Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CGCall.h"
     16 #include "ABIInfo.h"
     17 #include "CGCXXABI.h"
     18 #include "CodeGenFunction.h"
     19 #include "CodeGenModule.h"
     20 #include "TargetInfo.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/ADT/StringExtras.h"
     27 #include "llvm/IR/Attributes.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/InlineAsm.h"
     30 #include "llvm/MC/SubtargetFeature.h"
     31 #include "llvm/Support/CallSite.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 using namespace clang;
     34 using namespace CodeGen;
     35 
     36 /***/
     37 
     38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
     39   switch (CC) {
     40   default: return llvm::CallingConv::C;
     41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
     42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
     43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
     44   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
     45   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
     46   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
     47   // TODO: add support for CC_X86Pascal to llvm
     48   }
     49 }
     50 
     51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
     52 /// qualification.
     53 /// FIXME: address space qualification?
     54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
     55   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
     56   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
     57 }
     58 
     59 /// Returns the canonical formal type of the given C++ method.
     60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
     61   return MD->getType()->getCanonicalTypeUnqualified()
     62            .getAs<FunctionProtoType>();
     63 }
     64 
     65 /// Returns the "extra-canonicalized" return type, which discards
     66 /// qualifiers on the return type.  Codegen doesn't care about them,
     67 /// and it makes ABI code a little easier to be able to assume that
     68 /// all parameter and return types are top-level unqualified.
     69 static CanQualType GetReturnType(QualType RetTy) {
     70   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
     71 }
     72 
     73 /// Arrange the argument and result information for a value of the given
     74 /// unprototyped freestanding function type.
     75 const CGFunctionInfo &
     76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
     77   // When translating an unprototyped function type, always use a
     78   // variadic type.
     79   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
     80                                  None, FTNP->getExtInfo(), RequiredArgs(0));
     81 }
     82 
     83 /// Arrange the LLVM function layout for a value of the given function
     84 /// type, on top of any implicit parameters already stored.  Use the
     85 /// given ExtInfo instead of the ExtInfo from the function type.
     86 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
     87                                        SmallVectorImpl<CanQualType> &prefix,
     88                                              CanQual<FunctionProtoType> FTP,
     89                                               FunctionType::ExtInfo extInfo) {
     90   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
     91   // FIXME: Kill copy.
     92   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
     93     prefix.push_back(FTP->getArgType(i));
     94   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
     95   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
     96 }
     97 
     98 /// Arrange the argument and result information for a free function (i.e.
     99 /// not a C++ or ObjC instance method) of the given type.
    100 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
    101                                       SmallVectorImpl<CanQualType> &prefix,
    102                                             CanQual<FunctionProtoType> FTP) {
    103   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
    104 }
    105 
    106 /// Given the formal ext-info of a C++ instance method, adjust it
    107 /// according to the C++ ABI in effect.
    108 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
    109                                 FunctionType::ExtInfo &extInfo,
    110                                 bool isVariadic) {
    111   if (extInfo.getCC() == CC_Default) {
    112     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
    113     extInfo = extInfo.withCallingConv(CC);
    114   }
    115 }
    116 
    117 /// Arrange the argument and result information for a free function (i.e.
    118 /// not a C++ or ObjC instance method) of the given type.
    119 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
    120                                       SmallVectorImpl<CanQualType> &prefix,
    121                                             CanQual<FunctionProtoType> FTP) {
    122   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    123   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
    124   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
    125 }
    126 
    127 /// Arrange the argument and result information for a value of the
    128 /// given freestanding function type.
    129 const CGFunctionInfo &
    130 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
    131   SmallVector<CanQualType, 16> argTypes;
    132   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
    133 }
    134 
    135 static CallingConv getCallingConventionForDecl(const Decl *D) {
    136   // Set the appropriate calling convention for the Function.
    137   if (D->hasAttr<StdCallAttr>())
    138     return CC_X86StdCall;
    139 
    140   if (D->hasAttr<FastCallAttr>())
    141     return CC_X86FastCall;
    142 
    143   if (D->hasAttr<ThisCallAttr>())
    144     return CC_X86ThisCall;
    145 
    146   if (D->hasAttr<PascalAttr>())
    147     return CC_X86Pascal;
    148 
    149   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
    150     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
    151 
    152   if (D->hasAttr<PnaclCallAttr>())
    153     return CC_PnaclCall;
    154 
    155   if (D->hasAttr<IntelOclBiccAttr>())
    156     return CC_IntelOclBicc;
    157 
    158   return CC_C;
    159 }
    160 
    161 /// Arrange the argument and result information for a call to an
    162 /// unknown C++ non-static member function of the given abstract type.
    163 /// The member function must be an ordinary function, i.e. not a
    164 /// constructor or destructor.
    165 const CGFunctionInfo &
    166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
    167                                    const FunctionProtoType *FTP) {
    168   SmallVector<CanQualType, 16> argTypes;
    169 
    170   // Add the 'this' pointer.
    171   argTypes.push_back(GetThisType(Context, RD));
    172 
    173   return ::arrangeCXXMethodType(*this, argTypes,
    174               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
    175 }
    176 
    177 /// Arrange the argument and result information for a declaration or
    178 /// definition of the given C++ non-static member function.  The
    179 /// member function must be an ordinary function, i.e. not a
    180 /// constructor or destructor.
    181 const CGFunctionInfo &
    182 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
    183   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
    184   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
    185 
    186   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
    187 
    188   if (MD->isInstance()) {
    189     // The abstract case is perfectly fine.
    190     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
    191   }
    192 
    193   return arrangeFreeFunctionType(prototype);
    194 }
    195 
    196 /// Arrange the argument and result information for a declaration
    197 /// or definition to the given constructor variant.
    198 const CGFunctionInfo &
    199 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
    200                                                CXXCtorType ctorKind) {
    201   SmallVector<CanQualType, 16> argTypes;
    202   argTypes.push_back(GetThisType(Context, D->getParent()));
    203 
    204   GlobalDecl GD(D, ctorKind);
    205   CanQualType resultType =
    206     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
    207 
    208   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
    209 
    210   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    211 
    212   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
    213 
    214   // Add the formal parameters.
    215   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
    216     argTypes.push_back(FTP->getArgType(i));
    217 
    218   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    219   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
    220   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
    221 }
    222 
    223 /// Arrange the argument and result information for a declaration,
    224 /// definition, or call to the given destructor variant.  It so
    225 /// happens that all three cases produce the same information.
    226 const CGFunctionInfo &
    227 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
    228                                    CXXDtorType dtorKind) {
    229   SmallVector<CanQualType, 2> argTypes;
    230   argTypes.push_back(GetThisType(Context, D->getParent()));
    231 
    232   GlobalDecl GD(D, dtorKind);
    233   CanQualType resultType =
    234     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
    235 
    236   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
    237 
    238   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    239   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
    240   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
    241 
    242   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    243   adjustCXXMethodInfo(*this, extInfo, false);
    244   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
    245                                  RequiredArgs::All);
    246 }
    247 
    248 /// Arrange the argument and result information for the declaration or
    249 /// definition of the given function.
    250 const CGFunctionInfo &
    251 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
    252   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    253     if (MD->isInstance())
    254       return arrangeCXXMethodDeclaration(MD);
    255 
    256   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
    257 
    258   assert(isa<FunctionType>(FTy));
    259 
    260   // When declaring a function without a prototype, always use a
    261   // non-variadic type.
    262   if (isa<FunctionNoProtoType>(FTy)) {
    263     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
    264     return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
    265                                    noProto->getExtInfo(), RequiredArgs::All);
    266   }
    267 
    268   assert(isa<FunctionProtoType>(FTy));
    269   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
    270 }
    271 
    272 /// Arrange the argument and result information for the declaration or
    273 /// definition of an Objective-C method.
    274 const CGFunctionInfo &
    275 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
    276   // It happens that this is the same as a call with no optional
    277   // arguments, except also using the formal 'self' type.
    278   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
    279 }
    280 
    281 /// Arrange the argument and result information for the function type
    282 /// through which to perform a send to the given Objective-C method,
    283 /// using the given receiver type.  The receiver type is not always
    284 /// the 'self' type of the method or even an Objective-C pointer type.
    285 /// This is *not* the right method for actually performing such a
    286 /// message send, due to the possibility of optional arguments.
    287 const CGFunctionInfo &
    288 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
    289                                               QualType receiverType) {
    290   SmallVector<CanQualType, 16> argTys;
    291   argTys.push_back(Context.getCanonicalParamType(receiverType));
    292   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
    293   // FIXME: Kill copy?
    294   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
    295          e = MD->param_end(); i != e; ++i) {
    296     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
    297   }
    298 
    299   FunctionType::ExtInfo einfo;
    300   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
    301 
    302   if (getContext().getLangOpts().ObjCAutoRefCount &&
    303       MD->hasAttr<NSReturnsRetainedAttr>())
    304     einfo = einfo.withProducesResult(true);
    305 
    306   RequiredArgs required =
    307     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
    308 
    309   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
    310                                  einfo, required);
    311 }
    312 
    313 const CGFunctionInfo &
    314 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
    315   // FIXME: Do we need to handle ObjCMethodDecl?
    316   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    317 
    318   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
    319     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
    320 
    321   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
    322     return arrangeCXXDestructor(DD, GD.getDtorType());
    323 
    324   return arrangeFunctionDeclaration(FD);
    325 }
    326 
    327 /// Arrange a call as unto a free function, except possibly with an
    328 /// additional number of formal parameters considered required.
    329 static const CGFunctionInfo &
    330 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
    331                             const CallArgList &args,
    332                             const FunctionType *fnType,
    333                             unsigned numExtraRequiredArgs) {
    334   assert(args.size() >= numExtraRequiredArgs);
    335 
    336   // In most cases, there are no optional arguments.
    337   RequiredArgs required = RequiredArgs::All;
    338 
    339   // If we have a variadic prototype, the required arguments are the
    340   // extra prefix plus the arguments in the prototype.
    341   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
    342     if (proto->isVariadic())
    343       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
    344 
    345   // If we don't have a prototype at all, but we're supposed to
    346   // explicitly use the variadic convention for unprototyped calls,
    347   // treat all of the arguments as required but preserve the nominal
    348   // possibility of variadics.
    349   } else if (CGT.CGM.getTargetCodeGenInfo()
    350                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
    351     required = RequiredArgs(args.size());
    352   }
    353 
    354   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
    355                                      fnType->getExtInfo(), required);
    356 }
    357 
    358 /// Figure out the rules for calling a function with the given formal
    359 /// type using the given arguments.  The arguments are necessary
    360 /// because the function might be unprototyped, in which case it's
    361 /// target-dependent in crazy ways.
    362 const CGFunctionInfo &
    363 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
    364                                       const FunctionType *fnType) {
    365   return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
    366 }
    367 
    368 /// A block function call is essentially a free-function call with an
    369 /// extra implicit argument.
    370 const CGFunctionInfo &
    371 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
    372                                        const FunctionType *fnType) {
    373   return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
    374 }
    375 
    376 const CGFunctionInfo &
    377 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
    378                                       const CallArgList &args,
    379                                       FunctionType::ExtInfo info,
    380                                       RequiredArgs required) {
    381   // FIXME: Kill copy.
    382   SmallVector<CanQualType, 16> argTypes;
    383   for (CallArgList::const_iterator i = args.begin(), e = args.end();
    384        i != e; ++i)
    385     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
    386   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
    387                                  required);
    388 }
    389 
    390 /// Arrange a call to a C++ method, passing the given arguments.
    391 const CGFunctionInfo &
    392 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
    393                                    const FunctionProtoType *FPT,
    394                                    RequiredArgs required) {
    395   // FIXME: Kill copy.
    396   SmallVector<CanQualType, 16> argTypes;
    397   for (CallArgList::const_iterator i = args.begin(), e = args.end();
    398        i != e; ++i)
    399     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
    400 
    401   FunctionType::ExtInfo info = FPT->getExtInfo();
    402   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
    403   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
    404                                  argTypes, info, required);
    405 }
    406 
    407 const CGFunctionInfo &
    408 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
    409                                          const FunctionArgList &args,
    410                                          const FunctionType::ExtInfo &info,
    411                                          bool isVariadic) {
    412   // FIXME: Kill copy.
    413   SmallVector<CanQualType, 16> argTypes;
    414   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
    415        i != e; ++i)
    416     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
    417 
    418   RequiredArgs required =
    419     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
    420   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
    421                                  required);
    422 }
    423 
    424 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
    425   return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
    426                                  FunctionType::ExtInfo(), RequiredArgs::All);
    427 }
    428 
    429 /// Arrange the argument and result information for an abstract value
    430 /// of a given function type.  This is the method which all of the
    431 /// above functions ultimately defer to.
    432 const CGFunctionInfo &
    433 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
    434                                       ArrayRef<CanQualType> argTypes,
    435                                       FunctionType::ExtInfo info,
    436                                       RequiredArgs required) {
    437 #ifndef NDEBUG
    438   for (ArrayRef<CanQualType>::const_iterator
    439          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
    440     assert(I->isCanonicalAsParam());
    441 #endif
    442 
    443   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
    444 
    445   // Lookup or create unique function info.
    446   llvm::FoldingSetNodeID ID;
    447   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
    448 
    449   void *insertPos = 0;
    450   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
    451   if (FI)
    452     return *FI;
    453 
    454   // Construct the function info.  We co-allocate the ArgInfos.
    455   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
    456   FunctionInfos.InsertNode(FI, insertPos);
    457 
    458   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
    459   assert(inserted && "Recursively being processed?");
    460 
    461   // Compute ABI information.
    462   getABIInfo().computeInfo(*FI);
    463 
    464   // Loop over all of the computed argument and return value info.  If any of
    465   // them are direct or extend without a specified coerce type, specify the
    466   // default now.
    467   ABIArgInfo &retInfo = FI->getReturnInfo();
    468   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
    469     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
    470 
    471   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
    472        I != E; ++I)
    473     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
    474       I->info.setCoerceToType(ConvertType(I->type));
    475 
    476   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
    477   assert(erased && "Not in set?");
    478 
    479   return *FI;
    480 }
    481 
    482 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
    483                                        const FunctionType::ExtInfo &info,
    484                                        CanQualType resultType,
    485                                        ArrayRef<CanQualType> argTypes,
    486                                        RequiredArgs required) {
    487   void *buffer = operator new(sizeof(CGFunctionInfo) +
    488                               sizeof(ArgInfo) * (argTypes.size() + 1));
    489   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
    490   FI->CallingConvention = llvmCC;
    491   FI->EffectiveCallingConvention = llvmCC;
    492   FI->ASTCallingConvention = info.getCC();
    493   FI->NoReturn = info.getNoReturn();
    494   FI->ReturnsRetained = info.getProducesResult();
    495   FI->Required = required;
    496   FI->HasRegParm = info.getHasRegParm();
    497   FI->RegParm = info.getRegParm();
    498   FI->NumArgs = argTypes.size();
    499   FI->getArgsBuffer()[0].type = resultType;
    500   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
    501     FI->getArgsBuffer()[i + 1].type = argTypes[i];
    502   return FI;
    503 }
    504 
    505 /***/
    506 
    507 void CodeGenTypes::GetExpandedTypes(QualType type,
    508                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
    509   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
    510     uint64_t NumElts = AT->getSize().getZExtValue();
    511     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
    512       GetExpandedTypes(AT->getElementType(), expandedTypes);
    513   } else if (const RecordType *RT = type->getAs<RecordType>()) {
    514     const RecordDecl *RD = RT->getDecl();
    515     assert(!RD->hasFlexibleArrayMember() &&
    516            "Cannot expand structure with flexible array.");
    517     if (RD->isUnion()) {
    518       // Unions can be here only in degenerative cases - all the fields are same
    519       // after flattening. Thus we have to use the "largest" field.
    520       const FieldDecl *LargestFD = 0;
    521       CharUnits UnionSize = CharUnits::Zero();
    522 
    523       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    524            i != e; ++i) {
    525         const FieldDecl *FD = *i;
    526         assert(!FD->isBitField() &&
    527                "Cannot expand structure with bit-field members.");
    528         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
    529         if (UnionSize < FieldSize) {
    530           UnionSize = FieldSize;
    531           LargestFD = FD;
    532         }
    533       }
    534       if (LargestFD)
    535         GetExpandedTypes(LargestFD->getType(), expandedTypes);
    536     } else {
    537       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    538            i != e; ++i) {
    539         assert(!i->isBitField() &&
    540                "Cannot expand structure with bit-field members.");
    541         GetExpandedTypes(i->getType(), expandedTypes);
    542       }
    543     }
    544   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
    545     llvm::Type *EltTy = ConvertType(CT->getElementType());
    546     expandedTypes.push_back(EltTy);
    547     expandedTypes.push_back(EltTy);
    548   } else
    549     expandedTypes.push_back(ConvertType(type));
    550 }
    551 
    552 llvm::Function::arg_iterator
    553 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
    554                                     llvm::Function::arg_iterator AI) {
    555   assert(LV.isSimple() &&
    556          "Unexpected non-simple lvalue during struct expansion.");
    557 
    558   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    559     unsigned NumElts = AT->getSize().getZExtValue();
    560     QualType EltTy = AT->getElementType();
    561     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
    562       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
    563       LValue LV = MakeAddrLValue(EltAddr, EltTy);
    564       AI = ExpandTypeFromArgs(EltTy, LV, AI);
    565     }
    566   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
    567     RecordDecl *RD = RT->getDecl();
    568     if (RD->isUnion()) {
    569       // Unions can be here only in degenerative cases - all the fields are same
    570       // after flattening. Thus we have to use the "largest" field.
    571       const FieldDecl *LargestFD = 0;
    572       CharUnits UnionSize = CharUnits::Zero();
    573 
    574       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    575            i != e; ++i) {
    576         const FieldDecl *FD = *i;
    577         assert(!FD->isBitField() &&
    578                "Cannot expand structure with bit-field members.");
    579         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
    580         if (UnionSize < FieldSize) {
    581           UnionSize = FieldSize;
    582           LargestFD = FD;
    583         }
    584       }
    585       if (LargestFD) {
    586         // FIXME: What are the right qualifiers here?
    587         LValue SubLV = EmitLValueForField(LV, LargestFD);
    588         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
    589       }
    590     } else {
    591       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    592            i != e; ++i) {
    593         FieldDecl *FD = *i;
    594         QualType FT = FD->getType();
    595 
    596         // FIXME: What are the right qualifiers here?
    597         LValue SubLV = EmitLValueForField(LV, FD);
    598         AI = ExpandTypeFromArgs(FT, SubLV, AI);
    599       }
    600     }
    601   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    602     QualType EltTy = CT->getElementType();
    603     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
    604     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
    605     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
    606     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
    607   } else {
    608     EmitStoreThroughLValue(RValue::get(AI), LV);
    609     ++AI;
    610   }
    611 
    612   return AI;
    613 }
    614 
    615 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
    616 /// accessing some number of bytes out of it, try to gep into the struct to get
    617 /// at its inner goodness.  Dive as deep as possible without entering an element
    618 /// with an in-memory size smaller than DstSize.
    619 static llvm::Value *
    620 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
    621                                    llvm::StructType *SrcSTy,
    622                                    uint64_t DstSize, CodeGenFunction &CGF) {
    623   // We can't dive into a zero-element struct.
    624   if (SrcSTy->getNumElements() == 0) return SrcPtr;
    625 
    626   llvm::Type *FirstElt = SrcSTy->getElementType(0);
    627 
    628   // If the first elt is at least as large as what we're looking for, or if the
    629   // first element is the same size as the whole struct, we can enter it.
    630   uint64_t FirstEltSize =
    631     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
    632   if (FirstEltSize < DstSize &&
    633       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
    634     return SrcPtr;
    635 
    636   // GEP into the first element.
    637   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
    638 
    639   // If the first element is a struct, recurse.
    640   llvm::Type *SrcTy =
    641     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    642   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
    643     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    644 
    645   return SrcPtr;
    646 }
    647 
    648 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
    649 /// are either integers or pointers.  This does a truncation of the value if it
    650 /// is too large or a zero extension if it is too small.
    651 ///
    652 /// This behaves as if the value were coerced through memory, so on big-endian
    653 /// targets the high bits are preserved in a truncation, while little-endian
    654 /// targets preserve the low bits.
    655 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
    656                                              llvm::Type *Ty,
    657                                              CodeGenFunction &CGF) {
    658   if (Val->getType() == Ty)
    659     return Val;
    660 
    661   if (isa<llvm::PointerType>(Val->getType())) {
    662     // If this is Pointer->Pointer avoid conversion to and from int.
    663     if (isa<llvm::PointerType>(Ty))
    664       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
    665 
    666     // Convert the pointer to an integer so we can play with its width.
    667     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
    668   }
    669 
    670   llvm::Type *DestIntTy = Ty;
    671   if (isa<llvm::PointerType>(DestIntTy))
    672     DestIntTy = CGF.IntPtrTy;
    673 
    674   if (Val->getType() != DestIntTy) {
    675     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
    676     if (DL.isBigEndian()) {
    677       // Preserve the high bits on big-endian targets.
    678       // That is what memory coercion does.
    679       uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
    680       uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
    681       if (SrcSize > DstSize) {
    682         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
    683         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
    684       } else {
    685         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
    686         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
    687       }
    688     } else {
    689       // Little-endian targets preserve the low bits. No shifts required.
    690       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
    691     }
    692   }
    693 
    694   if (isa<llvm::PointerType>(Ty))
    695     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
    696   return Val;
    697 }
    698 
    699 
    700 
    701 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
    702 /// a pointer to an object of type \arg Ty.
    703 ///
    704 /// This safely handles the case when the src type is smaller than the
    705 /// destination type; in this situation the values of bits which not
    706 /// present in the src are undefined.
    707 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
    708                                       llvm::Type *Ty,
    709                                       CodeGenFunction &CGF) {
    710   llvm::Type *SrcTy =
    711     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    712 
    713   // If SrcTy and Ty are the same, just do a load.
    714   if (SrcTy == Ty)
    715     return CGF.Builder.CreateLoad(SrcPtr);
    716 
    717   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
    718 
    719   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
    720     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    721     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    722   }
    723 
    724   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
    725 
    726   // If the source and destination are integer or pointer types, just do an
    727   // extension or truncation to the desired type.
    728   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
    729       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
    730     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
    731     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
    732   }
    733 
    734   // If load is legal, just bitcast the src pointer.
    735   if (SrcSize >= DstSize) {
    736     // Generally SrcSize is never greater than DstSize, since this means we are
    737     // losing bits. However, this can happen in cases where the structure has
    738     // additional padding, for example due to a user specified alignment.
    739     //
    740     // FIXME: Assert that we aren't truncating non-padding bits when have access
    741     // to that information.
    742     llvm::Value *Casted =
    743       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
    744     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    745     // FIXME: Use better alignment / avoid requiring aligned load.
    746     Load->setAlignment(1);
    747     return Load;
    748   }
    749 
    750   // Otherwise do coercion through memory. This is stupid, but
    751   // simple.
    752   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
    753   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
    754   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
    755   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
    756   // FIXME: Use better alignment.
    757   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
    758       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
    759       1, false);
    760   return CGF.Builder.CreateLoad(Tmp);
    761 }
    762 
    763 // Function to store a first-class aggregate into memory.  We prefer to
    764 // store the elements rather than the aggregate to be more friendly to
    765 // fast-isel.
    766 // FIXME: Do we need to recurse here?
    767 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
    768                           llvm::Value *DestPtr, bool DestIsVolatile,
    769                           bool LowAlignment) {
    770   // Prefer scalar stores to first-class aggregate stores.
    771   if (llvm::StructType *STy =
    772         dyn_cast<llvm::StructType>(Val->getType())) {
    773     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    774       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
    775       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
    776       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
    777                                                     DestIsVolatile);
    778       if (LowAlignment)
    779         SI->setAlignment(1);
    780     }
    781   } else {
    782     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
    783     if (LowAlignment)
    784       SI->setAlignment(1);
    785   }
    786 }
    787 
    788 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
    789 /// where the source and destination may have different types.
    790 ///
    791 /// This safely handles the case when the src type is larger than the
    792 /// destination type; the upper bits of the src will be lost.
    793 static void CreateCoercedStore(llvm::Value *Src,
    794                                llvm::Value *DstPtr,
    795                                bool DstIsVolatile,
    796                                CodeGenFunction &CGF) {
    797   llvm::Type *SrcTy = Src->getType();
    798   llvm::Type *DstTy =
    799     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    800   if (SrcTy == DstTy) {
    801     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    802     return;
    803   }
    804 
    805   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
    806 
    807   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
    808     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
    809     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    810   }
    811 
    812   // If the source and destination are integer or pointer types, just do an
    813   // extension or truncation to the desired type.
    814   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
    815       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
    816     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
    817     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    818     return;
    819   }
    820 
    821   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
    822 
    823   // If store is legal, just bitcast the src pointer.
    824   if (SrcSize <= DstSize) {
    825     llvm::Value *Casted =
    826       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
    827     // FIXME: Use better alignment / avoid requiring aligned store.
    828     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
    829   } else {
    830     // Otherwise do coercion through memory. This is stupid, but
    831     // simple.
    832 
    833     // Generally SrcSize is never greater than DstSize, since this means we are
    834     // losing bits. However, this can happen in cases where the structure has
    835     // additional padding, for example due to a user specified alignment.
    836     //
    837     // FIXME: Assert that we aren't truncating non-padding bits when have access
    838     // to that information.
    839     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
    840     CGF.Builder.CreateStore(Src, Tmp);
    841     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
    842     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
    843     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
    844     // FIXME: Use better alignment.
    845     CGF.Builder.CreateMemCpy(DstCasted, Casted,
    846         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
    847         1, false);
    848   }
    849 }
    850 
    851 /***/
    852 
    853 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
    854   return FI.getReturnInfo().isIndirect();
    855 }
    856 
    857 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
    858   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
    859     switch (BT->getKind()) {
    860     default:
    861       return false;
    862     case BuiltinType::Float:
    863       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
    864     case BuiltinType::Double:
    865       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
    866     case BuiltinType::LongDouble:
    867       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
    868     }
    869   }
    870 
    871   return false;
    872 }
    873 
    874 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
    875   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
    876     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
    877       if (BT->getKind() == BuiltinType::LongDouble)
    878         return getTarget().useObjCFP2RetForComplexLongDouble();
    879     }
    880   }
    881 
    882   return false;
    883 }
    884 
    885 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
    886   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
    887   return GetFunctionType(FI);
    888 }
    889 
    890 llvm::FunctionType *
    891 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
    892 
    893   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
    894   assert(Inserted && "Recursively being processed?");
    895 
    896   SmallVector<llvm::Type*, 8> argTypes;
    897   llvm::Type *resultType = 0;
    898 
    899   const ABIArgInfo &retAI = FI.getReturnInfo();
    900   switch (retAI.getKind()) {
    901   case ABIArgInfo::Expand:
    902     llvm_unreachable("Invalid ABI kind for return argument");
    903 
    904   case ABIArgInfo::Extend:
    905   case ABIArgInfo::Direct:
    906     resultType = retAI.getCoerceToType();
    907     break;
    908 
    909   case ABIArgInfo::Indirect: {
    910     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
    911     resultType = llvm::Type::getVoidTy(getLLVMContext());
    912 
    913     QualType ret = FI.getReturnType();
    914     llvm::Type *ty = ConvertType(ret);
    915     unsigned addressSpace = Context.getTargetAddressSpace(ret);
    916     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
    917     break;
    918   }
    919 
    920   case ABIArgInfo::Ignore:
    921     resultType = llvm::Type::getVoidTy(getLLVMContext());
    922     break;
    923   }
    924 
    925   // Add in all of the required arguments.
    926   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
    927   if (FI.isVariadic()) {
    928     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
    929   } else {
    930     ie = FI.arg_end();
    931   }
    932   for (; it != ie; ++it) {
    933     const ABIArgInfo &argAI = it->info;
    934 
    935     // Insert a padding type to ensure proper alignment.
    936     if (llvm::Type *PaddingType = argAI.getPaddingType())
    937       argTypes.push_back(PaddingType);
    938 
    939     switch (argAI.getKind()) {
    940     case ABIArgInfo::Ignore:
    941       break;
    942 
    943     case ABIArgInfo::Indirect: {
    944       // indirect arguments are always on the stack, which is addr space #0.
    945       llvm::Type *LTy = ConvertTypeForMem(it->type);
    946       argTypes.push_back(LTy->getPointerTo());
    947       break;
    948     }
    949 
    950     case ABIArgInfo::Extend:
    951     case ABIArgInfo::Direct: {
    952       // If the coerce-to type is a first class aggregate, flatten it.  Either
    953       // way is semantically identical, but fast-isel and the optimizer
    954       // generally likes scalar values better than FCAs.
    955       llvm::Type *argType = argAI.getCoerceToType();
    956       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
    957         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
    958           argTypes.push_back(st->getElementType(i));
    959       } else {
    960         argTypes.push_back(argType);
    961       }
    962       break;
    963     }
    964 
    965     case ABIArgInfo::Expand:
    966       GetExpandedTypes(it->type, argTypes);
    967       break;
    968     }
    969   }
    970 
    971   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
    972   assert(Erased && "Not in set?");
    973 
    974   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
    975 }
    976 
    977 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
    978   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    979   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    980 
    981   if (!isFuncTypeConvertible(FPT))
    982     return llvm::StructType::get(getLLVMContext());
    983 
    984   const CGFunctionInfo *Info;
    985   if (isa<CXXDestructorDecl>(MD))
    986     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
    987   else
    988     Info = &arrangeCXXMethodDeclaration(MD);
    989   return GetFunctionType(*Info);
    990 }
    991 
    992 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
    993                                            const Decl *TargetDecl,
    994                                            AttributeListType &PAL,
    995                                            unsigned &CallingConv,
    996                                            bool AttrOnCallSite) {
    997   llvm::AttrBuilder FuncAttrs;
    998   llvm::AttrBuilder RetAttrs;
    999 
   1000   CallingConv = FI.getEffectiveCallingConvention();
   1001 
   1002   if (FI.isNoReturn())
   1003     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1004 
   1005   // FIXME: handle sseregparm someday...
   1006   if (TargetDecl) {
   1007     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
   1008       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
   1009     if (TargetDecl->hasAttr<NoThrowAttr>())
   1010       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1011     if (TargetDecl->hasAttr<NoReturnAttr>())
   1012       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1013 
   1014     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
   1015       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
   1016       if (FPT && FPT->isNothrow(getContext()))
   1017         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1018       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
   1019       // These attributes are not inherited by overloads.
   1020       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
   1021       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
   1022         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1023     }
   1024 
   1025     // 'const' and 'pure' attribute functions are also nounwind.
   1026     if (TargetDecl->hasAttr<ConstAttr>()) {
   1027       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
   1028       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1029     } else if (TargetDecl->hasAttr<PureAttr>()) {
   1030       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
   1031       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1032     }
   1033     if (TargetDecl->hasAttr<MallocAttr>())
   1034       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
   1035   }
   1036 
   1037   if (CodeGenOpts.OptimizeSize)
   1038     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
   1039   if (CodeGenOpts.OptimizeSize == 2)
   1040     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
   1041   if (CodeGenOpts.DisableRedZone)
   1042     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
   1043   if (CodeGenOpts.NoImplicitFloat)
   1044     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
   1045 
   1046   if (AttrOnCallSite) {
   1047     // Attributes that should go on the call site only.
   1048     if (!CodeGenOpts.SimplifyLibCalls)
   1049       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
   1050   } else {
   1051     // Attributes that should go on the function, but not the call site.
   1052     if (!CodeGenOpts.DisableFPElim) {
   1053       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1054       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
   1055     } else if (CodeGenOpts.OmitLeafFramePointer) {
   1056       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1057       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
   1058     } else {
   1059       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
   1060       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
   1061     }
   1062 
   1063     FuncAttrs.addAttribute("less-precise-fpmad",
   1064                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
   1065     FuncAttrs.addAttribute("no-infs-fp-math",
   1066                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
   1067     FuncAttrs.addAttribute("no-nans-fp-math",
   1068                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
   1069     FuncAttrs.addAttribute("unsafe-fp-math",
   1070                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
   1071     FuncAttrs.addAttribute("use-soft-float",
   1072                            llvm::toStringRef(CodeGenOpts.SoftFloat));
   1073     FuncAttrs.addAttribute("stack-protector-buffer-size",
   1074                            llvm::utostr(CodeGenOpts.SSPBufferSize));
   1075 
   1076     bool NoFramePointerElimNonLeaf;
   1077     if (!CodeGenOpts.DisableFPElim) {
   1078       NoFramePointerElimNonLeaf = false;
   1079     } else if (CodeGenOpts.OmitLeafFramePointer) {
   1080       NoFramePointerElimNonLeaf = true;
   1081     } else {
   1082       NoFramePointerElimNonLeaf = true;
   1083     }
   1084 
   1085     FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf",
   1086                            llvm::toStringRef(NoFramePointerElimNonLeaf));
   1087 
   1088     if (!CodeGenOpts.StackRealignment)
   1089       FuncAttrs.addAttribute("no-realign-stack");
   1090   }
   1091 
   1092   QualType RetTy = FI.getReturnType();
   1093   unsigned Index = 1;
   1094   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1095   switch (RetAI.getKind()) {
   1096   case ABIArgInfo::Extend:
   1097     if (RetTy->hasSignedIntegerRepresentation())
   1098       RetAttrs.addAttribute(llvm::Attribute::SExt);
   1099     else if (RetTy->hasUnsignedIntegerRepresentation())
   1100       RetAttrs.addAttribute(llvm::Attribute::ZExt);
   1101     // FALL THROUGH
   1102   case ABIArgInfo::Direct:
   1103     if (RetAI.getInReg())
   1104       RetAttrs.addAttribute(llvm::Attribute::InReg);
   1105     break;
   1106   case ABIArgInfo::Ignore:
   1107     break;
   1108 
   1109   case ABIArgInfo::Indirect: {
   1110     llvm::AttrBuilder SRETAttrs;
   1111     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
   1112     if (RetAI.getInReg())
   1113       SRETAttrs.addAttribute(llvm::Attribute::InReg);
   1114     PAL.push_back(llvm::
   1115                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
   1116 
   1117     ++Index;
   1118     // sret disables readnone and readonly
   1119     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1120       .removeAttribute(llvm::Attribute::ReadNone);
   1121     break;
   1122   }
   1123 
   1124   case ABIArgInfo::Expand:
   1125     llvm_unreachable("Invalid ABI kind for return argument");
   1126   }
   1127 
   1128   if (RetAttrs.hasAttributes())
   1129     PAL.push_back(llvm::
   1130                   AttributeSet::get(getLLVMContext(),
   1131                                     llvm::AttributeSet::ReturnIndex,
   1132                                     RetAttrs));
   1133 
   1134   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
   1135          ie = FI.arg_end(); it != ie; ++it) {
   1136     QualType ParamType = it->type;
   1137     const ABIArgInfo &AI = it->info;
   1138     llvm::AttrBuilder Attrs;
   1139 
   1140     if (AI.getPaddingType()) {
   1141       if (AI.getPaddingInReg())
   1142         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
   1143                                               llvm::Attribute::InReg));
   1144       // Increment Index if there is padding.
   1145       ++Index;
   1146     }
   1147 
   1148     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
   1149     // have the corresponding parameter variable.  It doesn't make
   1150     // sense to do it here because parameters are so messed up.
   1151     switch (AI.getKind()) {
   1152     case ABIArgInfo::Extend:
   1153       if (ParamType->isSignedIntegerOrEnumerationType())
   1154         Attrs.addAttribute(llvm::Attribute::SExt);
   1155       else if (ParamType->isUnsignedIntegerOrEnumerationType())
   1156         Attrs.addAttribute(llvm::Attribute::ZExt);
   1157       // FALL THROUGH
   1158     case ABIArgInfo::Direct:
   1159       if (AI.getInReg())
   1160         Attrs.addAttribute(llvm::Attribute::InReg);
   1161 
   1162       // FIXME: handle sseregparm someday...
   1163 
   1164       if (llvm::StructType *STy =
   1165           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
   1166         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
   1167         if (Attrs.hasAttributes())
   1168           for (unsigned I = 0; I < Extra; ++I)
   1169             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
   1170                                                   Attrs));
   1171         Index += Extra;
   1172       }
   1173       break;
   1174 
   1175     case ABIArgInfo::Indirect:
   1176       if (AI.getInReg())
   1177         Attrs.addAttribute(llvm::Attribute::InReg);
   1178 
   1179       if (AI.getIndirectByVal())
   1180         Attrs.addAttribute(llvm::Attribute::ByVal);
   1181 
   1182       Attrs.addAlignmentAttr(AI.getIndirectAlign());
   1183 
   1184       // byval disables readnone and readonly.
   1185       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1186         .removeAttribute(llvm::Attribute::ReadNone);
   1187       break;
   1188 
   1189     case ABIArgInfo::Ignore:
   1190       // Skip increment, no matching LLVM parameter.
   1191       continue;
   1192 
   1193     case ABIArgInfo::Expand: {
   1194       SmallVector<llvm::Type*, 8> types;
   1195       // FIXME: This is rather inefficient. Do we ever actually need to do
   1196       // anything here? The result should be just reconstructed on the other
   1197       // side, so extension should be a non-issue.
   1198       getTypes().GetExpandedTypes(ParamType, types);
   1199       Index += types.size();
   1200       continue;
   1201     }
   1202     }
   1203 
   1204     if (Attrs.hasAttributes())
   1205       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
   1206     ++Index;
   1207   }
   1208   if (FuncAttrs.hasAttributes())
   1209     PAL.push_back(llvm::
   1210                   AttributeSet::get(getLLVMContext(),
   1211                                     llvm::AttributeSet::FunctionIndex,
   1212                                     FuncAttrs));
   1213 }
   1214 
   1215 /// An argument came in as a promoted argument; demote it back to its
   1216 /// declared type.
   1217 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
   1218                                          const VarDecl *var,
   1219                                          llvm::Value *value) {
   1220   llvm::Type *varType = CGF.ConvertType(var->getType());
   1221 
   1222   // This can happen with promotions that actually don't change the
   1223   // underlying type, like the enum promotions.
   1224   if (value->getType() == varType) return value;
   1225 
   1226   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
   1227          && "unexpected promotion type");
   1228 
   1229   if (isa<llvm::IntegerType>(varType))
   1230     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
   1231 
   1232   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
   1233 }
   1234 
   1235 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
   1236                                          llvm::Function *Fn,
   1237                                          const FunctionArgList &Args) {
   1238   // If this is an implicit-return-zero function, go ahead and
   1239   // initialize the return value.  TODO: it might be nice to have
   1240   // a more general mechanism for this that didn't require synthesized
   1241   // return statements.
   1242   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
   1243     if (FD->hasImplicitReturnZero()) {
   1244       QualType RetTy = FD->getResultType().getUnqualifiedType();
   1245       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
   1246       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
   1247       Builder.CreateStore(Zero, ReturnValue);
   1248     }
   1249   }
   1250 
   1251   // FIXME: We no longer need the types from FunctionArgList; lift up and
   1252   // simplify.
   1253 
   1254   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
   1255   llvm::Function::arg_iterator AI = Fn->arg_begin();
   1256 
   1257   // Name the struct return argument.
   1258   if (CGM.ReturnTypeUsesSRet(FI)) {
   1259     AI->setName("agg.result");
   1260     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1261                                         AI->getArgNo() + 1,
   1262                                         llvm::Attribute::NoAlias));
   1263     ++AI;
   1264   }
   1265 
   1266   assert(FI.arg_size() == Args.size() &&
   1267          "Mismatch between function signature & arguments.");
   1268   unsigned ArgNo = 1;
   1269   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
   1270   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
   1271        i != e; ++i, ++info_it, ++ArgNo) {
   1272     const VarDecl *Arg = *i;
   1273     QualType Ty = info_it->type;
   1274     const ABIArgInfo &ArgI = info_it->info;
   1275 
   1276     bool isPromoted =
   1277       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
   1278 
   1279     // Skip the dummy padding argument.
   1280     if (ArgI.getPaddingType())
   1281       ++AI;
   1282 
   1283     switch (ArgI.getKind()) {
   1284     case ABIArgInfo::Indirect: {
   1285       llvm::Value *V = AI;
   1286 
   1287       if (!hasScalarEvaluationKind(Ty)) {
   1288         // Aggregates and complex variables are accessed by reference.  All we
   1289         // need to do is realign the value, if requested
   1290         if (ArgI.getIndirectRealign()) {
   1291           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
   1292 
   1293           // Copy from the incoming argument pointer to the temporary with the
   1294           // appropriate alignment.
   1295           //
   1296           // FIXME: We should have a common utility for generating an aggregate
   1297           // copy.
   1298           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
   1299           CharUnits Size = getContext().getTypeSizeInChars(Ty);
   1300           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
   1301           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
   1302           Builder.CreateMemCpy(Dst,
   1303                                Src,
   1304                                llvm::ConstantInt::get(IntPtrTy,
   1305                                                       Size.getQuantity()),
   1306                                ArgI.getIndirectAlign(),
   1307                                false);
   1308           V = AlignedTemp;
   1309         }
   1310       } else {
   1311         // Load scalar value from indirect argument.
   1312         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1313         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
   1314 
   1315         if (isPromoted)
   1316           V = emitArgumentDemotion(*this, Arg, V);
   1317       }
   1318       EmitParmDecl(*Arg, V, ArgNo);
   1319       break;
   1320     }
   1321 
   1322     case ABIArgInfo::Extend:
   1323     case ABIArgInfo::Direct: {
   1324 
   1325       // If we have the trivial case, handle it with no muss and fuss.
   1326       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
   1327           ArgI.getCoerceToType() == ConvertType(Ty) &&
   1328           ArgI.getDirectOffset() == 0) {
   1329         assert(AI != Fn->arg_end() && "Argument mismatch!");
   1330         llvm::Value *V = AI;
   1331 
   1332         if (Arg->getType().isRestrictQualified())
   1333           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1334                                               AI->getArgNo() + 1,
   1335                                               llvm::Attribute::NoAlias));
   1336 
   1337         // Ensure the argument is the correct type.
   1338         if (V->getType() != ArgI.getCoerceToType())
   1339           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
   1340 
   1341         if (isPromoted)
   1342           V = emitArgumentDemotion(*this, Arg, V);
   1343 
   1344         // Because of merging of function types from multiple decls it is
   1345         // possible for the type of an argument to not match the corresponding
   1346         // type in the function type. Since we are codegening the callee
   1347         // in here, add a cast to the argument type.
   1348         llvm::Type *LTy = ConvertType(Arg->getType());
   1349         if (V->getType() != LTy)
   1350           V = Builder.CreateBitCast(V, LTy);
   1351 
   1352         EmitParmDecl(*Arg, V, ArgNo);
   1353         break;
   1354       }
   1355 
   1356       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
   1357 
   1358       // The alignment we need to use is the max of the requested alignment for
   1359       // the argument plus the alignment required by our access code below.
   1360       unsigned AlignmentToUse =
   1361         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
   1362       AlignmentToUse = std::max(AlignmentToUse,
   1363                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
   1364 
   1365       Alloca->setAlignment(AlignmentToUse);
   1366       llvm::Value *V = Alloca;
   1367       llvm::Value *Ptr = V;    // Pointer to store into.
   1368 
   1369       // If the value is offset in memory, apply the offset now.
