Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mark_sweep.h"
     18 
     19 #include <functional>
     20 #include <numeric>
     21 #include <climits>
     22 #include <vector>
     23 
     24 #include "base/bounded_fifo.h"
     25 #include "base/logging.h"
     26 #include "base/macros.h"
     27 #include "base/mutex-inl.h"
     28 #include "base/timing_logger.h"
     29 #include "gc/accounting/card_table-inl.h"
     30 #include "gc/accounting/heap_bitmap.h"
     31 #include "gc/accounting/space_bitmap-inl.h"
     32 #include "gc/heap.h"
     33 #include "gc/space/image_space.h"
     34 #include "gc/space/large_object_space.h"
     35 #include "gc/space/space-inl.h"
     36 #include "indirect_reference_table.h"
     37 #include "intern_table.h"
     38 #include "jni_internal.h"
     39 #include "monitor.h"
     40 #include "mark_sweep-inl.h"
     41 #include "mirror/art_field.h"
     42 #include "mirror/art_field-inl.h"
     43 #include "mirror/class-inl.h"
     44 #include "mirror/class_loader.h"
     45 #include "mirror/dex_cache.h"
     46 #include "mirror/object-inl.h"
     47 #include "mirror/object_array.h"
     48 #include "mirror/object_array-inl.h"
     49 #include "runtime.h"
     50 #include "thread-inl.h"
     51 #include "thread_list.h"
     52 #include "verifier/method_verifier.h"
     53 
     54 using ::art::mirror::ArtField;
     55 using ::art::mirror::Class;
     56 using ::art::mirror::Object;
     57 using ::art::mirror::ObjectArray;
     58 
     59 namespace art {
     60 namespace gc {
     61 namespace collector {
     62 
     63 // Performance options.
     64 constexpr bool kUseRecursiveMark = false;
     65 constexpr bool kUseMarkStackPrefetch = true;
     66 constexpr size_t kSweepArrayChunkFreeSize = 1024;
     67 
     68 // Parallelism options.
     69 constexpr bool kParallelCardScan = true;
     70 constexpr bool kParallelRecursiveMark = true;
     71 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
     72 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
     73 // having this can add overhead in ProcessReferences since we may end up doing many calls of
     74 // ProcessMarkStack with very small mark stacks.
     75 constexpr size_t kMinimumParallelMarkStackSize = 128;
     76 constexpr bool kParallelProcessMarkStack = true;
     77 
     78 // Profiling and information flags.
     79 constexpr bool kCountClassesMarked = false;
     80 constexpr bool kProfileLargeObjects = false;
     81 constexpr bool kMeasureOverhead = false;
     82 constexpr bool kCountTasks = false;
     83 constexpr bool kCountJavaLangRefs = false;
     84 
     85 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
     86 constexpr bool kCheckLocks = kDebugLocking;
     87 
     88 void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
     89   // Bind live to mark bitmap if necessary.
     90   if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
     91     BindLiveToMarkBitmap(space);
     92   }
     93 
     94   // Add the space to the immune region.
     95   if (immune_begin_ == NULL) {
     96     DCHECK(immune_end_ == NULL);
     97     SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
     98                    reinterpret_cast<Object*>(space->End()));
     99   } else {
    100     const space::ContinuousSpace* prev_space = nullptr;
    101     // Find out if the previous space is immune.
    102     for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
    103       if (cur_space == space) {
    104         break;
    105       }
    106       prev_space = cur_space;
    107     }
    108     // If previous space was immune, then extend the immune region. Relies on continuous spaces
    109     // being sorted by Heap::AddContinuousSpace.
    110     if (prev_space != NULL &&
    111         immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) &&
    112         immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) {
    113       immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
    114       immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
    115     }
    116   }
    117 }
    118 
    119 void MarkSweep::BindBitmaps() {
    120   timings_.StartSplit("BindBitmaps");
    121   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    122   // Mark all of the spaces we never collect as immune.
    123   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    124     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
    125       ImmuneSpace(space);
    126     }
    127   }
    128   timings_.EndSplit();
    129 }
    130 
    131 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
    132     : GarbageCollector(heap,
    133                        name_prefix + (name_prefix.empty() ? "" : " ") +
    134                        (is_concurrent ? "concurrent mark sweep": "mark sweep")),
    135       current_mark_bitmap_(NULL),
    136       java_lang_Class_(NULL),
    137       mark_stack_(NULL),
    138       immune_begin_(NULL),
    139       immune_end_(NULL),
    140       soft_reference_list_(NULL),
    141       weak_reference_list_(NULL),
    142       finalizer_reference_list_(NULL),
    143       phantom_reference_list_(NULL),
    144       cleared_reference_list_(NULL),
    145       gc_barrier_(new Barrier(0)),
    146       large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
    147       mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
    148       is_concurrent_(is_concurrent),
    149       clear_soft_references_(false) {
    150 }
    151 
    152 void MarkSweep::InitializePhase() {
    153   timings_.Reset();
    154   base::TimingLogger::ScopedSplit split("InitializePhase", &timings_);
    155   mark_stack_ = heap_->mark_stack_.get();
    156   DCHECK(mark_stack_ != nullptr);
    157   SetImmuneRange(nullptr, nullptr);
    158   soft_reference_list_ = nullptr;
    159   weak_reference_list_ = nullptr;
    160   finalizer_reference_list_ = nullptr;
    161   phantom_reference_list_ = nullptr;
    162   cleared_reference_list_ = nullptr;
    163   freed_bytes_ = 0;
    164   freed_large_object_bytes_ = 0;
    165   freed_objects_ = 0;
    166   freed_large_objects_ = 0;
    167   class_count_ = 0;
    168   array_count_ = 0;
    169   other_count_ = 0;
    170   large_object_test_ = 0;
    171   large_object_mark_ = 0;
    172   classes_marked_ = 0;
    173   overhead_time_ = 0;
    174   work_chunks_created_ = 0;
    175   work_chunks_deleted_ = 0;
    176   reference_count_ = 0;
    177   java_lang_Class_ = Class::GetJavaLangClass();
    178   CHECK(java_lang_Class_ != nullptr);
    179 
    180   FindDefaultMarkBitmap();
    181 
    182   // Do any pre GC verification.
    183   timings_.NewSplit("PreGcVerification");
    184   heap_->PreGcVerification(this);
    185 }
    186 
    187 void MarkSweep::ProcessReferences(Thread* self) {
    188   base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
    189   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    190   ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
    191                     &finalizer_reference_list_, &phantom_reference_list_);
    192 }
    193 
    194 bool MarkSweep::HandleDirtyObjectsPhase() {
    195   base::TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
    196   Thread* self = Thread::Current();
    197   Locks::mutator_lock_->AssertExclusiveHeld(self);
    198 
    199   {
    200     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    201 
    202     // Re-mark root set.
    203     ReMarkRoots();
    204 
    205     // Scan dirty objects, this is only required if we are not doing concurrent GC.
    206     RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
    207   }
    208 
    209   ProcessReferences(self);
    210 
    211   // Only need to do this if we have the card mark verification on, and only during concurrent GC.
    212   if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
    213       GetHeap()->verify_post_gc_heap_) {
    214     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    215     // This second sweep makes sure that we don't have any objects in the live stack which point to
    216     // freed objects. These cause problems since their references may be previously freed objects.
    217     SweepArray(GetHeap()->allocation_stack_.get(), false);
    218   }
    219 
    220   timings_.StartSplit("PreSweepingGcVerification");
    221   heap_->PreSweepingGcVerification(this);
    222   timings_.EndSplit();
    223 
    224   // Ensure that nobody inserted items in the live stack after we swapped the stacks.
