Home | History | Annotate | Download | only in Utils
      1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SSAUpdater class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "ssaupdater"
     15 #include "llvm/Transforms/Utils/SSAUpdater.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/TinyPtrVector.h"
     18 #include "llvm/Analysis/InstructionSimplify.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Instructions.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/Support/AlignOf.h"
     23 #include "llvm/Support/Allocator.h"
     24 #include "llvm/Support/CFG.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
     30 
     31 using namespace llvm;
     32 
     33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
     34 static AvailableValsTy &getAvailableVals(void *AV) {
     35   return *static_cast<AvailableValsTy*>(AV);
     36 }
     37 
     38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
     39   : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
     40 
     41 SSAUpdater::~SSAUpdater() {
     42   delete static_cast<AvailableValsTy*>(AV);
     43 }
     44 
     45 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
     46   if (AV == 0)
     47     AV = new AvailableValsTy();
     48   else
     49     getAvailableVals(AV).clear();
     50   ProtoType = Ty;
     51   ProtoName = Name;
     52 }
     53 
     54 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
     55   return getAvailableVals(AV).count(BB);
     56 }
     57 
     58 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
     59   assert(ProtoType != 0 && "Need to initialize SSAUpdater");
     60   assert(ProtoType == V->getType() &&
     61          "All rewritten values must have the same type");
     62   getAvailableVals(AV)[BB] = V;
     63 }
     64 
     65 static bool IsEquivalentPHI(PHINode *PHI,
     66                             DenseMap<BasicBlock*, Value*> &ValueMapping) {
     67   unsigned PHINumValues = PHI->getNumIncomingValues();
     68   if (PHINumValues != ValueMapping.size())
     69     return false;
     70 
     71   // Scan the phi to see if it matches.
     72   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
     73     if (ValueMapping[PHI->getIncomingBlock(i)] !=
     74         PHI->getIncomingValue(i)) {
     75       return false;
     76     }
     77 
     78   return true;
     79 }
     80 
     81 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
     82   Value *Res = GetValueAtEndOfBlockInternal(BB);
     83   return Res;
     84 }
     85 
     86 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
     87   // If there is no definition of the renamed variable in this block, just use
     88   // GetValueAtEndOfBlock to do our work.
     89   if (!HasValueForBlock(BB))
     90     return GetValueAtEndOfBlock(BB);
     91 
     92   // Otherwise, we have the hard case.  Get the live-in values for each
     93   // predecessor.
     94   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
     95   Value *SingularValue = 0;
     96 
     97   // We can get our predecessor info by walking the pred_iterator list, but it
     98   // is relatively slow.  If we already have PHI nodes in this block, walk one
     99   // of them to get the predecessor list instead.
    100   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    101     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
    102       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
    103       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    104       PredValues.push_back(std::make_pair(PredBB, PredVal));
    105 
    106       // Compute SingularValue.
    107       if (i == 0)
    108         SingularValue = PredVal;
    109       else if (PredVal != SingularValue)
    110         SingularValue = 0;
    111     }
    112   } else {
    113     bool isFirstPred = true;
    114     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    115       BasicBlock *PredBB = *PI;
    116       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    117       PredValues.push_back(std::make_pair(PredBB, PredVal));
    118 
    119       // Compute SingularValue.
    120       if (isFirstPred) {
    121         SingularValue = PredVal;
    122         isFirstPred = false;
    123       } else if (PredVal != SingularValue)
    124         SingularValue = 0;
    125     }
    126   }
    127 
    128   // If there are no predecessors, just return undef.
    129   if (PredValues.empty())
    130     return UndefValue::get(ProtoType);
    131 
    132   // Otherwise, if all the merged values are the same, just use it.
    133   if (SingularValue != 0)
    134     return SingularValue;
    135 
    136   // Otherwise, we do need a PHI: check to see if we already have one available
    137   // in this block that produces the right value.
