Home | History | Annotate | Download | only in dex
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "base/logging.h"
     18 #include "base/mutex.h"
     19 #include "dex_file-inl.h"
     20 #include "dex_instruction-inl.h"
     21 #include "driver/compiler_driver.h"
     22 #include "driver/dex_compilation_unit.h"
     23 #include "mirror/art_field-inl.h"
     24 #include "mirror/art_method-inl.h"
     25 #include "mirror/class-inl.h"
     26 #include "mirror/dex_cache.h"
     27 
     28 namespace art {
     29 namespace optimizer {
     30 
     31 // Controls quickening activation.
     32 const bool kEnableQuickening = true;
     33 // Control check-cast elision.
     34 const bool kEnableCheckCastEllision = true;
     35 
     36 class DexCompiler {
     37  public:
     38   DexCompiler(art::CompilerDriver& compiler,
     39               const DexCompilationUnit& unit,
     40               DexToDexCompilationLevel dex_to_dex_compilation_level)
     41     : driver_(compiler),
     42       unit_(unit),
     43       dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {}
     44 
     45   ~DexCompiler() {}
     46 
     47   void Compile();
     48 
     49  private:
     50   const DexFile& GetDexFile() const {
     51     return *unit_.GetDexFile();
     52   }
     53 
     54   // TODO: since the whole compilation pipeline uses a "const DexFile", we need
     55   // to "unconst" here. The DEX-to-DEX compiler should work on a non-const DexFile.
     56   DexFile& GetModifiableDexFile() {
     57     return *const_cast<DexFile*>(unit_.GetDexFile());
     58   }
     59 
     60   bool PerformOptimizations() const {
     61     return dex_to_dex_compilation_level_ >= kOptimize;
     62   }
     63 
     64   // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where
     65   // a barrier is required.
     66   void CompileReturnVoid(Instruction* inst, uint32_t dex_pc);
     67 
     68   // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In
     69   // this case, returns the second NOP instruction pointer. Otherwise, returns
     70   // the given "inst".
     71   Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc);
     72 
     73   // Compiles a field access into a quick field access.
     74   // The field index is replaced by an offset within an Object where we can read
     75   // from / write to this field. Therefore, this does not involve any resolution
     76   // at runtime.
     77   // Since the field index is encoded with 16 bits, we can replace it only if the
     78   // field offset can be encoded with 16 bits too.
     79   void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc,
     80                                   Instruction::Code new_opcode, bool is_put);
     81 
     82   // Compiles a virtual method invocation into a quick virtual method invocation.
     83   // The method index is replaced by the vtable index where the corresponding
     84   // AbstractMethod can be found. Therefore, this does not involve any resolution
     85   // at runtime.
     86   // Since the method index is encoded with 16 bits, we can replace it only if the
     87   // vtable index can be encoded with 16 bits too.
     88   void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc,
     89                             Instruction::Code new_opcode, bool is_range);
     90 
     91   CompilerDriver& driver_;
     92   const DexCompilationUnit& unit_;
     93   const DexToDexCompilationLevel dex_to_dex_compilation_level_;
     94 
     95   DISALLOW_COPY_AND_ASSIGN(DexCompiler);
     96 };
     97 
     98 void DexCompiler::Compile() {
     99   DCHECK_GE(dex_to_dex_compilation_level_, kRequired);
    100   const DexFile::CodeItem* code_item = unit_.GetCodeItem();
    101   const uint16_t* insns = code_item->insns_;
    102   const uint32_t insns_size = code_item->insns_size_in_code_units_;
    103   Instruction* inst = const_cast<Instruction*>(Instruction::At(insns));
    104 
    105   for (uint32_t dex_pc = 0; dex_pc < insns_size;
    106        inst = const_cast<Instruction*>(inst->Next()), dex_pc = inst->GetDexPc(insns)) {
    107     switch (inst->Opcode()) {
    108       case Instruction::RETURN_VOID:
    109         CompileReturnVoid(inst, dex_pc);
    110         break;
    111 
    112       case Instruction::CHECK_CAST:
    113         inst = CompileCheckCast(inst, dex_pc);
    114         break;
    115 
    116       case Instruction::IGET:
    117         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false);
    118         break;
    119 
    120       case Instruction::IGET_WIDE:
    121         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false);
    122         break;
    123 
    124       case Instruction::IGET_OBJECT:
    125         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false);
    126         break;
    127 
    128       case Instruction::IPUT:
    129       case Instruction::IPUT_BOOLEAN:
    130       case Instruction::IPUT_BYTE:
    131       case Instruction::IPUT_CHAR:
    132       case Instruction::IPUT_SHORT:
    133         // These opcodes have the same implementation in interpreter so group
    134         // them under IPUT_QUICK.
    135         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true);
    136         break;
    137 
    138       case Instruction::IPUT_WIDE:
    139         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true);
    140         break;
    141 
    142       case Instruction::IPUT_OBJECT:
    143         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true);
    144         break;
    145 
    146       case Instruction::INVOKE_VIRTUAL:
    147         CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false);
    148         break;
    149 
    150       case Instruction::INVOKE_VIRTUAL_RANGE:
    151         CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true);
    152         break;
    153 
    154       default:
    155         // Nothing to do.
    156         break;
    157     }
    158   }
    159 }
    160 
    161 void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) {
    162   DCHECK(inst->Opcode() == Instruction::RETURN_VOID);
    163   // Are we compiling a non-clinit constructor?