    225   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    226   CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
    227 
    228   // Disallow new system weaks to prevent a race which occurs when someone adds a new system
    229   // weak before we sweep them. Since this new system weak may not be marked, the GC may
    230   // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
    231   // reference to a string that is about to be swept.
    232   Runtime::Current()->DisallowNewSystemWeaks();
    233   return true;
    234 }
    235 
    236 bool MarkSweep::IsConcurrent() const {
    237   return is_concurrent_;
    238 }
    239 
    240 void MarkSweep::MarkingPhase() {
    241   base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
    242   Thread* self = Thread::Current();
    243 
    244   BindBitmaps();
    245   FindDefaultMarkBitmap();
    246 
    247   // Process dirty cards and add dirty cards to mod union tables.
    248   heap_->ProcessCards(timings_);
    249 
    250   // Need to do this before the checkpoint since we don't want any threads to add references to
    251   // the live stack during the recursive mark.
    252   timings_.NewSplit("SwapStacks");
    253   heap_->SwapStacks();
    254 
    255   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    256   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    257     // If we exclusively hold the mutator lock, all threads must be suspended.
    258     MarkRoots();
    259   } else {
    260     MarkThreadRoots(self);
    261     // At this point the live stack should no longer have any mutators which push into it.
    262     MarkNonThreadRoots();
    263   }
    264   live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
    265   MarkConcurrentRoots();
    266 
    267   heap_->UpdateAndMarkModUnion(this, timings_, GetGcType());
    268   MarkReachableObjects();
    269 }
    270 
    271 void MarkSweep::MarkThreadRoots(Thread* self) {
    272   MarkRootsCheckpoint(self);
    273 }
    274 
    275 void MarkSweep::MarkReachableObjects() {
    276   // Mark everything allocated since the last as GC live so that we can sweep concurrently,
    277   // knowing that new allocations won't be marked as live.
    278   timings_.StartSplit("MarkStackAsLive");
    279   accounting::ObjectStack* live_stack = heap_->GetLiveStack();
    280   heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
    281                         heap_->large_object_space_->GetLiveObjects(), live_stack);
    282   live_stack->Reset();
    283   timings_.EndSplit();
    284   // Recursively mark all the non-image bits set in the mark bitmap.
    285   RecursiveMark();
    286 }
    287 
    288 void MarkSweep::ReclaimPhase() {
    289   base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
    290   Thread* self = Thread::Current();
    291 
    292   if (!IsConcurrent()) {
    293     ProcessReferences(self);
    294   }
    295 
    296   {
    297     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    298     SweepSystemWeaks();
    299   }
    300 
    301   if (IsConcurrent()) {
    302     Runtime::Current()->AllowNewSystemWeaks();
    303 
    304     base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
    305     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    306     accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
    307     // The allocation stack contains things allocated since the start of the GC. These may have been
    308     // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
    309     // Remove these objects from the mark bitmaps so that they will be eligible for sticky
    310     // collection.
    311     // There is a race here which is safely handled. Another thread such as the hprof could
    312     // have flushed the alloc stack after we resumed the threads. This is safe however, since
    313     // reseting the allocation stack zeros it out with madvise. This means that we will either
    314     // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
    315     // first place.
    316     mirror::Object** end = allocation_stack->End();
    317     for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
    318       const Object* obj = *it;
    319       if (obj != NULL) {
    320         UnMarkObjectNonNull(obj);
    321       }
    322     }
    323   }
    324 
    325   // Before freeing anything, lets verify the heap.
    326   if (kIsDebugBuild) {
    327     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    328     VerifyImageRoots();
    329   }
    330 
    331   {
    332     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    333 
    334     // Reclaim unmarked objects.
    335     Sweep(false);
    336 
    337     // Swap the live and mark bitmaps for each space which we modified space. This is an
    338     // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
    339     // bitmaps.
    340     timings_.StartSplit("SwapBitmaps");
    341     SwapBitmaps();
    342     timings_.EndSplit();
    343 
    344     // Unbind the live and mark bitmaps.
    345     UnBindBitmaps();
    346   }
    347 }
    348 
    349 void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
    350   immune_begin_ = begin;
    351   immune_end_ = end;
    352 }
    353 
    354 void MarkSweep::FindDefaultMarkBitmap() {
    355   base::TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
    356   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    357     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
    358       current_mark_bitmap_ = space->GetMarkBitmap();
    359       CHECK(current_mark_bitmap_ != NULL);
    360       return;
    361     }
    362   }
    363   GetHeap()->DumpSpaces();
    364   LOG(FATAL) << "Could not find a default mark bitmap";
    365 }
    366 
    367 void MarkSweep::ExpandMarkStack() {
    368   ResizeMarkStack(mark_stack_->Capacity() * 2);
    369 }
    370 
    371 void MarkSweep::ResizeMarkStack(size_t new_size) {
    372   // Rare case, no need to have Thread::Current be a parameter.
    373   if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
    374     // Someone else acquired the lock and expanded the mark stack before us.
    375     return;
    376   }
    377   std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
    378   CHECK_LE(mark_stack_->Size(), new_size);
    379   mark_stack_->Resize(new_size);
    380   for (const auto& obj : temp) {
    381     mark_stack_->PushBack(obj);
    382   }
    383 }
    384 
    385 inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
    386   DCHECK(obj != NULL);
    387   if (MarkObjectParallel(obj)) {
    388     MutexLock mu(Thread::Current(), mark_stack_lock_);
    389     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    390       ExpandMarkStack();
    391     }
    392     // The object must be pushed on to the mark stack.
    393     mark_stack_->PushBack(const_cast<Object*>(obj));
    394   }
    395 }
    396 
    397 inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
    398   DCHECK(!IsImmune(obj));
    399   // Try to take advantage of locality of references within a space, failing this find the space
    400   // the hard way.
    401   accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
    402   if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
    403     accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
    404     if (LIKELY(new_bitmap != NULL)) {
    405       object_bitmap = new_bitmap;
    406     } else {
    407       MarkLargeObject(obj, false);
    408       return;
    409     }
    410   }
    411 
    412   DCHECK(object_bitmap->HasAddress(obj));
    413   object_bitmap->Clear(obj);
    414 }
    415 
    416 inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
    417   DCHECK(obj != NULL);
    418 
    419   if (IsImmune(obj)) {
    420     DCHECK(IsMarked(obj));
    421     return;
    422   }
    423 
    424   // Try to take advantage of locality of references within a space, failing this find the space
    425   // the hard way.
    426   accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
    427   if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
    428     accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
    429     if (LIKELY(new_bitmap != NULL)) {
    430       object_bitmap = new_bitmap;
    431     } else {
    432       MarkLargeObject(obj, true);
    433       return;
    434     }
    435   }
    436 
    437   // This object was not previously marked.
    438   if (!object_bitmap->Test(obj)) {
    439     object_bitmap->Set(obj);
    440     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    441       // Lock is not needed but is here anyways to please annotalysis.
    442       MutexLock mu(Thread::Current(), mark_stack_lock_);
    443       ExpandMarkStack();
    444     }
    445     // The object must be pushed on to the mark stack.
    446     mark_stack_->PushBack(const_cast<Object*>(obj));
    447   }
    448 }
    449 
    450 // Rare case, probably not worth inlining since it will increase instruction cache miss rate.
    451 bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
    452   // TODO: support >1 discontinuous space.
    453   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
    454   accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
    455   if (kProfileLargeObjects) {
    456     ++large_object_test_;
    457   }
    458   if (UNLIKELY(!large_objects->Test(obj))) {
    459     if (!large_object_space->Contains(obj)) {
    460       LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
    461       LOG(ERROR) << "Attempting see if it's a bad root";
    462       VerifyRoots();
    463       LOG(FATAL) << "Can't mark bad root";
    464     }
    465     if (kProfileLargeObjects) {
    466       ++large_object_mark_;
    467     }
    468     if (set) {
    469       large_objects->Set(obj);
    470     } else {
    471       large_objects->Clear(obj);
    472     }
    473     return true;
    474   }
    475   return false;
    476 }
    477 
    478 inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
    479   DCHECK(obj != NULL);
    480 
    481   if (IsImmune(obj)) {
    482     DCHECK(IsMarked(obj));
    483     return false;
    484   }
    485 
    486   // Try to take advantage of locality of references within a space, failing this find the space
    487   // the hard way.
    488   accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
    489   if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
    490     accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
    491     if (new_bitmap != NULL) {
    492       object_bitmap = new_bitmap;
    493     } else {
    494       // TODO: Remove the Thread::Current here?
    495       // TODO: Convert this to some kind of atomic marking?
    496       MutexLock mu(Thread::Current(), large_object_lock_);
    497       return MarkLargeObject(obj, true);
    498     }
    499   }
    500 
    501   // Return true if the object was not previously marked.
    502   return !object_bitmap->AtomicTestAndSet(obj);
    503 }
    504 
    505 // Used to mark objects when recursing.  Recursion is done by moving
    506 // the finger across the bitmaps in address order and marking child
    507 // objects.  Any newly-marked objects whose addresses are lower than
    508 // the finger won't be visited by the bitmap scan, so those objects
    509 // need to be added to the mark stack.
    510 inline void MarkSweep::MarkObject(const Object* obj) {
    511   if (obj != NULL) {
    512     MarkObjectNonNull(obj);
    513   }
    514 }
    515 
    516 void MarkSweep::MarkRoot(const Object* obj) {
    517   if (obj != NULL) {
    518     MarkObjectNonNull(obj);
    519   }
    520 }
    521 
    522 void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) {
    523   DCHECK(root != NULL);
    524   DCHECK(arg != NULL);
    525   reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(root);
    526 }
    527 
    528 void MarkSweep::MarkObjectCallback(const Object* root, void* arg) {
    529   DCHECK(root != NULL);
    530   DCHECK(arg != NULL);
    531   MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
    532   mark_sweep->MarkObjectNonNull(root);
    533 }
    534 
    535 void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) {
    536   DCHECK(root != NULL);
    537   DCHECK(arg != NULL);
    538   MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
    539   mark_sweep->MarkObjectNonNull(root);
    540 }
    541 
    542 void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
    543                                    const StackVisitor* visitor) {
    544   reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
    545 }
    546 
    547 void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
    548   // See if the root is on any space bitmap.
    549   if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
    550     space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
    551     if (!large_object_space->Contains(root)) {
    552       LOG(ERROR) << "Found invalid root: " << root;
    553       if (visitor != NULL) {
    554         LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
    555       }
    556     }
    557   }
    558 }
    559 
    560 void MarkSweep::VerifyRoots() {
    561   Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
    562 }
    563 
    564 // Marks all objects in the root set.
    565 void MarkSweep::MarkRoots() {
    566   timings_.StartSplit("MarkRoots");
    567   Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this);
    568   timings_.EndSplit();
    569 }
    570 
    571 void MarkSweep::MarkNonThreadRoots() {
    572   timings_.StartSplit("MarkNonThreadRoots");
    573   Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this);
    574   timings_.EndSplit();
    575 }
    576 
    577 void MarkSweep::MarkConcurrentRoots() {
    578   timings_.StartSplit("MarkConcurrentRoots");
    579   // Visit all runtime roots and clear dirty flags.
    580   Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true);
    581   timings_.EndSplit();
    582 }
    583 
    584 void MarkSweep::CheckObject(const Object* obj) {
    585   DCHECK(obj != NULL);
    586   VisitObjectReferences(obj, [this](const Object* obj, const Object* ref, MemberOffset offset,
    587       bool is_static) NO_THREAD_SAFETY_ANALYSIS {
    588     Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
    589     CheckReference(obj, ref, offset, is_static);
    590   });
    591 }
    592 
    593 void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
    594   DCHECK(root != NULL);
    595   DCHECK(arg != NULL);
    596   MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
    597   DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
    598   mark_sweep->CheckObject(root);
    599 }
    600 
    601 void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
    602   CHECK(space->IsDlMallocSpace());
    603   space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
    604   accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
    605   accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
    606   GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
    607   alloc_space->temp_bitmap_.reset(mark_bitmap);
    608   alloc_space->mark_bitmap_.reset(live_bitmap);
    609 }
    610 
    611 class ScanObjectVisitor {
    612  public:
    613   explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
    614       : mark_sweep_(mark_sweep) {}
    615 
    616   // TODO: Fixme when anotatalysis works with visitors.
    617   void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
    618     if (kCheckLocks) {
    619       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
    620       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    621     }
    622     mark_sweep_->ScanObject(obj);
    623   }
    624 
    625  private:
    626   MarkSweep* const mark_sweep_;
    627 };
    628 
    629 template <bool kUseFinger = false>
    630 class MarkStackTask : public Task {
    631  public:
    632   MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
    633                 const Object** mark_stack)
    634       : mark_sweep_(mark_sweep),
    635         thread_pool_(thread_pool),
    636         mark_stack_pos_(mark_stack_size) {
    637     // We may have to copy part of an existing mark stack when another mark stack overflows.
    638     if (mark_stack_size != 0) {
    639       DCHECK(mark_stack != NULL);
    640       // TODO: Check performance?
    641       std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
    642     }
    643     if (kCountTasks) {
    644       ++mark_sweep_->work_chunks_created_;
    645     }
    646   }
    647 
    648   static const size_t kMaxSize = 1 * KB;
    649 
    650  protected:
    651   class ScanObjectParallelVisitor {
    652    public:
    653     explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
    654         : chunk_task_(chunk_task) {}
    655 
    656     void operator()(const Object* obj) const {
    657       MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
    658       mark_sweep->ScanObjectVisit(obj,
    659           [mark_sweep, this](const Object* /* obj */, const Object* ref,
    660               const MemberOffset& /* offset */, bool /* is_static */) ALWAYS_INLINE {
    661         if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
    662           if (kUseFinger) {
    663             android_memory_barrier();
    664             if (reinterpret_cast<uintptr_t>(ref) >=
    665                 static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
    666               return;
    667             }
    668           }
    669           chunk_task_->MarkStackPush(ref);
    670         }
    671       });
    672     }
    673 
    674    private:
    675     MarkStackTask<kUseFinger>* const chunk_task_;
    676   };
    677 
    678   virtual ~MarkStackTask() {
    679     // Make sure that we have cleared our mark stack.
    680     DCHECK_EQ(mark_stack_pos_, 0U);
    681     if (kCountTasks) {
    682       ++mark_sweep_->work_chunks_deleted_;
    683     }
    684   }
    685 
    686   MarkSweep* const mark_sweep_;
    687   ThreadPool* const thread_pool_;
    688   // Thread local mark stack for this task.
    689   const Object* mark_stack_[kMaxSize];
    690   // Mark stack position.
    691   size_t mark_stack_pos_;
    692 
    693   void MarkStackPush(const Object* obj) ALWAYS_INLINE {
    694     if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
    695       // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
    696       mark_stack_pos_ /= 2;
    697       auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
    698                                      mark_stack_ + mark_stack_pos_);
    699       thread_pool_->AddTask(Thread::Current(), task);
    700     }
    701     DCHECK(obj != nullptr);
    702     DCHECK(mark_stack_pos_ < kMaxSize);
    703     mark_stack_[mark_stack_pos_++] = obj;
    704   }
    705 
    706   virtual void Finalize() {
    707     delete this;
    708   }
    709 
    710   // Scans all of the objects
    711   virtual void Run(Thread* self) {
    712     ScanObjectParallelVisitor visitor(this);
    713     // TODO: Tune this.
    714     static const size_t kFifoSize = 4;
    715     BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
    716     for (;;) {
    717       const Object* obj = NULL;
    718       if (kUseMarkStackPrefetch) {
    719         while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
    720           const Object* obj = mark_stack_[--mark_stack_pos_];
    721           DCHECK(obj != NULL);
    722           __builtin_prefetch(obj);
    723           prefetch_fifo.push_back(obj);
    724         }
    725         if (UNLIKELY(prefetch_fifo.empty())) {
    726           break;
    727         }
    728         obj = prefetch_fifo.front();
    729         prefetch_fifo.pop_front();
    730       } else {
    731         if (UNLIKELY(mark_stack_pos_ == 0)) {
    732           break;
    733         }
    734         obj = mark_stack_[--mark_stack_pos_];
    735       }
    736       DCHECK(obj != NULL);
    737       visitor(obj);
    738     }
    739   }
    740 };
    741 
    742 class CardScanTask : public MarkStackTask<false> {
    743  public:
    744   CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
    745                byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
    746                const Object** mark_stack_obj)
    747       : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
    748         bitmap_(bitmap),
    749         begin_(begin),
    750         end_(end),
    751         minimum_age_(minimum_age) {
    752   }
    753 
    754  protected:
    755   accounting::SpaceBitmap* const bitmap_;
    756   byte* const begin_;
    757   byte* const end_;
    758   const byte minimum_age_;
    759 
    760   virtual void Finalize() {
    761     delete this;
    762   }
    763 
    764   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    765     ScanObjectParallelVisitor visitor(this);
    766     accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
    767     size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
    768     mark_sweep_->cards_scanned_.fetch_add(cards_scanned);
    769     VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
    770         << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
    771     // Finish by emptying our local mark stack.
    772     MarkStackTask::Run(self);
    773   }
    774 };
    775 
    776 size_t MarkSweep::GetThreadCount(bool paused) const {
    777   if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
    778     return 0;
    779   }
    780   if (paused) {
    781     return heap_->GetParallelGCThreadCount() + 1;
    782   } else {
    783     return heap_->GetConcGCThreadCount() + 1;
    784   }
    785 }
    786 
    787 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
    788   accounting::CardTable* card_table = GetHeap()->GetCardTable();
    789   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
    790   size_t thread_count = GetThreadCount(paused);
    791   // The parallel version with only one thread is faster for card scanning, TODO: fix.
    792   if (kParallelCardScan && thread_count > 0) {
    793     Thread* self = Thread::Current();
    794     // Can't have a different split for each space since multiple spaces can have their cards being
    795     // scanned at the same time.
    796     timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
    797     // Try to take some of the mark stack since we can pass this off to the worker tasks.
    798     const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
    799     const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
    800     const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
    801     // Estimated number of work tasks we will create.
    802     const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
    803     DCHECK_NE(mark_stack_tasks, 0U);
    804     const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
    805                                              mark_stack_size / mark_stack_tasks + 1);
    806     size_t ref_card_count = 0;
    807     cards_scanned_ = 0;
    808     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    809       byte* card_begin = space->Begin();
    810       byte* card_end = space->End();
    811       // Calculate how many bytes of heap we will scan,
    812       const size_t address_range = card_end - card_begin;
    813       // Calculate how much address range each task gets.
    814       const size_t card_delta = RoundUp(address_range / thread_count + 1,
    815                                         accounting::CardTable::kCardSize);
    816       // Create the worker tasks for this space.
    817       while (card_begin != card_end) {
    818         // Add a range of cards.
    819         size_t addr_remaining = card_end - card_begin;
    820         size_t card_increment = std::min(card_delta, addr_remaining);
    821         // Take from the back of the mark stack.
    822         size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
    823         size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
    824         mark_stack_end -= mark_stack_increment;
    825         mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
    826         DCHECK_EQ(mark_stack_end, mark_stack_->End());
    827         // Add the new task to the thread pool.
    828         auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
    829                                       card_begin + card_increment, minimum_age,
    830                                       mark_stack_increment, mark_stack_end);
    831         thread_pool->AddTask(self, task);
    832         card_begin += card_increment;
    833       }
    834 
    835       if (paused && kIsDebugBuild) {
    836         // Make sure we don't miss scanning any cards.
    837         size_t scanned_cards = card_table->Scan(space->GetMarkBitmap(), space->Begin(),
    838                                                 space->End(), VoidFunctor(), minimum_age);
    839         VLOG(heap) << "Scanning space cards " << reinterpret_cast<void*>(space->Begin()) << " - "
    840             << reinterpret_cast<void*>(space->End()) << " = " << scanned_cards;
    841         ref_card_count += scanned_cards;
    842       }
    843     }
    844 
    845     thread_pool->SetMaxActiveWorkers(thread_count - 1);
    846     thread_pool->StartWorkers(self);
    847     thread_pool->Wait(self, true, true);
    848     thread_pool->StopWorkers(self);
    849     if (paused) {
    850       DCHECK_EQ(ref_card_count, static_cast<size_t>(cards_scanned_.load()));
    851     }
    852     timings_.EndSplit();
    853   } else {
    854     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    855       // Image spaces are handled properly since live == marked for them.
    856       switch (space->GetGcRetentionPolicy()) {
    857         case space::kGcRetentionPolicyNeverCollect:
    858           timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
    859               "ScanGrayImageSpaceObjects");
    860           break;
    861         case space::kGcRetentionPolicyFullCollect:
    862           timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
    863               "ScanGrayZygoteSpaceObjects");
    864           break;
    865         case space::kGcRetentionPolicyAlwaysCollect:
    866           timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
    867               "ScanGrayAllocSpaceObjects");
    868           break;
    869         }
    870       ScanObjectVisitor visitor(this);
    871       card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
    872       timings_.EndSplit();
    873     }
    874   }
    875 }
    876 
    877 void MarkSweep::VerifyImageRoots() {
    878   // Verify roots ensures that all the references inside the image space point
    879   // objects which are either in the image space or marked objects in the alloc
    880   // space
    881   timings_.StartSplit("VerifyImageRoots");
    882   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    883     if (space->IsImageSpace()) {
    884       space::ImageSpace* image_space = space->AsImageSpace();
    885       uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin());
    886       uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End());
    887       accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap();
    888       DCHECK(live_bitmap != NULL);
    889       live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) {
    890         if (kCheckLocks) {
    891           Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
    892         }
    893         DCHECK(obj != NULL);
    894         CheckObject(obj);
    895       });
    896     }
    897   }
    898   timings_.EndSplit();
    899 }
    900 
    901 class RecursiveMarkTask : public MarkStackTask<false> {
    902  public:
    903   RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
    904                     accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
    905       : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
    906         bitmap_(bitmap),
    907         begin_(begin),
    908         end_(end) {
    909   }
    910 
    911  protected:
    912   accounting::SpaceBitmap* const bitmap_;
    913   const uintptr_t begin_;
    914   const uintptr_t end_;
    915 
    916   virtual void Finalize() {
    917     delete this;
    918   }
    919 
    920   // Scans all of the objects
    921   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    922     ScanObjectParallelVisitor visitor(this);
    923     bitmap_->VisitMarkedRange(begin_, end_, visitor);
    924     // Finish by emptying our local mark stack.