    138   if (isa<PHINode>(BB->begin())) {
    139     DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
    140                                                PredValues.end());
    141     PHINode *SomePHI;
    142     for (BasicBlock::iterator It = BB->begin();
    143          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
    144       if (IsEquivalentPHI(SomePHI, ValueMapping))
    145         return SomePHI;
    146     }
    147   }
    148 
    149   // Ok, we have no way out, insert a new one now.
    150   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
    151                                          ProtoName, &BB->front());
    152 
    153   // Fill in all the predecessors of the PHI.
    154   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
    155     InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
    156 
    157   // See if the PHI node can be merged to a single value.  This can happen in
    158   // loop cases when we get a PHI of itself and one other value.
    159   if (Value *V = SimplifyInstruction(InsertedPHI)) {
    160     InsertedPHI->eraseFromParent();
    161     return V;
    162   }
    163 
    164   // Set the DebugLoc of the inserted PHI, if available.
    165   DebugLoc DL;
    166   if (const Instruction *I = BB->getFirstNonPHI())
    167       DL = I->getDebugLoc();
    168   InsertedPHI->setDebugLoc(DL);
    169 
    170   // If the client wants to know about all new instructions, tell it.
    171   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
    172 
    173   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
    174   return InsertedPHI;
    175 }
    176 
    177 void SSAUpdater::RewriteUse(Use &U) {
    178   Instruction *User = cast<Instruction>(U.getUser());
    179 
    180   Value *V;
    181   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    182     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    183   else
    184     V = GetValueInMiddleOfBlock(User->getParent());
    185 
    186   // Notify that users of the existing value that it is being replaced.
    187   Value *OldVal = U.get();
    188   if (OldVal != V && OldVal->hasValueHandle())
    189     ValueHandleBase::ValueIsRAUWd(OldVal, V);
    190 
    191   U.set(V);
    192 }
    193 
    194 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
    195   Instruction *User = cast<Instruction>(U.getUser());
    196 
    197   Value *V;
    198   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    199     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    200   else
    201     V = GetValueAtEndOfBlock(User->getParent());
    202 
    203   U.set(V);
    204 }
    205 
    206 namespace llvm {
    207 template<>
    208 class SSAUpdaterTraits<SSAUpdater> {
    209 public:
    210   typedef BasicBlock BlkT;
    211   typedef Value *ValT;
    212   typedef PHINode PhiT;
    213 
    214   typedef succ_iterator BlkSucc_iterator;
    215   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
    216   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
    217 
    218   class PHI_iterator {
    219   private:
    220     PHINode *PHI;
    221     unsigned idx;
    222 
    223   public:
    224     explicit PHI_iterator(PHINode *P) // begin iterator
    225       : PHI(P), idx(0) {}
    226     PHI_iterator(PHINode *P, bool) // end iterator
    227       : PHI(P), idx(PHI->getNumIncomingValues()) {}
    228 
    229     PHI_iterator &operator++() { ++idx; return *this; }
    230     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    231     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
    232     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
    233     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
    234   };
    235 
    236   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
    237   static PHI_iterator PHI_end(PhiT *PHI) {
    238     return PHI_iterator(PHI, true);
    239   }
    240 
    241   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
    242   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
    243   static void FindPredecessorBlocks(BasicBlock *BB,
    244                                     SmallVectorImpl<BasicBlock*> *Preds) {
    245     // We can get our predecessor info by walking the pred_iterator list,
    246     // but it is relatively slow.  If we already have PHI nodes in this
    247     // block, walk one of them to get the predecessor list instead.
    248     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    249       for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
    250         Preds->push_back(SomePhi->getIncomingBlock(PI));
    251     } else {
    252       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    253         Preds->push_back(*PI);
    254     }
    255   }
    256 
    257   /// GetUndefVal - Get an undefined value of the same type as the value
    258   /// being handled.
    259   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
    260     return UndefValue::get(Updater->ProtoType);
    261   }
    262 
    263   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
    264   /// Reserve space for the operands but do not fill them in yet.
