1 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the JumpScopeChecker class, which is used to diagnose 11 // jumps that enter a protected scope in an invalid way. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Sema/SemaInternal.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/AST/StmtObjC.h" 21 #include "llvm/ADT/BitVector.h" 22 using namespace clang; 23 24 namespace { 25 26 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps 27 /// into VLA and other protected scopes. For example, this rejects: 28 /// goto L; 29 /// int a[n]; 30 /// L: 31 /// 32 class JumpScopeChecker { 33 Sema &S; 34 35 /// GotoScope - This is a record that we use to keep track of all of the 36 /// scopes that are introduced by VLAs and other things that scope jumps like 37 /// gotos. This scope tree has nothing to do with the source scope tree, 38 /// because you can have multiple VLA scopes per compound statement, and most 39 /// compound statements don't introduce any scopes. 40 struct GotoScope { 41 /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for 42 /// the parent scope is the function body. 43 unsigned ParentScope; 44 45 /// InDiag - The note to emit if there is a jump into this scope. 46 unsigned InDiag; 47 48 /// OutDiag - The note to emit if there is an indirect jump out 49 /// of this scope. Direct jumps always clean up their current scope 50 /// in an orderly way. 51 unsigned OutDiag; 52 53 /// Loc - Location to emit the diagnostic. 54 SourceLocation Loc; 55 56 GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag, 57 SourceLocation L) 58 : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {} 59 }; 60 61 SmallVector<GotoScope, 48> Scopes; 62 llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes; 63 SmallVector<Stmt*, 16> Jumps; 64 65 SmallVector<IndirectGotoStmt*, 4> IndirectJumps; 66 SmallVector<LabelDecl*, 4> IndirectJumpTargets; 67 public: 68 JumpScopeChecker(Stmt *Body, Sema &S); 69 private: 70 void BuildScopeInformation(Decl *D, unsigned &ParentScope); 71 void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl, 72 unsigned &ParentScope); 73 void BuildScopeInformation(Stmt *S, unsigned &origParentScope); 74 75 void VerifyJumps(); 76 void VerifyIndirectJumps(); 77 void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes); 78 void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope, 79 LabelDecl *Target, unsigned TargetScope); 80 void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 81 unsigned JumpDiag, unsigned JumpDiagWarning, 82 unsigned JumpDiagCXX98Compat); 83 84 unsigned GetDeepestCommonScope(unsigned A, unsigned B); 85 }; 86 } // end anonymous namespace 87 88 89 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) { 90 // Add a scope entry for function scope. 91 Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation())); 92 93 // Build information for the top level compound statement, so that we have a 94 // defined scope record for every "goto" and label. 95 unsigned BodyParentScope = 0; 96 BuildScopeInformation(Body, BodyParentScope); 97 98 // Check that all jumps we saw are kosher. 99 VerifyJumps(); 100 VerifyIndirectJumps(); 101 } 102 103 /// GetDeepestCommonScope - Finds the innermost scope enclosing the 104 /// two scopes. 105 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) { 106 while (A != B) { 107 // Inner scopes are created after outer scopes and therefore have 108 // higher indices. 109 if (A < B) { 110 assert(Scopes[B].ParentScope < B); 111 B = Scopes[B].ParentScope; 112 } else { 113 assert(Scopes[A].ParentScope < A); 114 A = Scopes[A].ParentScope; 115 } 116 } 117 return A; 118 } 119 120 typedef std::pair<unsigned,unsigned> ScopePair; 121 122 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a 123 /// diagnostic that should be emitted if control goes over it. If not, return 0. 