    925     MarkStackTask::Run(self);
    926   }
    927 };
    928 
    929 // Populates the mark stack based on the set of marked objects and
    930 // recursively marks until the mark stack is emptied.
    931 void MarkSweep::RecursiveMark() {
    932   base::TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
    933   // RecursiveMark will build the lists of known instances of the Reference classes.
    934   // See DelayReferenceReferent for details.
    935   CHECK(soft_reference_list_ == NULL);
    936   CHECK(weak_reference_list_ == NULL);
    937   CHECK(finalizer_reference_list_ == NULL);
    938   CHECK(phantom_reference_list_ == NULL);
    939   CHECK(cleared_reference_list_ == NULL);
    940 
    941   if (kUseRecursiveMark) {
    942     const bool partial = GetGcType() == kGcTypePartial;
    943     ScanObjectVisitor scan_visitor(this);
    944     auto* self = Thread::Current();
    945     ThreadPool* thread_pool = heap_->GetThreadPool();
    946     size_t thread_count = GetThreadCount(false);
    947     const bool parallel = kParallelRecursiveMark && thread_count > 1;
    948     mark_stack_->Reset();
    949     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    950       if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
    951           (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
    952         current_mark_bitmap_ = space->GetMarkBitmap();
    953         if (current_mark_bitmap_ == NULL) {
    954           GetHeap()->DumpSpaces();
    955           LOG(FATAL) << "invalid bitmap";
    956         }
    957         if (parallel) {
    958           // We will use the mark stack the future.
    959           // CHECK(mark_stack_->IsEmpty());
    960           // This function does not handle heap end increasing, so we must use the space end.
    961           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
    962           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
    963           atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
    964 
    965           // Create a few worker tasks.
    966           const size_t n = thread_count * 2;
    967           while (begin != end) {
    968             uintptr_t start = begin;
    969             uintptr_t delta = (end - begin) / n;
    970             delta = RoundUp(delta, KB);
    971             if (delta < 16 * KB) delta = end - begin;
    972             begin += delta;
    973             auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
    974                                                begin);
    975             thread_pool->AddTask(self, task);
    976           }
    977           thread_pool->SetMaxActiveWorkers(thread_count - 1);
    978           thread_pool->StartWorkers(self);
    979           thread_pool->Wait(self, true, true);
    980           thread_pool->StopWorkers(self);
    981         } else {
    982           // This function does not handle heap end increasing, so we must use the space end.
    983           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
    984           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
    985           current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
    986         }
    987       }
    988     }
    989   }
    990   ProcessMarkStack(false);
    991 }
    992 
    993 bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) {
    994   return reinterpret_cast<MarkSweep*>(arg)->IsMarked(object);
    995 }
    996 
    997 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
    998   ScanGrayObjects(paused, minimum_age);
    999   ProcessMarkStack(paused);
   1000 }
   1001 
   1002 void MarkSweep::ReMarkRoots() {
   1003   timings_.StartSplit("ReMarkRoots");
   1004   Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true);
   1005   timings_.EndSplit();
   1006 }
   1007 
   1008 void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) {
   1009   Runtime::Current()->GetJavaVM()->SweepWeakGlobals(is_marked, arg);
   1010 }
   1011 
   1012 struct ArrayMarkedCheck {
   1013   accounting::ObjectStack* live_stack;
   1014   MarkSweep* mark_sweep;
   1015 };
   1016 
   1017 // Either marked or not live.
   1018 bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) {
   1019   ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg);
   1020   if (array_check->mark_sweep->IsMarked(object)) {
   1021     return true;
   1022   }
   1023   accounting::ObjectStack* live_stack = array_check->live_stack;
   1024   if (std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End()) {
   1025     return true;
   1026   }
   1027   return false;
   1028 }
   1029 
   1030 void MarkSweep::SweepSystemWeaks() {
   1031   Runtime* runtime = Runtime::Current();
   1032   timings_.StartSplit("SweepSystemWeaks");
   1033   runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this);
   1034   runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this);
   1035   SweepJniWeakGlobals(IsMarkedCallback, this);
   1036   timings_.EndSplit();
   1037 }
   1038 
   1039 bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) {
   1040   reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
   1041   // We don't actually want to sweep the object, so lets return "marked"
   1042   return true;
   1043 }
   1044 
   1045 void MarkSweep::VerifyIsLive(const Object* obj) {
   1046   Heap* heap = GetHeap();
   1047   if (!heap->GetLiveBitmap()->Test(obj)) {
   1048     space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
   1049     if (!large_object_space->GetLiveObjects()->Test(obj)) {
   1050       if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
   1051           heap->allocation_stack_->End()) {
   1052         // Object not found!
   1053         heap->DumpSpaces();
   1054         LOG(FATAL) << "Found dead object " << obj;
   1055       }
   1056     }
   1057   }
   1058 }
   1059 
   1060 void MarkSweep::VerifySystemWeaks() {
   1061   Runtime* runtime = Runtime::Current();
   1062   // Verify system weaks, uses a special IsMarked callback which always returns true.
   1063   runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this);
   1064   runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this);
   1065   runtime->GetJavaVM()->SweepWeakGlobals(VerifyIsLiveCallback, this);
   1066 }
   1067 
   1068 struct SweepCallbackContext {
   1069   MarkSweep* mark_sweep;
   1070   space::AllocSpace* space;
   1071   Thread* self;
   1072 };
   1073 
   1074 class CheckpointMarkThreadRoots : public Closure {
   1075  public:
   1076   explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
   1077 
   1078   virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
   1079     ATRACE_BEGIN("Marking thread roots");
   1080     // Note: self is not necessarily equal to thread since thread may be suspended.
   1081     Thread* self = Thread::Current();
   1082     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
   1083         << thread->GetState() << " thread " << thread << " self " << self;
   1084     thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
   1085     ATRACE_END();
   1086     mark_sweep_->GetBarrier().Pass(self);
   1087   }
   1088 
   1089  private:
   1090   MarkSweep* mark_sweep_;
   1091 };
   1092 
   1093 void MarkSweep::MarkRootsCheckpoint(Thread* self) {
   1094   CheckpointMarkThreadRoots check_point(this);
   1095   timings_.StartSplit("MarkRootsCheckpoint");
   1096   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1097   // Request the check point is run on all threads returning a count of the threads that must
   1098   // run through the barrier including self.
   1099   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
   1100   // Release locks then wait for all mutator threads to pass the barrier.
   1101   // TODO: optimize to not release locks when there are no threads to wait for.
   1102   Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
   1103   Locks::mutator_lock_->SharedUnlock(self);
   1104   ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
   1105   CHECK_EQ(old_state, kWaitingPerformingGc);
   1106   gc_barrier_->Increment(self, barrier_count);
   1107   self->SetState(kWaitingPerformingGc);
   1108   Locks::mutator_lock_->SharedLock(self);
   1109   Locks::heap_bitmap_lock_->ExclusiveLock(self);
   1110   timings_.EndSplit();
   1111 }
   1112 
   1113 void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
   1114   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
   1115   MarkSweep* mark_sweep = context->mark_sweep;
   1116   Heap* heap = mark_sweep->GetHeap();
   1117   space::AllocSpace* space = context->space;
   1118   Thread* self = context->self;
   1119   Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
   1120   // Use a bulk free, that merges consecutive objects before freeing or free per object?