    265   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
    266                                SSAUpdater *Updater) {
    267     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
    268                                    Updater->ProtoName, &BB->front());
    269     return PHI;
    270   }
    271 
    272   /// AddPHIOperand - Add the specified value as an operand of the PHI for
    273   /// the specified predecessor block.
    274   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
    275     PHI->addIncoming(Val, Pred);
    276   }
    277 
    278   /// InstrIsPHI - Check if an instruction is a PHI.
    279   ///
    280   static PHINode *InstrIsPHI(Instruction *I) {
    281     return dyn_cast<PHINode>(I);
    282   }
    283 
    284   /// ValueIsPHI - Check if a value is a PHI.
    285   ///
    286   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
    287     return dyn_cast<PHINode>(Val);
    288   }
    289 
    290   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
    291   /// operands, i.e., it was just added.
    292   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
    293     PHINode *PHI = ValueIsPHI(Val, Updater);
    294     if (PHI && PHI->getNumIncomingValues() == 0)
    295       return PHI;
    296     return 0;
    297   }
    298 
    299   /// GetPHIValue - For the specified PHI instruction, return the value
    300   /// that it defines.
    301   static Value *GetPHIValue(PHINode *PHI) {
    302     return PHI;
    303   }
    304 };
    305 
    306 } // End llvm namespace
    307 
    308 /// Check to see if AvailableVals has an entry for the specified BB and if so,
    309 /// return it.  If not, construct SSA form by first calculating the required
    310 /// placement of PHIs and then inserting new PHIs where needed.
    311 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
    312   AvailableValsTy &AvailableVals = getAvailableVals(AV);
    313   if (Value *V = AvailableVals[BB])
    314     return V;
    315 
    316   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
    317   return Impl.GetValue(BB);
    318 }
    319 
    320 //===----------------------------------------------------------------------===//
    321 // LoadAndStorePromoter Implementation
    322 //===----------------------------------------------------------------------===//
    323 
    324 LoadAndStorePromoter::
    325 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
    326                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
    327   if (Insts.empty()) return;
    328 
    329   Value *SomeVal;
    330   if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
    331     SomeVal = LI;
    332   else
    333     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
    334 
    335   if (BaseName.empty())
    336     BaseName = SomeVal->getName();
    337   SSA.Initialize(SomeVal->getType(), BaseName);
    338 }
    339 
    340 
    341 void LoadAndStorePromoter::
    342 run(const SmallVectorImpl<Instruction*> &Insts) const {
    343 
    344   // First step: bucket up uses of the alloca by the block they occur in.
    345   // This is important because we have to handle multiple defs/uses in a block
    346   // ourselves: SSAUpdater is purely for cross-block references.
    347   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
    348 
    349   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    350     Instruction *User = Insts[i];
    351     UsesByBlock[User->getParent()].push_back(User);
    352   }
    353 
    354   // Okay, now we can iterate over all the blocks in the function with uses,
    355   // processing them.  Keep track of which loads are loading a live-in value.
    356   // Walk the uses in the use-list order to be determinstic.
    357   SmallVector<LoadInst*, 32> LiveInLoads;
    358   DenseMap<Value*, Value*> ReplacedLoads;
    359 
    360   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    361     Instruction *User = Insts[i];
    362     BasicBlock *BB = User->getParent();
    363     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
    364 
    365     // If this block has already been processed, ignore this repeat use.
    366     if (BlockUses.empty()) continue;
    367 
    368     // Okay, this is the first use in the block.  If this block just has a
    369     // single user in it, we can rewrite it trivially.
    370     if (BlockUses.size() == 1) {
    371       // If it is a store, it is a trivial def of the value in the block.
    372       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    373         updateDebugInfo(SI);
    374         SSA.AddAvailableValue(BB, SI->getOperand(0));
    375       } else
    376         // Otherwise it is a load, queue it to rewrite as a live-in load.
    377         LiveInLoads.push_back(cast<LoadInst>(User));
    378       BlockUses.clear();
    379       continue;
    380     }
    381 
    382     // Otherwise, check to see if this block is all loads.
    383     bool HasStore = false;
    384     for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
    385       if (isa<StoreInst>(BlockUses[i])) {
    386         HasStore = true;
    387         break;
    388       }
    389     }
    390 
    391     // If so, we can queue them all as live in loads.  We don't have an
    392     // efficient way to tell which on is first in the block and don't want to
    393     // scan large blocks, so just add all loads as live ins.
    394     if (!HasStore) {
    395       for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
    396         LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
    397       BlockUses.clear();
    398       continue;
    399     }
    400 
    401     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
    402     // Since SSAUpdater is purely for cross-block values, we need to determine
    403     // the order of these instructions in the block.  If the first use in the
    404     // block is a load, then it uses the live in value.  The last store defines
    405     // the live out value.  We handle this by doing a linear scan of the block.
    406     Value *StoredValue = 0;
    407     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
    408       if (LoadInst *L = dyn_cast<LoadInst>(II)) {
    409         // If this is a load from an unrelated pointer, ignore it.
    410         if (!isInstInList(L, Insts)) continue;
    411 
    412         // If we haven't seen a store yet, this is a live in use, otherwise
    413         // use the stored value.
    414         if (StoredValue) {
    415           replaceLoadWithValue(L, StoredValue);
    416           L->replaceAllUsesWith(StoredValue);
    417           ReplacedLoads[L] = StoredValue;
    418         } else {
    419           LiveInLoads.push_back(L);
    420         }
    421         continue;
    422       }
    423 
    424       if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
    425         // If this is a store to an unrelated pointer, ignore it.
    426         if (!isInstInList(SI, Insts)) continue;
    427         updateDebugInfo(SI);
    428 
    429         // Remember that this is the active value in the block.
    430         StoredValue = SI->getOperand(0);
    431       }
    432     }
    433 
    434     // The last stored value that happened is the live-out for the block.
    435     assert(StoredValue && "Already checked that there is a store in block");
    436     SSA.AddAvailableValue(BB, StoredValue);
    437     BlockUses.clear();
    438   }
    439 
    440   // Okay, now we rewrite all loads that use live-in values in the loop,
    441   // inserting PHI nodes as necessary.
    442   for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
    443     LoadInst *ALoad = LiveInLoads[i];
    444     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
    445     replaceLoadWithValue(ALoad, NewVal);
    446 
    447     // Avoid assertions in unreachable code.
    448     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
    449     ALoad->replaceAllUsesWith(NewVal);
    450     ReplacedLoads[ALoad] = NewVal;
    451   }
    452 
    453   // Allow the client to do stuff before we start nuking things.
    454   doExtraRewritesBeforeFinalDeletion();
    455 
    456   // Now that everything is rewritten, delete the old instructions from the
    457   // function.  They should all be dead now.
    458   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    459     Instruction *User = Insts[i];
    460 
    461     // If this is a load that still has uses, then the load must have been added
    462     // as a live value in the SSAUpdate data structure for a block (e.g. because
    463     // the loaded value was stored later).  In this case, we need to recursively
    464     // propagate the updates until we get to the real value.
    465     if (!User->use_empty()) {
    466       Value *NewVal = ReplacedLoads[User];
    467       assert(NewVal && "not a replaced load?");
    468 
    469       // Propagate down to the ultimate replacee.  The intermediately loads
    470       // could theoretically already have been deleted, so we don't want to
    471       // dereference the Value*'s.
    472       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
    473       while (RLI != ReplacedLoads.end()) {
    474         NewVal = RLI->second;
    475         RLI = ReplacedLoads.find(NewVal);
    476       }
    477 
    478       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
    479       User->replaceAllUsesWith(NewVal);
    480     }
    481 
    482     instructionDeleted(User);
    483     User->eraseFromParent();
    484   }
    485 }
    486 
    487 bool
    488 LoadAndStorePromoter::isInstInList(Instruction *I,
    489                                    const SmallVectorImpl<Instruction*> &Insts)
    490                                    const {
    491   return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
    492 }
    493