124 static ScopePair GetDiagForGotoScopeDecl(ASTContext &Context, const Decl *D) { 125 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 126 unsigned InDiag = 0; 127 if (VD->getType()->isVariablyModifiedType()) 128 InDiag = diag::note_protected_by_vla; 129 130 if (VD->hasAttr<BlocksAttr>()) 131 return ScopePair(diag::note_protected_by___block, 132 diag::note_exits___block); 133 134 if (VD->hasAttr<CleanupAttr>()) 135 return ScopePair(diag::note_protected_by_cleanup, 136 diag::note_exits_cleanup); 137 138 if (Context.getLangOpts().ObjCAutoRefCount && VD->hasLocalStorage()) { 139 switch (VD->getType().getObjCLifetime()) { 140 case Qualifiers::OCL_None: 141 case Qualifiers::OCL_ExplicitNone: 142 case Qualifiers::OCL_Autoreleasing: 143 break; 144 145 case Qualifiers::OCL_Strong: 146 case Qualifiers::OCL_Weak: 147 return ScopePair(diag::note_protected_by_objc_ownership, 148 diag::note_exits_objc_ownership); 149 } 150 } 151 152 if (Context.getLangOpts().CPlusPlus && VD->hasLocalStorage()) { 153 // C++11 [stmt.dcl]p3: 154 // A program that jumps from a point where a variable with automatic 155 // storage duration is not in scope to a point where it is in scope 156 // is ill-formed unless the variable has scalar type, class type with 157 // a trivial default constructor and a trivial destructor, a 158 // cv-qualified version of one of these types, or an array of one of 159 // the preceding types and is declared without an initializer. 160 161 // C++03 [stmt.dcl.p3: 162 // A program that jumps from a point where a local variable 163 // with automatic storage duration is not in scope to a point 164 // where it is in scope is ill-formed unless the variable has 165 // POD type and is declared without an initializer. 166 167 const Expr *Init = VD->getInit(); 168 if (!Init) 169 return ScopePair(InDiag, 0); 170 171 const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init); 172 if (EWC) 173 Init = EWC->getSubExpr(); 174 175 const MaterializeTemporaryExpr *M = NULL; 176 Init = Init->findMaterializedTemporary(M); 177 178 SmallVector<const Expr *, 2> CommaLHSs; 179 SmallVector<SubobjectAdjustment, 2> Adjustments; 180 Init = Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 181 182 QualType QT = Init->getType(); 183 if (QT.isNull()) 184 return ScopePair(diag::note_protected_by_variable_init, 0); 185 186 const Type *T = QT.getTypePtr(); 187 if (T->isArrayType()) 188 T = T->getBaseElementTypeUnsafe(); 189 190 const CXXRecordDecl *Record = T->getAsCXXRecordDecl(); 191 if (!Record) 192 return ScopePair(diag::note_protected_by_variable_init, 0); 193 194 // If we need to call a non trivial destructor for this variable, 195 // record an out diagnostic. 196 unsigned OutDiag = 0; 197 if (!Init->isGLValue() && !Record->hasTrivialDestructor()) 198 OutDiag = diag::note_exits_dtor; 199 200 if (const CXXConstructExpr *cce = dyn_cast<CXXConstructExpr>(Init)) { 201 const CXXConstructorDecl *ctor = cce->getConstructor(); 202 // For a variable declared without an initializer, we will have 203 // call-style initialization and the initializer will be the 204 // CXXConstructExpr with no intervening nodes. 205 if (ctor->isTrivial() && ctor->isDefaultConstructor() && 206 VD->getInit() == Init && VD->getInitStyle() == VarDecl::CallInit) { 207 if (OutDiag) 208 InDiag = diag::note_protected_by_variable_nontriv_destructor; 209 else if (!Record->isPOD()) 210 InDiag = diag::note_protected_by_variable_non_pod; 211 return ScopePair(InDiag, OutDiag); 212 } 213 } 214 215 return ScopePair(diag::note_protected_by_variable_init, OutDiag); 216 } 217 218 return ScopePair(InDiag, 0); 219 } 220 221 if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) { 222 if (TD->getUnderlyingType()->isVariablyModifiedType()) 223 return ScopePair(diag::note_protected_by_vla_typedef, 0); 224 } 225 226 if (const TypeAliasDecl *TD = dyn_cast<TypeAliasDecl>(D)) { 227 if (TD->getUnderlyingType()->isVariablyModifiedType()) 228 return ScopePair(diag::note_protected_by_vla_type_alias, 0); 229 } 230 231 return ScopePair(0U, 0U); 232 } 233 234 /// \brief Build scope information for a declaration that is part of a DeclStmt. 235 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) { 236 // If this decl causes a new scope, push and switch to it. 237 std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S.Context, D); 238 if (Diags.first || Diags.second) { 239 Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second, 240 D->getLocation())); 241 ParentScope = Scopes.size()-1; 242 } 243 244 // If the decl has an initializer, walk it with the potentially new 245 // scope we just installed. 