   1370       if (unsigned Offs = ArgI.getDirectOffset()) {
   1371         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
   1372         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
   1373         Ptr = Builder.CreateBitCast(Ptr,
   1374                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
   1375       }
   1376 
   1377       // If the coerce-to type is a first class aggregate, we flatten it and
   1378       // pass the elements. Either way is semantically identical, but fast-isel
   1379       // and the optimizer generally likes scalar values better than FCAs.
   1380       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
   1381       if (STy && STy->getNumElements() > 1) {
   1382         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
   1383         llvm::Type *DstTy =
   1384           cast<llvm::PointerType>(Ptr->getType())->getElementType();
   1385         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
   1386 
   1387         if (SrcSize <= DstSize) {
   1388           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
   1389 
   1390           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1391             assert(AI != Fn->arg_end() && "Argument mismatch!");
   1392             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1393             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
   1394             Builder.CreateStore(AI++, EltPtr);
   1395           }
   1396         } else {
   1397           llvm::AllocaInst *TempAlloca =
   1398             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
   1399           TempAlloca->setAlignment(AlignmentToUse);
   1400           llvm::Value *TempV = TempAlloca;
   1401 
   1402           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1403             assert(AI != Fn->arg_end() && "Argument mismatch!");
   1404             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1405             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
   1406             Builder.CreateStore(AI++, EltPtr);
   1407           }
   1408 
   1409           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
   1410         }
   1411       } else {
   1412         // Simple case, just do a coerced store of the argument into the alloca.
   1413         assert(AI != Fn->arg_end() && "Argument mismatch!");
   1414         AI->setName(Arg->getName() + ".coerce");
   1415         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
   1416       }
   1417 
   1418 
   1419       // Match to what EmitParmDecl is expecting for this type.
   1420       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
   1421         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
   1422         if (isPromoted)
   1423           V = emitArgumentDemotion(*this, Arg, V);
   1424       }
   1425       EmitParmDecl(*Arg, V, ArgNo);
   1426       continue;  // Skip ++AI increment, already done.
   1427     }
   1428 
   1429     case ABIArgInfo::Expand: {
   1430       // If this structure was expanded into multiple arguments then
   1431       // we need to create a temporary and reconstruct it from the
   1432       // arguments.
   1433       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
   1434       CharUnits Align = getContext().getDeclAlign(Arg);
   1435       Alloca->setAlignment(Align.getQuantity());
   1436       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
   1437       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
   1438       EmitParmDecl(*Arg, Alloca, ArgNo);
   1439 
   1440       // Name the arguments used in expansion and increment AI.
   1441       unsigned Index = 0;
   1442       for (; AI != End; ++AI, ++Index)
   1443         AI->setName(Arg->getName() + "." + Twine(Index));
   1444       continue;
   1445     }
   1446 
   1447     case ABIArgInfo::Ignore:
   1448       // Initialize the local variable appropriately.
   1449       if (!hasScalarEvaluationKind(Ty))
   1450         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
   1451       else
   1452         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
   1453                      ArgNo);
   1454 
   1455       // Skip increment, no matching LLVM parameter.
   1456       continue;
   1457     }
   1458 
   1459     ++AI;
   1460   }
   1461   assert(AI == Fn->arg_end() && "Argument mismatch!");
   1462 }
   1463 
   1464 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
   1465   while (insn->use_empty()) {
   1466     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
   1467     if (!bitcast) return;
   1468 
   1469     // This is "safe" because we would have used a ConstantExpr otherwise.
   1470     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
   1471     bitcast->eraseFromParent();
   1472   }
   1473 }
   1474 
   1475 /// Try to emit a fused autorelease of a return result.
   1476 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
   1477                                                     llvm::Value *result) {
   1478   // We must be immediately followed the cast.
   1479   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
   1480   if (BB->empty()) return 0;
   1481   if (&BB->back() != result) return 0;
   1482 
   1483   llvm::Type *resultType = result->getType();
   1484 
   1485   // result is in a BasicBlock and is therefore an Instruction.
   1486   llvm::Instruction *generator = cast<llvm::Instruction>(result);
   1487 
   1488   SmallVector<llvm::Instruction*,4> insnsToKill;
   1489 
   1490   // Look for:
   1491   //  %generator = bitcast %type1* %generator2 to %type2*
   1492   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
   1493     // We would have emitted this as a constant if the operand weren't
   1494     // an Instruction.
   1495     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
   1496 
   1497     // Require the generator to be immediately followed by the cast.
   1498     if (generator->getNextNode() != bitcast)
   1499       return 0;
   1500 
   1501     insnsToKill.push_back(bitcast);
   1502   }
   1503 
   1504   // Look for:
   1505   //   %generator = call i8* @objc_retain(i8* %originalResult)
   1506   // or
   1507   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
   1508   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
   1509   if (!call) return 0;
   1510 
   1511   bool doRetainAutorelease;
   1512 
   1513   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
   1514     doRetainAutorelease = true;
   1515   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
   1516                                           .objc_retainAutoreleasedReturnValue) {
   1517     doRetainAutorelease = false;
   1518 
   1519     // If we emitted an assembly marker for this call (and the
   1520     // ARCEntrypoints field should have been set if so), go looking
   1521     // for that call.  If we can't find it, we can't do this
   1522     // optimization.  But it should always be the immediately previous
   1523     // instruction, unless we needed bitcasts around the call.
   1524     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
   1525       llvm::Instruction *prev = call->getPrevNode();
   1526       assert(prev);
   1527       if (isa<llvm::BitCastInst>(prev)) {
   1528         prev = prev->getPrevNode();
   1529         assert(prev);
   1530       }
   1531       assert(isa<llvm::CallInst>(prev));
   1532       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
   1533                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
   1534       insnsToKill.push_back(prev);
   1535     }
   1536   } else {
   1537     return 0;
   1538   }
   1539 
   1540   result = call->getArgOperand(0);
   1541   insnsToKill.push_back(call);
   1542 
   1543   // Keep killing bitcasts, for sanity.  Note that we no longer care
   1544   // about precise ordering as long as there's exactly one use.
   1545   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
   1546     if (!bitcast->hasOneUse()) break;
   1547     insnsToKill.push_back(bitcast);
   1548     result = bitcast->getOperand(0);
   1549   }
   1550 
   1551   // Delete all the unnecessary instructions, from latest to earliest.
   1552   for (SmallVectorImpl<llvm::Instruction*>::iterator
   1553          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
   1554     (*i)->eraseFromParent();
   1555 
   1556   // Do the fused retain/autorelease if we were asked to.
   1557   if (doRetainAutorelease)
   1558     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
   1559 
   1560   // Cast back to the result type.
   1561   return CGF.Builder.CreateBitCast(result, resultType);
   1562 }
   1563 
   1564 /// If this is a +1 of the value of an immutable 'self', remove it.
   1565 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
   1566                                           llvm::Value *result) {
   1567   // This is only applicable to a method with an immutable 'self'.
   1568   const ObjCMethodDecl *method =
   1569     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
   1570   if (!method) return 0;
   1571   const VarDecl *self = method->getSelfDecl();
   1572   if (!self->getType().isConstQualified()) return 0;
   1573 
   1574   // Look for a retain call.
   1575   llvm::CallInst *retainCall =
   1576     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
   1577   if (!retainCall ||
   1578       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
   1579     return 0;
   1580 
   1581   // Look for an ordinary load of 'self'.
   1582   llvm::Value *retainedValue = retainCall->getArgOperand(0);
   1583   llvm::LoadInst *load =
   1584     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
   1585   if (!load || load->isAtomic() || load->isVolatile() ||
   1586       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
   1587     return 0;
   1588 
   1589   // Okay!  Burn it all down.  This relies for correctness on the
   1590   // assumption that the retain is emitted as part of the return and
   1591   // that thereafter everything is used "linearly".
   1592   llvm::Type *resultType = result->getType();
   1593   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
   1594   assert(retainCall->use_empty());
   1595   retainCall->eraseFromParent();
   1596   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
   1597 
   1598   return CGF.Builder.CreateBitCast(load, resultType);
   1599 }
   1600 
   1601 /// Emit an ARC autorelease of the result of a function.
   1602 ///
   1603 /// \return the value to actually return from the function
   1604 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
   1605                                             llvm::Value *result) {
   1606   // If we're returning 'self', kill the initial retain.  This is a
   1607   // heuristic attempt to "encourage correctness" in the really unfortunate
   1608   // case where we have a return of self during a dealloc and we desperately
   1609   // need to avoid the possible autorelease.
   1610   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
   1611     return self;
   1612 
   1613   // At -O0, try to emit a fused retain/autorelease.
   1614   if (CGF.shouldUseFusedARCCalls())
   1615     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
   1616       return fused;
   1617 
   1618   return CGF.EmitARCAutoreleaseReturnValue(result);
   1619 }
   1620 
   1621 /// Heuristically search for a dominating store to the return-value slot.
   1622 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
   1623   // If there are multiple uses of the return-value slot, just check
   1624   // for something immediately preceding the IP.  Sometimes this can
   1625   // happen with how we generate implicit-returns; it can also happen
   1626   // with noreturn cleanups.
   1627   if (!CGF.ReturnValue->hasOneUse()) {
   1628     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   1629     if (IP->empty()) return 0;
   1630     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
   1631     if (!store) return 0;
   1632     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
   1633     assert(!store->isAtomic() && !store->isVolatile()); // see below
   1634     return store;
   1635   }
   1636 
   1637   llvm::StoreInst *store =
   1638     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
   1639   if (!store) return 0;
   1640 
   1641   // These aren't actually possible for non-coerced returns, and we
   1642   // only care about non-coerced returns on this code path.
   1643   assert(!store->isAtomic() && !store->isVolatile());
   1644 
   1645   // Now do a first-and-dirty dominance check: just walk up the
   1646   // single-predecessors chain from the current insertion point.
   1647   llvm::BasicBlock *StoreBB = store->getParent();
   1648   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   1649   while (IP != StoreBB) {
   1650     if (!(IP = IP->getSinglePredecessor()))
   1651       return 0;
   1652   }
   1653 
   1654   // Okay, the store's basic block dominates the insertion point; we
   1655   // can do our thing.
   1656   return store;
   1657 }
   1658 
   1659 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
   1660                                          bool EmitRetDbgLoc) {
   1661   // Functions with no result always return void.
   1662   if (ReturnValue == 0) {
   1663     Builder.CreateRetVoid();
   1664     return;
   1665   }
   1666 
   1667   llvm::DebugLoc RetDbgLoc;
   1668   llvm::Value *RV = 0;
   1669   QualType RetTy = FI.getReturnType();
   1670   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1671 
   1672   switch (RetAI.getKind()) {
   1673   case ABIArgInfo::Indirect: {
   1674     switch (getEvaluationKind(RetTy)) {
   1675     case TEK_Complex: {
   1676       ComplexPairTy RT =
   1677         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
   1678       EmitStoreOfComplex(RT,
   1679                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
   1680                          /*isInit*/ true);
   1681       break;
   1682     }
   1683     case TEK_Aggregate:
   1684       // Do nothing; aggregrates get evaluated directly into the destination.