    164   if (!unit_.IsConstructor() || unit_.IsStatic()) {
    165     return;
    166   }
    167   // Do we need a constructor barrier ?
    168   if (!driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(),
    169                                          unit_.GetClassDefIndex())) {
    170     return;
    171   }
    172   // Replace RETURN_VOID by RETURN_VOID_BARRIER.
    173   VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode())
    174                  << " by " << Instruction::Name(Instruction::RETURN_VOID_BARRIER)
    175                  << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    176                  << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    177   inst->SetOpcode(Instruction::RETURN_VOID_BARRIER);
    178 }
    179 
    180 Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) {
    181   if (!kEnableCheckCastEllision || !PerformOptimizations()) {
    182     return inst;
    183   }
    184   MethodReference referrer(&GetDexFile(), unit_.GetDexMethodIndex());
    185   if (!driver_.IsSafeCast(referrer, dex_pc)) {
    186     return inst;
    187   }
    188   // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code
    189   // units and a "nop" instruction size is 1 code unit, we need to replace it by
    190   // 2 consecutive NOP instructions.
    191   // Because the caller loops over instructions by calling Instruction::Next onto
    192   // the current instruction, we need to return the 2nd NOP instruction. Indeed,
    193   // its next instruction is the former check-cast's next instruction.
    194   VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode())
    195                  << " by replacing it with 2 NOPs at dex pc "
    196                  << StringPrintf("0x%x", dex_pc) << " in method "
    197                  << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    198   // We are modifying 4 consecutive bytes.
    199   inst->SetOpcode(Instruction::NOP);
    200   inst->SetVRegA_10x(0u);  // keep compliant with verifier.
    201   // Get to next instruction which is the second half of check-cast and replace
    202   // it by a NOP.
    203   inst = const_cast<Instruction*>(inst->Next());
    204   inst->SetOpcode(Instruction::NOP);
    205   inst->SetVRegA_10x(0u);  // keep compliant with verifier.
    206   return inst;
    207 }
    208 
    209 void DexCompiler::CompileInstanceFieldAccess(Instruction* inst,
    210                                              uint32_t dex_pc,
    211                                              Instruction::Code new_opcode,
    212                                              bool is_put) {
    213   if (!kEnableQuickening || !PerformOptimizations()) {
    214     return;
    215   }
    216   uint32_t field_idx = inst->VRegC_22c();
    217   int field_offset;
    218   bool is_volatile;
    219   bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, field_offset,
    220                                                     is_volatile, is_put);
    221   if (fast_path && !is_volatile && IsUint(16, field_offset)) {
    222     VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
    223                    << " to " << Instruction::Name(new_opcode)
    224                    << " by replacing field index " << field_idx
    225                    << " by field offset " << field_offset
    226                    << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    227                    << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    228     // We are modifying 4 consecutive bytes.
    229     inst->SetOpcode(new_opcode);
    230     // Replace field index by field offset.
    231     inst->SetVRegC_22c(static_cast<uint16_t>(field_offset));
    232   }
    233 }
    234 
    235 void DexCompiler::CompileInvokeVirtual(Instruction* inst,
    236                                 uint32_t dex_pc,
    237                                 Instruction::Code new_opcode,
    238                                 bool is_range) {
    239   if (!kEnableQuickening || !PerformOptimizations()) {
    240     return;
    241   }
    242   uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
    243   MethodReference target_method(&GetDexFile(), method_idx);
    244   InvokeType invoke_type = kVirtual;
    245   InvokeType original_invoke_type = invoke_type;
    246   int vtable_idx;
    247   uintptr_t direct_code;
    248   uintptr_t direct_method;
    249   bool fast_path = driver_.ComputeInvokeInfo(&unit_, dex_pc, invoke_type,
    250                                              target_method, vtable_idx,
    251                                              direct_code, direct_method,
    252                                              false);
    253   // TODO: support devirtualization.
    254   if (fast_path && original_invoke_type == invoke_type) {
    255     if (vtable_idx >= 0 && IsUint(16, vtable_idx)) {
    256       VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
    257                      << "(" << PrettyMethod(method_idx, GetDexFile(), true) << ")"
    258                      << " to " << Instruction::Name(new_opcode)
    259                      << " by replacing method index " << method_idx
    260                      << " by vtable index " << vtable_idx
    261                      << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    262                      << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    263       // We are modifying 4 consecutive bytes.
    264       inst->SetOpcode(new_opcode);
    265       // Replace method index by vtable index.
    266       if (is_range) {
    267         inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx));
    268       } else {
    269         inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx));
    270       }
    271     }
    272   }
    273 }
    274 
    275 }  // namespace optimizer
    276 }  // namespace art
    277 
    278 extern "C" void ArtCompileDEX(art::CompilerDriver& compiler, const art::DexFile::CodeItem* code_item,
    279                   uint32_t access_flags, art::InvokeType invoke_type,
    280                   uint16_t class_def_idx, uint32_t method_idx, jobject class_loader,
    281                   const art::DexFile& dex_file,
    282                   art::DexToDexCompilationLevel dex_to_dex_compilation_level) {
    283   if (dex_to_dex_compilation_level != art::kDontDexToDexCompile) {
    284     art::DexCompilationUnit unit(NULL, class_loader, art::Runtime::Current()->GetClassLinker(),
    285                                  dex_file, code_item, class_def_idx, method_idx, access_flags);
    286     art::optimizer::DexCompiler dex_compiler(compiler, unit, dex_to_dex_compilation_level);
    287     dex_compiler.Compile();
    288   }
    289 }
    290