246 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 247 if (Expr *Init = VD->getInit()) 248 BuildScopeInformation(Init, ParentScope); 249 } 250 251 /// \brief Build scope information for a captured block literal variables. 252 void JumpScopeChecker::BuildScopeInformation(VarDecl *D, 253 const BlockDecl *BDecl, 254 unsigned &ParentScope) { 255 // exclude captured __block variables; there's no destructor 256 // associated with the block literal for them. 257 if (D->hasAttr<BlocksAttr>()) 258 return; 259 QualType T = D->getType(); 260 QualType::DestructionKind destructKind = T.isDestructedType(); 261 if (destructKind != QualType::DK_none) { 262 std::pair<unsigned,unsigned> Diags; 263 switch (destructKind) { 264 case QualType::DK_cxx_destructor: 265 Diags = ScopePair(diag::note_enters_block_captures_cxx_obj, 266 diag::note_exits_block_captures_cxx_obj); 267 break; 268 case QualType::DK_objc_strong_lifetime: 269 Diags = ScopePair(diag::note_enters_block_captures_strong, 270 diag::note_exits_block_captures_strong); 271 break; 272 case QualType::DK_objc_weak_lifetime: 273 Diags = ScopePair(diag::note_enters_block_captures_weak, 274 diag::note_exits_block_captures_weak); 275 break; 276 case QualType::DK_none: 277 llvm_unreachable("non-lifetime captured variable"); 278 } 279 SourceLocation Loc = D->getLocation(); 280 if (Loc.isInvalid()) 281 Loc = BDecl->getLocation(); 282 Scopes.push_back(GotoScope(ParentScope, 283 Diags.first, Diags.second, Loc)); 284 ParentScope = Scopes.size()-1; 285 } 286 } 287 288 /// BuildScopeInformation - The statements from CI to CE are known to form a 289 /// coherent VLA scope with a specified parent node. Walk through the 290 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively 291 /// walking the AST as needed. 292 void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) { 293 // If this is a statement, rather than an expression, scopes within it don't 294 // propagate out into the enclosing scope. Otherwise we have to worry 295 // about block literals, which have the lifetime of their enclosing statement. 296 unsigned independentParentScope = origParentScope; 297 unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S)) 298 ? origParentScope : independentParentScope); 299 300 bool SkipFirstSubStmt = false; 301 302 // If we found a label, remember that it is in ParentScope scope. 303 switch (S->getStmtClass()) { 304 case Stmt::AddrLabelExprClass: 305 IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel()); 306 break; 307 308 case Stmt::IndirectGotoStmtClass: 309 // "goto *&&lbl;" is a special case which we treat as equivalent 310 // to a normal goto. In addition, we don't calculate scope in the 311 // operand (to avoid recording the address-of-label use), which 312 // works only because of the restricted set of expressions which 313 // we detect as constant targets. 314 if (cast<IndirectGotoStmt>(S)->getConstantTarget()) { 315 LabelAndGotoScopes[S] = ParentScope; 316 Jumps.push_back(S); 317 return; 318 } 319 320 LabelAndGotoScopes[S] = ParentScope; 321 IndirectJumps.push_back(cast<IndirectGotoStmt>(S)); 322 break; 323 324 case Stmt::SwitchStmtClass: 325 // Evaluate the condition variable before entering the scope of the switch 326 // statement. 327 if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) { 328 BuildScopeInformation(Var, ParentScope); 329 SkipFirstSubStmt = true; 330 } 331 // Fall through 332 333 case Stmt::GotoStmtClass: 334 // Remember both what scope a goto is in as well as the fact that we have 335 // it. This makes the second scan not have to walk the AST again. 336 LabelAndGotoScopes[S] = ParentScope; 337 Jumps.push_back(S); 338 break; 339 340 case Stmt::CXXTryStmtClass: { 341 CXXTryStmt *TS = cast<CXXTryStmt>(S); 342 unsigned newParentScope; 343 Scopes.push_back(GotoScope(ParentScope, 344 diag::note_protected_by_cxx_try, 345 diag::note_exits_cxx_try, 346 TS->getSourceRange().getBegin())); 347 if (Stmt *TryBlock = TS->getTryBlock()) 348 BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1)); 349 350 // Jump from the catch into the try is not allowed either. 351 for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { 352 CXXCatchStmt *CS = TS->getHandler(I); 353 Scopes.push_back(GotoScope(ParentScope, 354 diag::note_protected_by_cxx_catch, 355 diag::note_exits_cxx_catch, 356 CS->getSourceRange().getBegin())); 357 BuildScopeInformation(CS->getHandlerBlock(), 358 (newParentScope = Scopes.size()-1)); 359 } 360 return; 361 } 362 363 default: 364 break; 365 } 366 367 for (Stmt::child_range CI = S->children(); CI; ++CI) { 368 if (SkipFirstSubStmt) { 369 SkipFirstSubStmt = false; 370 continue; 371 } 372 373 Stmt *SubStmt = *CI; 374 if (SubStmt == 0) continue; 375 376 // Cases, labels, and defaults aren't "scope parents". It's also 377 // important to handle these iteratively instead of recursively in 378 // order to avoid blowing out the stack. 379 while (true) { 380 Stmt *Next; 381 if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt)) 382 Next = CS->getSubStmt(); 383 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt)) 384 Next = DS->getSubStmt(); 385 else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt)) 386 Next = LS->getSubStmt(); 387 else 388 break; 389 390 LabelAndGotoScopes[SubStmt] = ParentScope; 391 SubStmt = Next; 392 } 393 394 // If this is a declstmt with a VLA definition, it defines a scope from here 395 // to the end of the containing context. 396 if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) { 397 // The decl statement creates a scope if any of the decls in it are VLAs 398 // or have the cleanup attribute. 399 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 400 I != E; ++I) 401 BuildScopeInformation(*I, ParentScope); 402 continue; 403 } 404 // Disallow jumps into any part of an @try statement by pushing a scope and 405 // walking all sub-stmts in that scope. 406 if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) { 407 unsigned newParentScope; 408 // Recursively walk the AST for the @try part. 409 Scopes.push_back(GotoScope(ParentScope, 410 diag::note_protected_by_objc_try, 411 diag::note_exits_objc_try, 412 AT->getAtTryLoc())); 413 if (Stmt *TryPart = AT->getTryBody()) 414 BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1)); 415 416 // Jump from the catch to the finally or try is not valid. 417 for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) { 418 ObjCAtCatchStmt *AC = AT->getCatchStmt(I); 419 Scopes.push_back(GotoScope(ParentScope, 420 diag::note_protected_by_objc_catch, 421 diag::note_exits_objc_catch, 422 AC->getAtCatchLoc())); 423 // @catches are nested and it isn't 424 BuildScopeInformation(AC->getCatchBody(), 425 (newParentScope = Scopes.size()-1)); 426 } 427 428 // Jump from the finally to the try or catch is not valid. 429 if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { 430 Scopes.push_back(GotoScope(ParentScope, 431 diag::note_protected_by_objc_finally, 432 diag::note_exits_objc_finally, 433 AF->getAtFinallyLoc())); 434 BuildScopeInformation(AF, (newParentScope = Scopes.size()-1)); 435 } 436 437 continue; 438 } 439 440 unsigned newParentScope; 441 // Disallow jumps into the protected statement of an @synchronized, but 442 // allow jumps into the object expression it protects. 443 if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){ 444 // Recursively walk the AST for the @synchronized object expr, it is 445 // evaluated in the normal scope. 446 BuildScopeInformation(AS->getSynchExpr(), ParentScope); 447 448 // Recursively walk the AST for the @synchronized part, protected by a new 449 // scope. 450 Scopes.push_back(GotoScope(ParentScope, 451 diag::note_protected_by_objc_synchronized, 452 diag::note_exits_objc_synchronized, 453 AS->getAtSynchronizedLoc())); 454 BuildScopeInformation(AS->getSynchBody(), 455 (newParentScope = Scopes.size()-1)); 456 continue; 457 } 458 459 // Disallow jumps into the protected statement of an @autoreleasepool. 460 if (ObjCAutoreleasePoolStmt *AS = dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)){ 461 // Recursively walk the AST for the @autoreleasepool part, protected by a new 462 // scope. 463 Scopes.push_back(GotoScope(ParentScope, 464 diag::note_protected_by_objc_autoreleasepool, 465 diag::note_exits_objc_autoreleasepool, 466 AS->getAtLoc())); 467 BuildScopeInformation(AS->getSubStmt(), (newParentScope = Scopes.size()-1)); 468 continue; 469 } 470 471 // Disallow jumps past full-expressions that use blocks with 472 // non-trivial cleanups of their captures. This is theoretically 473 // implementable but a lot of work which we haven't felt up to doing. 