   1121   // Documentation suggests better free performance with merging, but this may be at the expensive
   1122   // of allocation.
   1123   size_t freed_objects = num_ptrs;
   1124   // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
   1125   size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
   1126   heap->RecordFree(freed_objects, freed_bytes);
   1127   mark_sweep->freed_objects_.fetch_add(freed_objects);
   1128   mark_sweep->freed_bytes_.fetch_add(freed_bytes);
   1129 }
   1130 
   1131 void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
   1132   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
   1133   Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
   1134   Heap* heap = context->mark_sweep->GetHeap();
   1135   // We don't free any actual memory to avoid dirtying the shared zygote pages.
   1136   for (size_t i = 0; i < num_ptrs; ++i) {
   1137     Object* obj = static_cast<Object*>(ptrs[i]);
   1138     heap->GetLiveBitmap()->Clear(obj);
   1139     heap->GetCardTable()->MarkCard(obj);
   1140   }
   1141 }
   1142 
   1143 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
   1144   space::DlMallocSpace* space = heap_->GetAllocSpace();
   1145   timings_.StartSplit("SweepArray");
   1146   // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
   1147   // going to free.
   1148   accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1149   accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1150   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
   1151   accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
   1152   accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
   1153   if (swap_bitmaps) {
   1154     std::swap(live_bitmap, mark_bitmap);
   1155     std::swap(large_live_objects, large_mark_objects);
   1156   }
   1157 
   1158   size_t freed_bytes = 0;
   1159   size_t freed_large_object_bytes = 0;
   1160   size_t freed_objects = 0;
   1161   size_t freed_large_objects = 0;
   1162   size_t count = allocations->Size();
   1163   Object** objects = const_cast<Object**>(allocations->Begin());
   1164   Object** out = objects;
   1165   Object** objects_to_chunk_free = out;
   1166 
   1167   // Empty the allocation stack.
   1168   Thread* self = Thread::Current();
   1169   for (size_t i = 0; i < count; ++i) {
   1170     Object* obj = objects[i];
   1171     // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
   1172     if (LIKELY(mark_bitmap->HasAddress(obj))) {
   1173       if (!mark_bitmap->Test(obj)) {
   1174         // Don't bother un-marking since we clear the mark bitmap anyways.
   1175         *(out++) = obj;
   1176         // Free objects in chunks.
   1177         DCHECK_GE(out, objects_to_chunk_free);
   1178         DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
   1179         if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) {
   1180           timings_.StartSplit("FreeList");
   1181           size_t chunk_freed_objects = out - objects_to_chunk_free;
   1182           freed_objects += chunk_freed_objects;
   1183           freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
   1184           objects_to_chunk_free = out;
   1185           timings_.EndSplit();
   1186         }
   1187       }
   1188     } else if (!large_mark_objects->Test(obj)) {
   1189       ++freed_large_objects;
   1190       freed_large_object_bytes += large_object_space->Free(self, obj);
   1191     }
   1192   }
   1193   // Free the remaining objects in chunks.
   1194   DCHECK_GE(out, objects_to_chunk_free);
   1195   DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
   1196   if (out - objects_to_chunk_free > 0) {
   1197     timings_.StartSplit("FreeList");
   1198     size_t chunk_freed_objects = out - objects_to_chunk_free;
   1199     freed_objects += chunk_freed_objects;
   1200     freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
   1201     timings_.EndSplit();
   1202   }
   1203   CHECK_EQ(count, allocations->Size());
   1204   timings_.EndSplit();
   1205 
   1206   timings_.StartSplit("RecordFree");
   1207   VLOG(heap) << "Freed " << freed_objects << "/" << count
   1208              << " objects with size " << PrettySize(freed_bytes);
   1209   heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
   1210   freed_objects_.fetch_add(freed_objects);
   1211   freed_large_objects_.fetch_add(freed_large_objects);
   1212   freed_bytes_.fetch_add(freed_bytes);
   1213   freed_large_object_bytes_.fetch_add(freed_large_object_bytes);
   1214   timings_.EndSplit();
   1215 
   1216   timings_.StartSplit("ResetStack");
   1217   allocations->Reset();
   1218   timings_.EndSplit();
   1219 }
   1220 
   1221 void MarkSweep::Sweep(bool swap_bitmaps) {
   1222   DCHECK(mark_stack_->IsEmpty());
   1223   base::TimingLogger::ScopedSplit("Sweep", &timings_);
   1224 
   1225   const bool partial = (GetGcType() == kGcTypePartial);
   1226   SweepCallbackContext scc;
   1227   scc.mark_sweep = this;
   1228   scc.self = Thread::Current();
   1229   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1230     // We always sweep always collect spaces.
   1231     bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
   1232     if (!partial && !sweep_space) {
   1233       // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
   1234       sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
   1235     }
   1236     if (sweep_space) {
   1237       uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
   1238       uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
   1239       scc.space = space->AsDlMallocSpace();
   1240       accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1241       accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1242       if (swap_bitmaps) {
   1243         std::swap(live_bitmap, mark_bitmap);
   1244       }
   1245       if (!space->IsZygoteSpace()) {
   1246         base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
   1247         // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
   1248         accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
   1249                                            &SweepCallback, reinterpret_cast<void*>(&scc));
   1250       } else {
   1251         base::TimingLogger::ScopedSplit split("SweepZygote", &timings_);
   1252         // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
   1253         // memory.
   1254         accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
   1255                                            &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
   1256       }
   1257     }
   1258   }
   1259 
   1260   SweepLargeObjects(swap_bitmaps);
   1261 }
   1262 
   1263 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
   1264   base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
   1265   // Sweep large objects
   1266   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
   1267   accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
   1268   accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
   1269   if (swap_bitmaps) {
   1270     std::swap(large_live_objects, large_mark_objects);
   1271   }
   1272   // O(n*log(n)) but hopefully there are not too many large objects.
   1273   size_t freed_objects = 0;
   1274   size_t freed_bytes = 0;
   1275   Thread* self = Thread::Current();
   1276   for (const Object* obj : large_live_objects->GetObjects()) {
   1277     if (!large_mark_objects->Test(obj)) {
   1278       freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
   1279       ++freed_objects;
   1280     }
   1281   }
   1282   freed_large_objects_.fetch_add(freed_objects);
   1283   freed_large_object_bytes_.fetch_add(freed_bytes);
   1284   GetHeap()->RecordFree(freed_objects, freed_bytes);
   1285 }
   1286 
   1287 void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
   1288   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1289     if (space->IsDlMallocSpace() && space->Contains(ref)) {
   1290       DCHECK(IsMarked(obj));
   1291 
   1292       bool is_marked = IsMarked(ref);
   1293       if (!is_marked) {
   1294         LOG(INFO) << *space;
   1295         LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
   1296                      << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
   1297                      << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
   1298                      << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
   1299 
   1300         const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
   1301         DCHECK(klass != NULL);
   1302         const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
   1303         DCHECK(fields != NULL);
   1304         bool found = false;
   1305         for (int32_t i = 0; i < fields->GetLength(); ++i) {
   1306           const ArtField* cur = fields->Get(i);
   1307           if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
   1308             LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
   1309             found = true;
   1310             break;
   1311           }
   1312         }
   1313         if (!found) {
   1314           LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
   1315         }
   1316 
   1317         bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
   1318         if (!obj_marked) {
   1319           LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
   1320                        << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
   1321                        << "the alloc space, but wasn't card marked";
   1322         }
   1323       }
   1324     }
   1325     break;
   1326   }
   1327 }
   1328 
   1329 // Process the "referent" field in a java.lang.ref.Reference.  If the
   1330 // referent has not yet been marked, put it on the appropriate list in
   1331 // the heap for later processing.
