Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /* This file contains codegen for the X86 ISA */
     18 
     19 #include "codegen_x86.h"
     20 #include "dex/quick/mir_to_lir-inl.h"
     21 #include "x86_lir.h"
     22 
     23 namespace art {
     24 
     25 void X86Mir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
     26                                 SpecialCaseHandler special_case) {
     27   // TODO
     28 }
     29 
     30 /*
     31  * The sparse table in the literal pool is an array of <key,displacement>
     32  * pairs.
     33  */
     34 void X86Mir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
     35                                  RegLocation rl_src) {
     36   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
     37   if (cu_->verbose) {
     38     DumpSparseSwitchTable(table);
     39   }
     40   int entries = table[1];
     41   const int* keys = reinterpret_cast<const int*>(&table[2]);
     42   const int* targets = &keys[entries];
     43   rl_src = LoadValue(rl_src, kCoreReg);
     44   for (int i = 0; i < entries; i++) {
     45     int key = keys[i];
     46     BasicBlock* case_block =
     47         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
     48     OpCmpImmBranch(kCondEq, rl_src.low_reg, key,
     49                    &block_label_list_[case_block->id]);
     50   }
     51 }
     52 
     53 /*
     54  * Code pattern will look something like:
     55  *
     56  * mov  r_val, ..
     57  * call 0
     58  * pop  r_start_of_method
     59  * sub  r_start_of_method, ..
     60  * mov  r_key_reg, r_val
     61  * sub  r_key_reg, low_key
     62  * cmp  r_key_reg, size-1  ; bound check
     63  * ja   done
     64  * mov  r_disp, [r_start_of_method + r_key_reg * 4 + table_offset]
     65  * add  r_start_of_method, r_disp
     66  * jmp  r_start_of_method
     67  * done:
     68  */
     69 void X86Mir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
     70                                  RegLocation rl_src) {
     71   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
     72   if (cu_->verbose) {
     73     DumpPackedSwitchTable(table);
     74   }
     75   // Add the table to the list - we'll process it later
     76   SwitchTable *tab_rec =
     77       static_cast<SwitchTable *>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData));
     78   tab_rec->table = table;
     79   tab_rec->vaddr = current_dalvik_offset_;
     80   int size = table[1];
     81   tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
     82                                                       ArenaAllocator::kAllocLIR));
     83   switch_tables_.Insert(tab_rec);
     84 
     85   // Get the switch value
     86   rl_src = LoadValue(rl_src, kCoreReg);
     87   int start_of_method_reg = AllocTemp();
     88   // Materialize a pointer to the switch table
     89   // NewLIR0(kX86Bkpt);
     90   NewLIR1(kX86StartOfMethod, start_of_method_reg);
     91   int low_key = s4FromSwitchData(&table[2]);
     92   int keyReg;
     93   // Remove the bias, if necessary
     94   if (low_key == 0) {
     95     keyReg = rl_src.low_reg;
     96   } else {
     97     keyReg = AllocTemp();
     98     OpRegRegImm(kOpSub, keyReg, rl_src.low_reg, low_key);
     99   }
    100   // Bounds check - if < 0 or >= size continue following switch
    101   OpRegImm(kOpCmp, keyReg, size-1);
    102   LIR* branch_over = OpCondBranch(kCondHi, NULL);
    103 
    104   // Load the displacement from the switch table
    105   int disp_reg = AllocTemp();
    106   NewLIR5(kX86PcRelLoadRA, disp_reg, start_of_method_reg, keyReg, 2,
    107           reinterpret_cast<uintptr_t>(tab_rec));
    108   // Add displacement to start of method
    109   OpRegReg(kOpAdd, start_of_method_reg, disp_reg);
    110   // ..and go!
    111   LIR* switch_branch = NewLIR1(kX86JmpR, start_of_method_reg);
    112   tab_rec->anchor = switch_branch;
    113 
    114   /* branch_over target here */
    115   LIR* target = NewLIR0(kPseudoTargetLabel);
    116   branch_over->target = target;
    117 }
    118 
    119 /*
    120  * