 break; 2488 } 2489 2490 // Strip the cast if we can get away with it. This is a nice cleanup, 2491 // but also allows us to inline the function at -O0 if it is marked 2492 // always_inline. 2493 if (ArgsMatch) 2494 Callee = CalleeF; 2495 } 2496 } 2497 2498 unsigned CallingConv; 2499 CodeGen::AttributeListType AttributeList; 2500 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 2501 CallingConv, true); 2502 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 2503 AttributeList); 2504 2505 llvm::BasicBlock *InvokeDest = 0; 2506 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 2507 llvm::Attribute::NoUnwind)) 2508 InvokeDest = getInvokeDest(); 2509 2510 llvm::CallSite CS; 2511 if (!InvokeDest) { 2512 CS = Builder.CreateCall(Callee, Args); 2513 } else { 2514 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2515 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2516 EmitBlock(Cont); 2517 } 2518 if (callOrInvoke) 2519 *callOrInvoke = CS.getInstruction(); 2520 2521 CS.setAttributes(Attrs); 2522 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2523 2524 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2525 // optimizer it can aggressively ignore unwind edges. 2526 if (CGM.getLangOpts().ObjCAutoRefCount) 2527 AddObjCARCExceptionMetadata(CS.getInstruction()); 2528 2529 // If the call doesn't return, finish the basic block and clear the 2530 // insertion point; this allows the rest of IRgen to discard 2531 // unreachable code. 2532 if (CS.doesNotReturn()) { 2533 Builder.CreateUnreachable(); 2534 Builder.ClearInsertionPoint(); 2535 2536 // FIXME: For now, emit a dummy basic block because expr emitters in 2537 // generally are not ready to handle emitting expressions at unreachable 2538 // points. 2539 EnsureInsertPoint(); 2540 2541 // Return a reasonable RValue. 2542 return GetUndefRValue(RetTy); 2543 } 2544 2545 llvm::Instruction *CI = CS.getInstruction(); 2546 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2547 CI->setName("call"); 2548 2549 // Emit any writebacks immediately. Arguably this should happen 2550 // after any return-value munging. 2551 if (CallArgs.hasWritebacks()) 2552 emitWritebacks(*this, CallArgs); 2553 2554 switch (RetAI.getKind()) { 2555 case ABIArgInfo::Indirect: 2556 return convertTempToRValue(Args[0], RetTy); 2557 2558 case ABIArgInfo::Ignore: 2559 // If we are ignoring an argument that had a result, make sure to 2560 // construct the appropriate return value for our caller. 2561 return GetUndefRValue(RetTy); 2562 2563 case ABIArgInfo::Extend: 2564 case ABIArgInfo::Direct: { 2565 llvm::Type *RetIRTy = ConvertType(RetTy); 2566 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2567 switch (getEvaluationKind(RetTy)) { 2568 case TEK_Complex: { 2569 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2570 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2571 return RValue::getComplex(std::make_pair(Real, Imag)); 2572 } 2573 case TEK_Aggregate: { 2574 llvm::Value *DestPtr = ReturnValue.getValue(); 2575 bool DestIsVolatile = ReturnValue.isVolatile(); 2576 2577 if (!DestPtr) { 2578 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2579 DestIsVolatile = false; 2580 } 2581 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2582 return RValue::getAggregate(DestPtr); 2583 } 2584 case TEK_Scalar: { 2585 // If the argument doesn't match, perform a bitcast to coerce it. This 2586 // can happen due to trivial type mismatches. 2587 llvm::Value *V = CI; 2588 if (V->getType() != RetIRTy) 2589 V = Builder.CreateBitCast(V, RetIRTy); 2590 return RValue::get(V); 2591 } 2592 } 2593 llvm_unreachable("bad evaluation kind"); 2594 } 2595 2596 llvm::Value *DestPtr = ReturnValue.getValue(); 2597 bool DestIsVolatile = ReturnValue.isVolatile(); 2598 2599 if (!DestPtr) { 2600 DestPtr = CreateMemTemp(RetTy, "coerce"); 2601 DestIsVolatile = false; 2602 } 2603 2604 // If the value is offset in memory, apply the offset now. 2605 llvm::Value *StorePtr = DestPtr; 2606 if (unsigned Offs = RetAI.getDirectOffset()) { 2607 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2608 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2609 StorePtr = Builder.CreateBitCast(StorePtr, 2610 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2611 } 2612 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2613 2614 return convertTempToRValue(DestPtr, RetTy); 2615 } 2616 2617 case ABIArgInfo::Expand: 2618 llvm_unreachable("Invalid ABI kind for return argument"); 2619 } 2620 2621 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2622 } 2623 2624 /* VarArg handling */ 2625 2626 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2627 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2628 } 2629