   1332 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
   1333   DCHECK(klass != nullptr);
   1334   DCHECK(klass->IsReferenceClass());
   1335   DCHECK(obj != NULL);
   1336   Object* referent = heap_->GetReferenceReferent(obj);
   1337   if (referent != NULL && !IsMarked(referent)) {
   1338     if (kCountJavaLangRefs) {
   1339       ++reference_count_;
   1340     }
   1341     Thread* self = Thread::Current();
   1342     // TODO: Remove these locks, and use atomic stacks for storing references?
   1343     // We need to check that the references haven't already been enqueued since we can end up
   1344     // scanning the same reference multiple times due to dirty cards.
   1345     if (klass->IsSoftReferenceClass()) {
   1346       MutexLock mu(self, *heap_->GetSoftRefQueueLock());
   1347       if (!heap_->IsEnqueued(obj)) {
   1348         heap_->EnqueuePendingReference(obj, &soft_reference_list_);
   1349       }
   1350     } else if (klass->IsWeakReferenceClass()) {
   1351       MutexLock mu(self, *heap_->GetWeakRefQueueLock());
   1352       if (!heap_->IsEnqueued(obj)) {
   1353         heap_->EnqueuePendingReference(obj, &weak_reference_list_);
   1354       }
   1355     } else if (klass->IsFinalizerReferenceClass()) {
   1356       MutexLock mu(self, *heap_->GetFinalizerRefQueueLock());
   1357       if (!heap_->IsEnqueued(obj)) {
   1358         heap_->EnqueuePendingReference(obj, &finalizer_reference_list_);
   1359       }
   1360     } else if (klass->IsPhantomReferenceClass()) {
   1361       MutexLock mu(self, *heap_->GetPhantomRefQueueLock());
   1362       if (!heap_->IsEnqueued(obj)) {
   1363         heap_->EnqueuePendingReference(obj, &phantom_reference_list_);
   1364       }
   1365     } else {
   1366       LOG(FATAL) << "Invalid reference type " << PrettyClass(klass)
   1367                  << " " << std::hex << klass->GetAccessFlags();
   1368     }
   1369   }
   1370 }
   1371 
   1372 void MarkSweep::ScanRoot(const Object* obj) {
   1373   ScanObject(obj);
   1374 }
   1375 
   1376 class MarkObjectVisitor {
   1377  public:
   1378   explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
   1379 
   1380   // TODO: Fixme when anotatalysis works with visitors.
   1381   void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
   1382                   bool /* is_static */) const ALWAYS_INLINE
   1383       NO_THREAD_SAFETY_ANALYSIS {
   1384     if (kCheckLocks) {
   1385       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
   1386       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
   1387     }
   1388     mark_sweep_->MarkObject(ref);
   1389   }
   1390 
   1391  private:
   1392   MarkSweep* const mark_sweep_;
   1393 };
   1394 
   1395 // Scans an object reference.  Determines the type of the reference
   1396 // and dispatches to a specialized scanning routine.
   1397 void MarkSweep::ScanObject(const Object* obj) {
   1398   MarkObjectVisitor visitor(this);
   1399   ScanObjectVisit(obj, visitor);
   1400 }
   1401 
   1402 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
   1403   Thread* self = Thread::Current();
   1404   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
   1405   const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
   1406                                      static_cast<size_t>(MarkStackTask<false>::kMaxSize));
   1407   CHECK_GT(chunk_size, 0U);
   1408   // Split the current mark stack up into work tasks.
   1409   for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
   1410     const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
   1411     thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
   1412                                                         const_cast<const mirror::Object**>(it)));
   1413     it += delta;
   1414   }
   1415   thread_pool->SetMaxActiveWorkers(thread_count - 1);
   1416   thread_pool->StartWorkers(self);
   1417   thread_pool->Wait(self, true, true);
   1418   thread_pool->StopWorkers(self);
   1419   mark_stack_->Reset();
   1420   CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
   1421 }
   1422 
   1423 // Scan anything that's on the mark stack.
   1424 void MarkSweep::ProcessMarkStack(bool paused) {
   1425   timings_.StartSplit("ProcessMarkStack");
   1426   size_t thread_count = GetThreadCount(paused);
   1427   if (kParallelProcessMarkStack && thread_count > 1 &&
   1428       mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
   1429     ProcessMarkStackParallel(thread_count);
   1430   } else {
   1431     // TODO: Tune this.
   1432     static const size_t kFifoSize = 4;
   1433     BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
   1434     for (;;) {
   1435       const Object* obj = NULL;
   1436       if (kUseMarkStackPrefetch) {
   1437         while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
   1438           const Object* obj = mark_stack_->PopBack();
   1439           DCHECK(obj != NULL);
   1440           __builtin_prefetch(obj);
   1441           prefetch_fifo.push_back(obj);
   1442         }
   1443         if (prefetch_fifo.empty()) {
   1444           break;
   1445         }
   1446         obj = prefetch_fifo.front();
   1447         prefetch_fifo.pop_front();
   1448       } else {
   1449         if (mark_stack_->IsEmpty()) {
   1450           break;
   1451         }
   1452         obj = mark_stack_->PopBack();
   1453       }
   1454       DCHECK(obj != NULL);
   1455       ScanObject(obj);
   1456     }
   1457   }
   1458   timings_.EndSplit();
   1459 }
   1460 
   1461 // Walks the reference list marking any references subject to the
   1462 // reference clearing policy.  References with a black referent are
   1463 // removed from the list.  References with white referents biased
   1464 // toward saving are blackened and also removed from the list.
   1465 void MarkSweep::PreserveSomeSoftReferences(Object** list) {
   1466   DCHECK(list != NULL);
   1467   Object* clear = NULL;
   1468   size_t counter = 0;
   1469 
   1470   DCHECK(mark_stack_->IsEmpty());
   1471 
   1472   timings_.StartSplit("PreserveSomeSoftReferences");
   1473   while (*list != NULL) {
   1474     Object* ref = heap_->DequeuePendingReference(list);
   1475     Object* referent = heap_->GetReferenceReferent(ref);
   1476     if (referent == NULL) {
   1477       // Referent was cleared by the user during marking.
   1478       continue;
   1479     }
   1480     bool is_marked = IsMarked(referent);
   1481     if (!is_marked && ((++counter) & 1)) {
   1482       // Referent is white and biased toward saving, mark it.
   1483       MarkObject(referent);
   1484       is_marked = true;
   1485     }
   1486     if (!is_marked) {
   1487       // Referent is white, queue it for clearing.
   1488       heap_->EnqueuePendingReference(ref, &clear);
   1489     }
   1490   }
   1491   *list = clear;
   1492   timings_.EndSplit();
   1493 
   1494   // Restart the mark with the newly black references added to the root set.