474 if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(SubStmt)) { 475 for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) { 476 const BlockDecl *BDecl = EWC->getObject(i); 477 for (BlockDecl::capture_const_iterator ci = BDecl->capture_begin(), 478 ce = BDecl->capture_end(); ci != ce; ++ci) { 479 VarDecl *variable = ci->getVariable(); 480 BuildScopeInformation(variable, BDecl, ParentScope); 481 } 482 } 483 } 484 485 // Recursively walk the AST. 486 BuildScopeInformation(SubStmt, ParentScope); 487 } 488 } 489 490 /// VerifyJumps - Verify each element of the Jumps array to see if they are 491 /// valid, emitting diagnostics if not. 492 void JumpScopeChecker::VerifyJumps() { 493 while (!Jumps.empty()) { 494 Stmt *Jump = Jumps.pop_back_val(); 495 496 // With a goto, 497 if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) { 498 CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(), 499 diag::err_goto_into_protected_scope, 500 diag::warn_goto_into_protected_scope, 501 diag::warn_cxx98_compat_goto_into_protected_scope); 502 continue; 503 } 504 505 // We only get indirect gotos here when they have a constant target. 506 if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) { 507 LabelDecl *Target = IGS->getConstantTarget(); 508 CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(), 509 diag::err_goto_into_protected_scope, 510 diag::warn_goto_into_protected_scope, 511 diag::warn_cxx98_compat_goto_into_protected_scope); 512 continue; 513 } 514 515 SwitchStmt *SS = cast<SwitchStmt>(Jump); 516 for (SwitchCase *SC = SS->getSwitchCaseList(); SC; 517 SC = SC->getNextSwitchCase()) { 518 assert(LabelAndGotoScopes.count(SC) && "Case not visited?"); 519 SourceLocation Loc; 520 if (CaseStmt *CS = dyn_cast<CaseStmt>(SC)) 521 Loc = CS->getLocStart(); 522 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) 523 Loc = DS->getLocStart(); 524 else 525 Loc = SC->getLocStart(); 526 CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0, 527 diag::warn_cxx98_compat_switch_into_protected_scope); 528 } 529 } 530 } 531 532 /// VerifyIndirectJumps - Verify whether any possible indirect jump 533 /// might cross a protection boundary. Unlike direct jumps, indirect 534 /// jumps count cleanups as protection boundaries: since there's no 535 /// way to know where the jump is going, we can't implicitly run the 536 /// right cleanups the way we can with direct jumps. 537 /// 538 /// Thus, an indirect jump is "trivial" if it bypasses no 539 /// initializations and no teardowns. More formally, an indirect jump 540 /// from A to B is trivial if the path out from A to DCA(A,B) is 541 /// trivial and the path in from DCA(A,B) to B is trivial, where 542 /// DCA(A,B) is the deepest common ancestor of A and B. 543 /// Jump-triviality is transitive but asymmetric. 544 /// 545 /// A path in is trivial if none of the entered scopes have an InDiag. 546 /// A path out is trivial is none of the exited scopes have an OutDiag. 547 /// 548 /// Under these definitions, this function checks that the indirect 549 /// jump between A and B is trivial for every indirect goto statement A 550 /// and every label B whose address was taken in the function. 551 void JumpScopeChecker::VerifyIndirectJumps() { 552 if (IndirectJumps.empty()) return; 553 554 // If there aren't any address-of-label expressions in this function, 555 // complain about the first indirect goto. 556 if (IndirectJumpTargets.empty()) { 557 S.Diag(IndirectJumps[0]->getGotoLoc(), 558 diag::err_indirect_goto_without_addrlabel); 559 return; 560 } 561 562 // Collect a single representative of every scope containing an 563 // indirect goto. For most code bases, this substantially cuts 564 // down on the number of jump sites we'll have to consider later. 