   1685       break;
   1686     case TEK_Scalar:
   1687       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
   1688                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
   1689                         /*isInit*/ true);
   1690       break;
   1691     }
   1692     break;
   1693   }
   1694 
   1695   case ABIArgInfo::Extend:
   1696   case ABIArgInfo::Direct:
   1697     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
   1698         RetAI.getDirectOffset() == 0) {
   1699       // The internal return value temp always will have pointer-to-return-type
   1700       // type, just do a load.
   1701 
   1702       // If there is a dominating store to ReturnValue, we can elide
   1703       // the load, zap the store, and usually zap the alloca.
   1704       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
   1705         // Reuse the debug location from the store unless there is
   1706         // cleanup code to be emitted between the store and return
   1707         // instruction.
   1708         if (EmitRetDbgLoc && !AutoreleaseResult)
   1709           RetDbgLoc = SI->getDebugLoc();
   1710         // Get the stored value and nuke the now-dead store.
   1711         RV = SI->getValueOperand();
   1712         SI->eraseFromParent();
   1713 
   1714         // If that was the only use of the return value, nuke it as well now.
   1715         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
   1716           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
   1717           ReturnValue = 0;
   1718         }
   1719 
   1720       // Otherwise, we have to do a simple load.
   1721       } else {
   1722         RV = Builder.CreateLoad(ReturnValue);
   1723       }
   1724     } else {
   1725       llvm::Value *V = ReturnValue;
   1726       // If the value is offset in memory, apply the offset now.
   1727       if (unsigned Offs = RetAI.getDirectOffset()) {
   1728         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
   1729         V = Builder.CreateConstGEP1_32(V, Offs);
   1730         V = Builder.CreateBitCast(V,
   1731                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   1732       }
   1733 
   1734       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
   1735     }
   1736 
   1737     // In ARC, end functions that return a retainable type with a call
   1738     // to objc_autoreleaseReturnValue.
   1739     if (AutoreleaseResult) {
   1740       assert(getLangOpts().ObjCAutoRefCount &&
   1741              !FI.isReturnsRetained() &&
   1742              RetTy->isObjCRetainableType());
   1743       RV = emitAutoreleaseOfResult(*this, RV);
   1744     }
   1745 
   1746     break;
   1747 
   1748   case ABIArgInfo::Ignore:
   1749     break;
   1750 
   1751   case ABIArgInfo::Expand:
   1752     llvm_unreachable("Invalid ABI kind for return argument");
   1753   }
   1754 
   1755   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
   1756   if (!RetDbgLoc.isUnknown())
   1757     Ret->setDebugLoc(RetDbgLoc);
   1758 }
   1759 
   1760 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
   1761                                           const VarDecl *param) {
   1762   // StartFunction converted the ABI-lowered parameter(s) into a
   1763   // local alloca.  We need to turn that into an r-value suitable
   1764   // for EmitCall.
   1765   llvm::Value *local = GetAddrOfLocalVar(param);
   1766 
   1767   QualType type = param->getType();
   1768 
   1769   // For the most part, we just need to load the alloca, except:
   1770   // 1) aggregate r-values are actually pointers to temporaries, and
   1771   // 2) references to non-scalars are pointers directly to the aggregate.
   1772   // I don't know why references to scalars are different here.
   1773   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
   1774     if (!hasScalarEvaluationKind(ref->getPointeeType()))
   1775       return args.add(RValue::getAggregate(local), type);
   1776 
   1777     // Locals which are references to scalars are represented
   1778     // with allocas holding the pointer.
   1779     return args.add(RValue::get(Builder.CreateLoad(local)), type);
   1780   }
   1781 
   1782   args.add(convertTempToRValue(local, type), type);
   1783 }
   1784 
   1785 static bool isProvablyNull(llvm::Value *addr) {
   1786   return isa<llvm::ConstantPointerNull>(addr);
   1787 }
   1788 
   1789 static bool isProvablyNonNull(llvm::Value *addr) {
   1790   return isa<llvm::AllocaInst>(addr);
   1791 }
   1792 
   1793 /// Emit the actual writing-back of a writeback.
   1794 static void emitWriteback(CodeGenFunction &CGF,
   1795                           const CallArgList::Writeback &writeback) {
   1796   const LValue &srcLV = writeback.Source;
   1797   llvm::Value *srcAddr = srcLV.getAddress();
   1798   assert(!isProvablyNull(srcAddr) &&
   1799          "shouldn't have writeback for provably null argument");
   1800 
   1801   llvm::BasicBlock *contBB = 0;
   1802 
   1803   // If the argument wasn't provably non-null, we need to null check
   1804   // before doing the store.
   1805   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1806   if (!provablyNonNull) {
   1807     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
   1808     contBB = CGF.createBasicBlock("icr.done");
   1809 
   1810     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1811     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
   1812     CGF.EmitBlock(writebackBB);
   1813   }
   1814 
   1815   // Load the value to writeback.
   1816   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
   1817 
   1818   // Cast it back, in case we're writing an id to a Foo* or something.
   1819   value = CGF.Builder.CreateBitCast(value,
   1820                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
   1821                             "icr.writeback-cast");
   1822 
   1823   // Perform the writeback.
   1824 
   1825   // If we have a "to use" value, it's something we need to emit a use
   1826   // of.  This has to be carefully threaded in: if it's done after the
   1827   // release it's potentially undefined behavior (and the optimizer
   1828   // will ignore it), and if it happens before the retain then the
   1829   // optimizer could move the release there.
   1830   if (writeback.ToUse) {
   1831     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
   1832 
   1833     // Retain the new value.  No need to block-copy here:  the block's
   1834     // being passed up the stack.
   1835     value = CGF.EmitARCRetainNonBlock(value);
   1836 
   1837     // Emit the intrinsic use here.
   1838     CGF.EmitARCIntrinsicUse(writeback.ToUse);
   1839 
   1840     // Load the old value (primitively).
   1841     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
   1842 
   1843     // Put the new value in place (primitively).
   1844     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
   1845 
   1846     // Release the old value.
   1847     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
   1848 
   1849   // Otherwise, we can just do a normal lvalue store.
   1850   } else {
   1851     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
   1852   }
   1853 
   1854   // Jump to the continuation block.
   1855   if (!provablyNonNull)
   1856     CGF.EmitBlock(contBB);
   1857 }
   1858 
   1859 static void emitWritebacks(CodeGenFunction &CGF,
   1860                            const CallArgList &args) {
   1861   for (CallArgList::writeback_iterator
   1862          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
   1863     emitWriteback(CGF, *i);
   1864 }
   1865 
   1866 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
   1867                                             const CallArgList &CallArgs) {
   1868   assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
   1869   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
   1870     CallArgs.getCleanupsToDeactivate();
   1871   // Iterate in reverse to increase the likelihood of popping the cleanup.
   1872   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
   1873          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
   1874     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
   1875     I->IsActiveIP->eraseFromParent();
   1876   }
   1877 }
   1878 
   1879 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
   1880   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
   1881     if (uop->getOpcode() == UO_AddrOf)
   1882       return uop->getSubExpr();
   1883   return 0;
   1884 }
   1885 
   1886 /// Emit an argument that's being passed call-by-writeback.  That is,
   1887 /// we are passing the address of
   1888 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
   1889                              const ObjCIndirectCopyRestoreExpr *CRE) {
   1890   LValue srcLV;
   1891 
   1892   // Make an optimistic effort to emit the address as an l-value.
   1893   // This can fail if the the argument expression is more complicated.
   1894   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
   1895     srcLV = CGF.EmitLValue(lvExpr);
   1896 
   1897   // Otherwise, just emit it as a scalar.
   1898   } else {
   1899     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
   1900 
   1901     QualType srcAddrType =
   1902       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   1903     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
   1904   }
   1905   llvm::Value *srcAddr = srcLV.getAddress();
   1906 
   1907   // The dest and src types don't necessarily match in LLVM terms
   1908   // because of the crazy ObjC compatibility rules.
   1909 
   1910   llvm::PointerType *destType =
   1911     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
   1912 
   1913   // If the address is a constant null, just pass the appropriate null.
   1914   if (isProvablyNull(srcAddr)) {
   1915     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
   1916              CRE->getType());
   1917     return;
   1918   }
   1919 
   1920   // Create the temporary.
   1921   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
   1922                                            "icr.temp");
   1923   // Loading an l-value can introduce a cleanup if the l-value is __weak,
   1924   // and that cleanup will be conditional if we can't prove that the l-value
   1925   // isn't null, so we need to register a dominating point so that the cleanups
   1926   // system will make valid IR.
   1927   CodeGenFunction::ConditionalEvaluation condEval(CGF);
   1928 
   1929   // Zero-initialize it if we're not doing a copy-initialization.
   1930   bool shouldCopy = CRE->shouldCopy();
   1931   if (!shouldCopy) {
   1932     llvm::Value *null =
   1933       llvm::ConstantPointerNull::get(
   1934         cast<llvm::PointerType>(destType->getElementType()));
   1935     CGF.Builder.CreateStore(null, temp);
   1936   }
   1937 
   1938   llvm::BasicBlock *contBB = 0;
   1939   llvm::BasicBlock *originBB = 0;
   1940 
   1941   // If the address is *not* known to be non-null, we need to switch.
   1942   llvm::Value *finalArgument;
   1943 
   1944   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1945   if (provablyNonNull) {
   1946     finalArgument = temp;
   1947   } else {
   1948     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1949 
   1950     finalArgument = CGF.Builder.CreateSelect(isNull,
   1951                                    llvm::ConstantPointerNull::get(destType),
   1952                                              temp, "icr.argument");
   1953 
   1954     // If we need to copy, then the load has to be conditional, which
   1955     // means we need control flow.
   1956     if (shouldCopy) {
   1957       originBB = CGF.Builder.GetInsertBlock();
   1958       contBB = CGF.createBasicBlock("icr.cont");
   1959       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
   1960       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
   1961       CGF.EmitBlock(copyBB);
   1962       condEval.begin(CGF);
   1963     }
   1964   }
   1965 
   1966   llvm::Value *valueToUse = 0;
   1967 
   1968   // Perform a copy if necessary.
   1969   if (shouldCopy) {
   1970     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
   1971     assert(srcRV.isScalar());
   1972 
   1973     llvm::Value *src = srcRV.getScalarVal();
   1974     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
   1975                                     "icr.cast");
   1976 
   1977     // Use an ordinary store, not a store-to-lvalue.
   1978     CGF.Builder.CreateStore(src, temp);
   1979 
   1980     // If optimization is enabled, and the value was held in a
   1981     // __strong variable, we need to tell the optimizer that this
   1982     // value has to stay alive until we're doing the store back.
   1983     // This is because the temporary is effectively unretained,
   1984     // and so otherwise we can violate the high-level semantics.
   1985     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   1986         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
   1987       valueToUse = src;
   1988     }
   1989   }
   1990 
   1991   // Finish the control flow if we needed it.
   1992   if (shouldCopy && !provablyNonNull) {
   1993     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
   1994     CGF.EmitBlock(contBB);
   1995 
   1996     // Make a phi for the value to intrinsically use.