   1495   ProcessMarkStack(true);
   1496 }
   1497 
   1498 inline bool MarkSweep::IsMarked(const Object* object) const
   1499     SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
   1500   if (IsImmune(object)) {
   1501     return true;
   1502   }
   1503   DCHECK(current_mark_bitmap_ != NULL);
   1504   if (current_mark_bitmap_->HasAddress(object)) {
   1505     return current_mark_bitmap_->Test(object);
   1506   }
   1507   return heap_->GetMarkBitmap()->Test(object);
   1508 }
   1509 
   1510 // Unlink the reference list clearing references objects with white
   1511 // referents.  Cleared references registered to a reference queue are
   1512 // scheduled for appending by the heap worker thread.
   1513 void MarkSweep::ClearWhiteReferences(Object** list) {
   1514   DCHECK(list != NULL);
   1515   while (*list != NULL) {
   1516     Object* ref = heap_->DequeuePendingReference(list);
   1517     Object* referent = heap_->GetReferenceReferent(ref);
   1518     if (referent != NULL && !IsMarked(referent)) {
   1519       // Referent is white, clear it.
   1520       heap_->ClearReferenceReferent(ref);
   1521       if (heap_->IsEnqueuable(ref)) {
   1522         heap_->EnqueueReference(ref, &cleared_reference_list_);
   1523       }
   1524     }
   1525   }
   1526   DCHECK(*list == NULL);
   1527 }
   1528 
   1529 // Enqueues finalizer references with white referents.  White
   1530 // referents are blackened, moved to the zombie field, and the
   1531 // referent field is cleared.
   1532 void MarkSweep::EnqueueFinalizerReferences(Object** list) {
   1533   DCHECK(list != NULL);
   1534   timings_.StartSplit("EnqueueFinalizerReferences");
   1535   MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
   1536   bool has_enqueued = false;
   1537   while (*list != NULL) {
   1538     Object* ref = heap_->DequeuePendingReference(list);
   1539     Object* referent = heap_->GetReferenceReferent(ref);
   1540     if (referent != NULL && !IsMarked(referent)) {
   1541       MarkObject(referent);
   1542       // If the referent is non-null the reference must queuable.
   1543       DCHECK(heap_->IsEnqueuable(ref));
   1544       ref->SetFieldObject(zombie_offset, referent, false);
   1545       heap_->ClearReferenceReferent(ref);
   1546       heap_->EnqueueReference(ref, &cleared_reference_list_);
   1547       has_enqueued = true;
   1548     }
   1549   }
   1550   timings_.EndSplit();
   1551   if (has_enqueued) {
   1552     ProcessMarkStack(true);
   1553   }
   1554   DCHECK(*list == NULL);
   1555 }
   1556 
   1557 // Process reference class instances and schedule finalizations.
   1558 void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
   1559                                   Object** weak_references,
   1560                                   Object** finalizer_references,
   1561                                   Object** phantom_references) {
   1562   CHECK(soft_references != NULL);
   1563   CHECK(weak_references != NULL);
   1564   CHECK(finalizer_references != NULL);
   1565   CHECK(phantom_references != NULL);
   1566   CHECK(mark_stack_->IsEmpty());
   1567 
   1568   // Unless we are in the zygote or required to clear soft references
   1569   // with white references, preserve some white referents.
   1570   if (!clear_soft && !Runtime::Current()->IsZygote()) {
   1571     PreserveSomeSoftReferences(soft_references);
   1572   }
   1573 
   1574   timings_.StartSplit("ProcessReferences");
   1575   // Clear all remaining soft and weak references with white
   1576   // referents.
   1577   ClearWhiteReferences(soft_references);
   1578   ClearWhiteReferences(weak_references);
   1579   timings_.EndSplit();
   1580 
   1581   // Preserve all white objects with finalize methods and schedule
   1582   // them for finalization.
   1583   EnqueueFinalizerReferences(finalizer_references);
   1584 
   1585   timings_.StartSplit("ProcessReferences");
   1586   // Clear all f-reachable soft and weak references with white
   1587   // referents.
   1588   ClearWhiteReferences(soft_references);
   1589   ClearWhiteReferences(weak_references);
   1590 
   1591   // Clear all phantom references with white referents.
   1592   ClearWhiteReferences(phantom_references);
   1593 
   1594   // At this point all reference lists should be empty.
   1595   DCHECK(*soft_references == NULL);
   1596   DCHECK(*weak_references == NULL);
   1597   DCHECK(*finalizer_references == NULL);
   1598   DCHECK(*phantom_references == NULL);
   1599   timings_.EndSplit();
   1600 }
   1601 
   1602 void MarkSweep::UnBindBitmaps() {
   1603   base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
   1604   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1605     if (space->IsDlMallocSpace()) {
   1606       space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
   1607       if (alloc_space->temp_bitmap_.get() != NULL) {
   1608         // At this point, the temp_bitmap holds our old mark bitmap.
   1609         accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
   1610         GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
   1611         CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
   1612         alloc_space->mark_bitmap_.reset(new_bitmap);
   1613         DCHECK(alloc_space->temp_bitmap_.get() == NULL);
   1614       }
   1615     }
   1616   }
   1617 }
   1618 
   1619 void MarkSweep::FinishPhase() {
   1620   base::TimingLogger::ScopedSplit split("FinishPhase", &timings_);
   1621   // Can't enqueue references if we hold the mutator lock.
   1622   Object* cleared_references = GetClearedReferences();
   1623   Heap* heap = GetHeap();
   1624   timings_.NewSplit("EnqueueClearedReferences");
   1625   heap->EnqueueClearedReferences(&cleared_references);
   1626 
   1627   timings_.NewSplit("PostGcVerification");
   1628   heap->PostGcVerification(this);
   1629 
   1630   timings_.NewSplit("GrowForUtilization");
   1631   heap->GrowForUtilization(GetGcType(), GetDurationNs());
   1632 
   1633   timings_.NewSplit("RequestHeapTrim");
   1634   heap->RequestHeapTrim();
   1635 
   1636   // Update the cumulative statistics
   1637   total_time_ns_ += GetDurationNs();
   1638   total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
   1639                                            std::plus<uint64_t>());
   1640   total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
   1641   total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
   1642 
   1643   // Ensure that the mark stack is empty.
   1644   CHECK(mark_stack_->IsEmpty());
   1645 
   1646   if (kCountScannedTypes) {
   1647     VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
   1648              << " other=" << other_count_;
   1649   }
   1650 
   1651   if (kCountTasks) {
   1652     VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
   1653   }
   1654 
   1655   if (kMeasureOverhead) {
   1656     VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
   1657   }
   1658 
   1659   if (kProfileLargeObjects) {
   1660     VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
   1661   }
   1662 
   1663   if (kCountClassesMarked) {
   1664     VLOG(gc) << "Classes marked " << classes_marked_;
   1665   }
   1666 
   1667   if (kCountJavaLangRefs) {
   1668     VLOG(gc) << "References scanned " << reference_count_;
   1669   }
   1670 
   1671   // Update the cumulative loggers.
   1672   cumulative_timings_.Start();
   1673   cumulative_timings_.AddLogger(timings_);
   1674   cumulative_timings_.End();
   1675 
   1676   // Clear all of the spaces' mark bitmaps.
   1677   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1678     if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
   1679       space->GetMarkBitmap()->Clear();
   1680     }
   1681   }
   1682   mark_stack_->Reset();
   1683 
   1684   // Reset the marked large objects.
   1685   space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
   1686   large_objects->GetMarkObjects()->Clear();
   1687 }
   1688 
   1689 }  // namespace collector
   1690 }  // namespace gc
   1691 }  // namespace art
   1692