565 typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope; 566 SmallVector<JumpScope, 32> JumpScopes; 567 { 568 llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap; 569 for (SmallVectorImpl<IndirectGotoStmt*>::iterator 570 I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) { 571 IndirectGotoStmt *IG = *I; 572 assert(LabelAndGotoScopes.count(IG) && 573 "indirect jump didn't get added to scopes?"); 574 unsigned IGScope = LabelAndGotoScopes[IG]; 575 IndirectGotoStmt *&Entry = JumpScopesMap[IGScope]; 576 if (!Entry) Entry = IG; 577 } 578 JumpScopes.reserve(JumpScopesMap.size()); 579 for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator 580 I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I) 581 JumpScopes.push_back(*I); 582 } 583 584 // Collect a single representative of every scope containing a 585 // label whose address was taken somewhere in the function. 586 // For most code bases, there will be only one such scope. 587 llvm::DenseMap<unsigned, LabelDecl*> TargetScopes; 588 for (SmallVectorImpl<LabelDecl*>::iterator 589 I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end(); 590 I != E; ++I) { 591 LabelDecl *TheLabel = *I; 592 assert(LabelAndGotoScopes.count(TheLabel->getStmt()) && 593 "Referenced label didn't get added to scopes?"); 594 unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()]; 595 LabelDecl *&Target = TargetScopes[LabelScope]; 596 if (!Target) Target = TheLabel; 597 } 598 599 // For each target scope, make sure it's trivially reachable from 600 // every scope containing a jump site. 601 // 602 // A path between scopes always consists of exitting zero or more 603 // scopes, then entering zero or more scopes. We build a set of 604 // of scopes S from which the target scope can be trivially 605 // entered, then verify that every jump scope can be trivially 606 // exitted to reach a scope in S. 607 llvm::BitVector Reachable(Scopes.size(), false); 608 for (llvm::DenseMap<unsigned,LabelDecl*>::iterator 609 TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) { 610 unsigned TargetScope = TI->first; 611 LabelDecl *TargetLabel = TI->second; 612 613 Reachable.reset(); 614 615 // Mark all the enclosing scopes from which you can safely jump 616 // into the target scope. 'Min' will end up being the index of 617 // the shallowest such scope. 618 unsigned Min = TargetScope; 619 while (true) { 620 Reachable.set(Min); 621 622 // Don't go beyond the outermost scope. 623 if (Min == 0) break; 624 625 // Stop if we can't trivially enter the current scope. 626 if (Scopes[Min].InDiag) break; 627 628 Min = Scopes[Min].ParentScope; 629 } 630 631 // Walk through all the jump sites, checking that they can trivially 632 // reach this label scope. 633 for (SmallVectorImpl<JumpScope>::iterator 634 I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) { 635 unsigned Scope = I->first; 636 637 // Walk out the "scope chain" for this scope, looking for a scope 638 // we've marked reachable. For well-formed code this amortizes 639 // to O(JumpScopes.size() / Scopes.size()): we only iterate 640 // when we see something unmarked, and in well-formed code we 641 // mark everything we iterate past. 642 bool IsReachable = false; 643 while (true) { 644 if (Reachable.test(Scope)) { 645 // If we find something reachable, mark all the scopes we just 646 // walked through as reachable. 647 for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope) 648 Reachable.set(S); 649 IsReachable = true; 650 break; 651 } 652 653 // Don't walk out if we've reached the top-level scope or we've 654 // gotten shallower than the shallowest reachable scope. 655 if (Scope == 0 || Scope < Min) break; 656 657 // Don't walk out through an out-diagnostic. 658 if (Scopes[Scope].OutDiag) break; 659 660 Scope = Scopes[Scope].ParentScope; 661 } 662 663 // Only diagnose if we didn't find something. 664 if (IsReachable) continue; 665 666 DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope); 667 } 668 } 669 } 670 671 /// Return true if a particular error+note combination must be downgraded to a 672 /// warning in Microsoft mode. 673 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) { 674 return (JumpDiag == diag::err_goto_into_protected_scope && 675 (InDiagNote == diag::note_protected_by_variable_init || 676 InDiagNote == diag::note_protected_by_variable_nontriv_destructor)); 677 } 678 679 /// Return true if a particular note should be downgraded to a compatibility 680 /// warning in C++11 mode. 681 static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) { 682 return S.getLangOpts().CPlusPlus11 && 683 InDiagNote == diag::note_protected_by_variable_non_pod; 684 } 685 686 /// Produce primary diagnostic for an indirect jump statement. 