   1997     if (valueToUse) {
   1998       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
   1999                                                       "icr.to-use");
   2000       phiToUse->addIncoming(valueToUse, copyBB);
   2001       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
   2002                             originBB);
   2003       valueToUse = phiToUse;
   2004     }
   2005 
   2006     condEval.end(CGF);
   2007   }
   2008 
   2009   args.addWriteback(srcLV, temp, valueToUse);
   2010   args.add(RValue::get(finalArgument), CRE->getType());
   2011 }
   2012 
   2013 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
   2014                                   QualType type) {
   2015   if (const ObjCIndirectCopyRestoreExpr *CRE
   2016         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
   2017     assert(getLangOpts().ObjCAutoRefCount);
   2018     assert(getContext().hasSameType(E->getType(), type));
   2019     return emitWritebackArg(*this, args, CRE);
   2020   }
   2021 
   2022   assert(type->isReferenceType() == E->isGLValue() &&
   2023          "reference binding to unmaterialized r-value!");
   2024 
   2025   if (E->isGLValue()) {
   2026     assert(E->getObjectKind() == OK_Ordinary);
   2027     return args.add(EmitReferenceBindingToExpr(E), type);
   2028   }
   2029 
   2030   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
   2031 
   2032   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
   2033   // However, we still have to push an EH-only cleanup in case we unwind before
   2034   // we make it to the call.
   2035   if (HasAggregateEvalKind &&
   2036       CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
   2037     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
   2038     if (RD && RD->hasNonTrivialDestructor()) {
   2039       AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
   2040       Slot.setExternallyDestructed();
   2041       EmitAggExpr(E, Slot);
   2042       RValue RV = Slot.asRValue();
   2043       args.add(RV, type);
   2044 
   2045       pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
   2046                   /*useEHCleanupForArray*/ true);
   2047       // This unreachable is a temporary marker which will be removed later.
   2048       llvm::Instruction *IsActive = Builder.CreateUnreachable();
   2049       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
   2050       return;
   2051     }
   2052   }
   2053 
   2054   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
   2055       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
   2056     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
   2057     assert(L.isSimple());
   2058     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
   2059       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
   2060     } else {
   2061       // We can't represent a misaligned lvalue in the CallArgList, so copy
   2062       // to an aligned temporary now.
   2063       llvm::Value *tmp = CreateMemTemp(type);
   2064       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
   2065                         L.getAlignment());
   2066       args.add(RValue::getAggregate(tmp), type);
   2067     }
   2068     return;
   2069   }
   2070 
   2071   args.add(EmitAnyExprToTemp(E), type);
   2072 }
   2073 
   2074 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2075 // optimizer it can aggressively ignore unwind edges.
   2076 void
   2077 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
   2078   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   2079       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
   2080     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
   2081                       CGM.getNoObjCARCExceptionsMetadata());
   2082 }
   2083 
   2084 /// Emits a call to the given no-arguments nounwind runtime function.
   2085 llvm::CallInst *
   2086 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   2087                                          const llvm::Twine &name) {
   2088   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
   2089 }
   2090 
   2091 /// Emits a call to the given nounwind runtime function.
   2092 llvm::CallInst *
   2093 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   2094                                          ArrayRef<llvm::Value*> args,
   2095                                          const llvm::Twine &name) {
   2096   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
   2097   call->setDoesNotThrow();
   2098   return call;
   2099 }
   2100 
   2101 /// Emits a simple call (never an invoke) to the given no-arguments
   2102 /// runtime function.
   2103 llvm::CallInst *
   2104 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   2105                                  const llvm::Twine &name) {
   2106   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
   2107 }
   2108 
   2109 /// Emits a simple call (never an invoke) to the given runtime
   2110 /// function.
   2111 llvm::CallInst *
   2112 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   2113                                  ArrayRef<llvm::Value*> args,
   2114                                  const llvm::Twine &name) {
   2115   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
   2116   call->setCallingConv(getRuntimeCC());
   2117   return call;
   2118 }
   2119 
   2120 /// Emits a call or invoke to the given noreturn runtime function.
   2121 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   2122                                                ArrayRef<llvm::Value*> args) {
   2123   if (getInvokeDest()) {
   2124     llvm::InvokeInst *invoke =
   2125       Builder.CreateInvoke(callee,
   2126                            getUnreachableBlock(),
   2127                            getInvokeDest(),
   2128                            args);
   2129     invoke->setDoesNotReturn();
   2130     invoke->setCallingConv(getRuntimeCC());
   2131   } else {
   2132     llvm::CallInst *call = Builder.CreateCall(callee, args);
   2133     call->setDoesNotReturn();
   2134     call->setCallingConv(getRuntimeCC());
   2135     Builder.CreateUnreachable();
   2136   }
   2137 }
   2138 
   2139 /// Emits a call or invoke instruction to the given nullary runtime
   2140 /// function.
   2141 llvm::CallSite
   2142 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2143                                          const Twine &name) {
   2144   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
   2145 }
   2146 
   2147 /// Emits a call or invoke instruction to the given runtime function.
   2148 llvm::CallSite
   2149 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2150                                          ArrayRef<llvm::Value*> args,
   2151                                          const Twine &name) {
   2152   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
   2153   callSite.setCallingConv(getRuntimeCC());
   2154   return callSite;
   2155 }
   2156 
   2157 llvm::CallSite
   2158 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   2159                                   const Twine &Name) {
   2160   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
   2161 }
   2162 
   2163 /// Emits a call or invoke instruction to the given function, depending
   2164 /// on the current state of the EH stack.
   2165 llvm::CallSite
   2166 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   2167                                   ArrayRef<llvm::Value *> Args,
   2168                                   const Twine &Name) {
   2169   llvm::BasicBlock *InvokeDest = getInvokeDest();
   2170 
   2171   llvm::Instruction *Inst;
   2172   if (!InvokeDest)
   2173     Inst = Builder.CreateCall(Callee, Args, Name);
   2174   else {
   2175     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
   2176     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
   2177     EmitBlock(ContBB);
   2178   }
   2179 
   2180   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2181   // optimizer it can aggressively ignore unwind edges.
   2182   if (CGM.getLangOpts().ObjCAutoRefCount)
   2183     AddObjCARCExceptionMetadata(Inst);
   2184 
   2185   return Inst;
   2186 }
   2187 
   2188 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
   2189                             llvm::FunctionType *FTy) {
   2190   if (ArgNo < FTy->getNumParams())
   2191     assert(Elt->getType() == FTy->getParamType(ArgNo));
   2192   else
   2193     assert(FTy->isVarArg());
   2194   ++ArgNo;
   2195 }
   2196 
   2197 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
   2198                                        SmallVectorImpl<llvm::Value *> &Args,
   2199                                        llvm::FunctionType *IRFuncTy) {
   2200   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   2201     unsigned NumElts = AT->getSize().getZExtValue();
   2202     QualType EltTy = AT->getElementType();
   2203     llvm::Value *Addr = RV.getAggregateAddr();
   2204     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
   2205       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
   2206       RValue EltRV = convertTempToRValue(EltAddr, EltTy);
   2207       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
   2208     }
   2209   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2210     RecordDecl *RD = RT->getDecl();
   2211     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
   2212     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
   2213 
   2214     if (RD->isUnion()) {
   2215       const FieldDecl *LargestFD = 0;
   2216       CharUnits UnionSize = CharUnits::Zero();
   2217 
   2218       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2219            i != e; ++i) {
   2220         const FieldDecl *FD = *i;
   2221         assert(!FD->isBitField() &&
   2222                "Cannot expand structure with bit-field members.");
   2223         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
   2224         if (UnionSize < FieldSize) {
   2225           UnionSize = FieldSize;
   2226           LargestFD = FD;
   2227         }
   2228       }
   2229       if (LargestFD) {
   2230         RValue FldRV = EmitRValueForField(LV, LargestFD);
   2231         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
   2232       }
   2233     } else {
   2234       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2235            i != e; ++i) {
   2236         FieldDecl *FD = *i;
   2237 
   2238         RValue FldRV = EmitRValueForField(LV, FD);
   2239         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
   2240       }
   2241     }
   2242   } else if (Ty->isAnyComplexType()) {
   2243     ComplexPairTy CV = RV.getComplexVal();
   2244     Args.push_back(CV.first);
   2245     Args.push_back(CV.second);
   2246   } else {
   2247     assert(RV.isScalar() &&
   2248            "Unexpected non-scalar rvalue during struct expansion.");
   2249 
   2250     // Insert a bitcast as needed.
   2251     llvm::Value *V = RV.getScalarVal();
   2252     if (Args.size() < IRFuncTy->getNumParams() &&
   2253         V->getType() != IRFuncTy->getParamType(Args.size()))
   2254       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
   2255 
   2256     Args.push_back(V);
   2257   }
   2258 }
   2259 
   2260 
   2261 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
   2262                                  llvm::Value *Callee,
   2263                                  ReturnValueSlot ReturnValue,
   2264                                  const CallArgList &CallArgs,
   2265                                  const Decl *TargetDecl,
   2266                                  llvm::Instruction **callOrInvoke) {
   2267   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
   2268   SmallVector<llvm::Value*, 16> Args;
   2269 
   2270   // Handle struct-return functions by passing a pointer to the
   2271   // location that we would like to return into.
   2272   QualType RetTy = CallInfo.getReturnType();
   2273   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
   2274 
   2275   // IRArgNo - Keep track of the argument number in the callee we're looking at.
   2276   unsigned IRArgNo = 0;
   2277   llvm::FunctionType *IRFuncTy =
   2278     cast<llvm::FunctionType>(
   2279                   cast<llvm::PointerType>(Callee->getType())->getElementType());
   2280 
   2281   // If the call returns a temporary with struct return, create a temporary
   2282   // alloca to hold the result, unless one is given to us.
   2283   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
   2284     llvm::Value *Value = ReturnValue.getValue();
   2285     if (!Value)
   2286       Value = CreateMemTemp(RetTy);
   2287     Args.push_back(Value);
   2288     checkArgMatches(Value, IRArgNo, IRFuncTy);
   2289   }
   2290 
   2291   assert(CallInfo.arg_size() == CallArgs.size() &&
   2292          "Mismatch between function signature & arguments.");
   2293   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
   2294   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
   2295        I != E; ++I, ++info_it) {
   2296     const ABIArgInfo &ArgInfo = info_it->info;
   2297     RValue RV = I->RV;
   2298 
   2299     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
   2300 
   2301     // Insert a padding argument to ensure proper alignment.
   2302     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
   2303       Args.push_back(llvm::UndefValue::get(PaddingType));
   2304       ++IRArgNo;
   2305     }
   2306 
   2307     switch (ArgInfo.getKind()) {
   2308     case ABIArgInfo::Indirect: {
   2309       if (RV.isScalar() || RV.isComplex()) {
   2310         // Make a temporary alloca to pass the argument.
   2311         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   2312         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
   2313           AI->setAlignment(ArgInfo.getIndirectAlign());
   2314         Args.push_back(AI);
   2315 
   2316         LValue argLV =
   2317           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
   2318 
   2319         if (RV.isScalar())
   2320           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
   2321         else
   2322           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
   2323 
   2324         // Validate argument match.