687 static void DiagnoseIndirectJumpStmt(Sema &S, IndirectGotoStmt *Jump, 688 LabelDecl *Target, bool &Diagnosed) { 689 if (Diagnosed) 690 return; 691 S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope); 692 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target); 693 Diagnosed = true; 694 } 695 696 /// Produce note diagnostics for a jump into a protected scope. 697 void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) { 698 assert(!ToScopes.empty()); 699 for (unsigned I = 0, E = ToScopes.size(); I != E; ++I) 700 if (Scopes[ToScopes[I]].InDiag) 701 S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag); 702 } 703 704 /// Diagnose an indirect jump which is known to cross scopes. 705 void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump, 706 unsigned JumpScope, 707 LabelDecl *Target, 708 unsigned TargetScope) { 709 assert(JumpScope != TargetScope); 710 711 unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope); 712 bool Diagnosed = false; 713 714 // Walk out the scope chain until we reach the common ancestor. 715 for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope) 716 if (Scopes[I].OutDiag) { 717 DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed); 718 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); 719 } 720 721 SmallVector<unsigned, 10> ToScopesCXX98Compat; 722 723 // Now walk into the scopes containing the label whose address was taken. 724 for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope) 725 if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 726 ToScopesCXX98Compat.push_back(I); 727 else if (Scopes[I].InDiag) { 728 DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed); 729 S.Diag(Scopes[I].Loc, Scopes[I].InDiag); 730 } 731 732 // Diagnose this jump if it would be ill-formed in C++98. 733 if (!Diagnosed && !ToScopesCXX98Compat.empty()) { 734 S.Diag(Jump->getGotoLoc(), 735 diag::warn_cxx98_compat_indirect_goto_in_protected_scope); 736 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target); 737 NoteJumpIntoScopes(ToScopesCXX98Compat); 738 } 739 } 740 741 /// CheckJump - Validate that the specified jump statement is valid: that it is 742 /// jumping within or out of its current scope, not into a deeper one. 743 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 744 unsigned JumpDiagError, unsigned JumpDiagWarning, 745 unsigned JumpDiagCXX98Compat) { 746 assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?"); 747 unsigned FromScope = LabelAndGotoScopes[From]; 748 749 assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?"); 750 unsigned ToScope = LabelAndGotoScopes[To]; 751 752 // Common case: exactly the same scope, which is fine. 753 if (FromScope == ToScope) return; 754 755 unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope); 756 757 // It's okay to jump out from a nested scope. 758 if (CommonScope == ToScope) return; 759 760 // Pull out (and reverse) any scopes we might need to diagnose skipping. 761 SmallVector<unsigned, 10> ToScopesCXX98Compat; 762 SmallVector<unsigned, 10> ToScopesError; 763 SmallVector<unsigned, 10> ToScopesWarning; 764 for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) { 765 if (S.getLangOpts().MicrosoftMode && JumpDiagWarning != 0 && 766 IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag)) 767 ToScopesWarning.push_back(I); 768 else if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 769 ToScopesCXX98Compat.push_back(I); 770 else if (Scopes[I].InDiag) 771 ToScopesError.push_back(I); 772 } 773 774 // Handle warnings. 775 if (!ToScopesWarning.empty()) { 776 S.Diag(DiagLoc, JumpDiagWarning); 777 NoteJumpIntoScopes(ToScopesWarning); 778 } 779 780 // Handle errors. 781 if (!ToScopesError.empty()) { 782 S.Diag(DiagLoc, JumpDiagError); 783 NoteJumpIntoScopes(ToScopesError); 784 } 785 786 // Handle -Wc++98-compat warnings if the jump is well-formed. 787 if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) { 788 S.Diag(DiagLoc, JumpDiagCXX98Compat); 789 NoteJumpIntoScopes(ToScopesCXX98Compat); 790 } 791 } 792 793 void Sema::DiagnoseInvalidJumps(Stmt *Body) { 794 (void)JumpScopeChecker(Body, *this); 795 } 796