   2325         checkArgMatches(AI, IRArgNo, IRFuncTy);
   2326       } else {
   2327         // We want to avoid creating an unnecessary temporary+copy here;
   2328         // however, we need one in three cases:
   2329         // 1. If the argument is not byval, and we are required to copy the
   2330         //    source.  (This case doesn't occur on any common architecture.)
   2331         // 2. If the argument is byval, RV is not sufficiently aligned, and
   2332         //    we cannot force it to be sufficiently aligned.
   2333         // 3. If the argument is byval, but RV is located in an address space
   2334         //    different than that of the argument (0).
   2335         llvm::Value *Addr = RV.getAggregateAddr();
   2336         unsigned Align = ArgInfo.getIndirectAlign();
   2337         const llvm::DataLayout *TD = &CGM.getDataLayout();
   2338         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
   2339         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
   2340           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
   2341         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
   2342             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
   2343              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
   2344              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
   2345           // Create an aligned temporary, and copy to it.
   2346           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   2347           if (Align > AI->getAlignment())
   2348             AI->setAlignment(Align);
   2349           Args.push_back(AI);
   2350           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
   2351 
   2352           // Validate argument match.
   2353           checkArgMatches(AI, IRArgNo, IRFuncTy);
   2354         } else {
   2355           // Skip the extra memcpy call.
   2356           Args.push_back(Addr);
   2357 
   2358           // Validate argument match.
   2359           checkArgMatches(Addr, IRArgNo, IRFuncTy);
   2360         }
   2361       }
   2362       break;
   2363     }
   2364 
   2365     case ABIArgInfo::Ignore:
   2366       break;
   2367 
   2368     case ABIArgInfo::Extend:
   2369     case ABIArgInfo::Direct: {
   2370       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
   2371           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
   2372           ArgInfo.getDirectOffset() == 0) {
   2373         llvm::Value *V;
   2374         if (RV.isScalar())
   2375           V = RV.getScalarVal();
   2376         else
   2377           V = Builder.CreateLoad(RV.getAggregateAddr());
   2378 
   2379         // If the argument doesn't match, perform a bitcast to coerce it.  This
   2380         // can happen due to trivial type mismatches.
   2381         if (IRArgNo < IRFuncTy->getNumParams() &&
   2382             V->getType() != IRFuncTy->getParamType(IRArgNo))
   2383           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
   2384         Args.push_back(V);
   2385 
   2386         checkArgMatches(V, IRArgNo, IRFuncTy);
   2387         break;
   2388       }
   2389 
   2390       // FIXME: Avoid the conversion through memory if possible.
   2391       llvm::Value *SrcPtr;
   2392       if (RV.isScalar() || RV.isComplex()) {
   2393         SrcPtr = CreateMemTemp(I->Ty, "coerce");
   2394         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
   2395         if (RV.isScalar()) {
   2396           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
   2397         } else {
   2398           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
   2399         }
   2400       } else
   2401         SrcPtr = RV.getAggregateAddr();
   2402 
   2403       // If the value is offset in memory, apply the offset now.
   2404       if (unsigned Offs = ArgInfo.getDirectOffset()) {
   2405         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
   2406         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
   2407         SrcPtr = Builder.CreateBitCast(SrcPtr,
   2408                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
   2409 
   2410       }
   2411 
   2412       // If the coerce-to type is a first class aggregate, we flatten it and
   2413       // pass the elements. Either way is semantically identical, but fast-isel
   2414       // and the optimizer generally likes scalar values better than FCAs.
   2415       if (llvm::StructType *STy =
   2416             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
   2417         llvm::Type *SrcTy =
   2418           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
   2419         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
   2420         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
   2421 
   2422         // If the source type is smaller than the destination type of the
   2423         // coerce-to logic, copy the source value into a temp alloca the size
   2424         // of the destination type to allow loading all of it. The bits past
   2425         // the source value are left undef.
   2426         if (SrcSize < DstSize) {
   2427           llvm::AllocaInst *TempAlloca
   2428             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
   2429           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
   2430           SrcPtr = TempAlloca;
   2431         } else {
   2432           SrcPtr = Builder.CreateBitCast(SrcPtr,
   2433                                          llvm::PointerType::getUnqual(STy));
   2434         }
   2435 
   2436         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2437           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
   2438           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
   2439           // We don't know what we're loading from.
   2440           LI->setAlignment(1);
   2441           Args.push_back(LI);
   2442 
   2443           // Validate argument match.
   2444           checkArgMatches(LI, IRArgNo, IRFuncTy);
   2445         }
   2446       } else {
   2447         // In the simple case, just pass the coerced loaded value.
   2448         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
   2449                                          *this));
   2450 
   2451         // Validate argument match.
   2452         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
   2453       }
   2454 
   2455       break;
   2456     }
   2457 
   2458     case ABIArgInfo::Expand:
   2459       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
   2460       IRArgNo = Args.size();
   2461       break;
   2462     }
   2463   }
   2464 
   2465   if (!CallArgs.getCleanupsToDeactivate().empty())
   2466     deactivateArgCleanupsBeforeCall(*this, CallArgs);
   2467 
   2468   // If the callee is a bitcast of a function to a varargs pointer to function
   2469   // type, check to see if we can remove the bitcast.  This handles some cases
   2470   // with unprototyped functions.
   2471   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
   2472     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
   2473       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
   2474       llvm::FunctionType *CurFT =
   2475         cast<llvm::FunctionType>(CurPT->getElementType());
   2476       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
   2477 
   2478       if (CE->getOpcode() == llvm::Instruction::BitCast &&
   2479           ActualFT->getReturnType() == CurFT->getReturnType() &&
   2480           ActualFT->getNumParams() == CurFT->getNumParams() &&
   2481           ActualFT->getNumParams() == Args.size() &&
   2482           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
   2483         bool ArgsMatch = true;
   2484         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
   2485           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
   2486             ArgsMatch = false;
   2487             break;
   2488           }
   2489 
   2490         // Strip the cast if we can get away with it.  This is a nice cleanup,
   2491         // but also allows us to inline the function at -O0 if it is marked
   2492         // always_inline.
   2493         if (ArgsMatch)
   2494           Callee = CalleeF;
   2495       }
   2496     }
   2497 
   2498   unsigned CallingConv;
   2499   CodeGen::AttributeListType AttributeList;
   2500   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
   2501                              CallingConv, true);
   2502   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
   2503                                                      AttributeList);
   2504 
   2505   llvm::BasicBlock *InvokeDest = 0;
   2506   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
   2507                           llvm::Attribute::NoUnwind))
   2508     InvokeDest = getInvokeDest();
   2509 
   2510   llvm::CallSite CS;
   2511   if (!InvokeDest) {
   2512     CS = Builder.CreateCall(Callee, Args);
   2513   } else {
   2514     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
   2515     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
   2516     EmitBlock(Cont);
   2517   }
   2518   if (callOrInvoke)
   2519     *callOrInvoke = CS.getInstruction();
   2520 
   2521   CS.setAttributes(Attrs);
   2522   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
   2523 
   2524   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2525   // optimizer it can aggressively ignore unwind edges.
   2526   if (CGM.getLangOpts().ObjCAutoRefCount)
   2527     AddObjCARCExceptionMetadata(CS.getInstruction());
   2528 
   2529   // If the call doesn't return, finish the basic block and clear the
   2530   // insertion point; this allows the rest of IRgen to discard
   2531   // unreachable code.
   2532   if (CS.doesNotReturn()) {
   2533     Builder.CreateUnreachable();
   2534     Builder.ClearInsertionPoint();
   2535 
   2536     // FIXME: For now, emit a dummy basic block because expr emitters in
   2537     // generally are not ready to handle emitting expressions at unreachable
   2538     // points.
   2539     EnsureInsertPoint();
   2540 
   2541     // Return a reasonable RValue.
   2542     return GetUndefRValue(RetTy);
   2543   }
   2544 
   2545   llvm::Instruction *CI = CS.getInstruction();
   2546   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
   2547     CI->setName("call");
   2548 
   2549   // Emit any writebacks immediately.  Arguably this should happen
   2550   // after any return-value munging.
   2551   if (CallArgs.hasWritebacks())
   2552     emitWritebacks(*this, CallArgs);
   2553 
   2554   switch (RetAI.getKind()) {
   2555   case ABIArgInfo::Indirect:
   2556     return convertTempToRValue(Args[0], RetTy);
   2557 
   2558   case ABIArgInfo::Ignore:
   2559     // If we are ignoring an argument that had a result, make sure to
   2560     // construct the appropriate return value for our caller.
   2561     return GetUndefRValue(RetTy);
   2562 
   2563   case ABIArgInfo::Extend:
   2564   case ABIArgInfo::Direct: {
   2565     llvm::Type *RetIRTy = ConvertType(RetTy);
   2566     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
   2567       switch (getEvaluationKind(RetTy)) {
   2568       case TEK_Complex: {
   2569         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
   2570         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
   2571         return RValue::getComplex(std::make_pair(Real, Imag));
   2572       }
   2573       case TEK_Aggregate: {
   2574         llvm::Value *DestPtr = ReturnValue.getValue();
   2575         bool DestIsVolatile = ReturnValue.isVolatile();
   2576 
   2577         if (!DestPtr) {
   2578           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
   2579           DestIsVolatile = false;
   2580         }
   2581         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
   2582         return RValue::getAggregate(DestPtr);
   2583       }
   2584       case TEK_Scalar: {
   2585         // If the argument doesn't match, perform a bitcast to coerce it.  This
   2586         // can happen due to trivial type mismatches.
   2587         llvm::Value *V = CI;
   2588         if (V->getType() != RetIRTy)
   2589           V = Builder.CreateBitCast(V, RetIRTy);
   2590         return RValue::get(V);
   2591       }
   2592       }
   2593       llvm_unreachable("bad evaluation kind");
   2594     }
   2595 
   2596     llvm::Value *DestPtr = ReturnValue.getValue();
   2597     bool DestIsVolatile = ReturnValue.isVolatile();
   2598 
   2599     if (!DestPtr) {
   2600       DestPtr = CreateMemTemp(RetTy, "coerce");
   2601       DestIsVolatile = false;
   2602     }
   2603 
   2604     // If the value is offset in memory, apply the offset now.
   2605     llvm::Value *StorePtr = DestPtr;
   2606     if (unsigned Offs = RetAI.getDirectOffset()) {
   2607       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
   2608       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
   2609       StorePtr = Builder.CreateBitCast(StorePtr,
   2610                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   2611     }
   2612     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
   2613 
   2614     return convertTempToRValue(DestPtr, RetTy);
   2615   }
   2616 
   2617   case ABIArgInfo::Expand:
   2618     llvm_unreachable("Invalid ABI kind for return argument");
   2619   }
   2620 
   2621   llvm_unreachable("Unhandled ABIArgInfo::Kind");
   2622 }
   2623 
   2624 /* VarArg handling */
   2625 
   2626 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
   2627   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
   2628 }
   2629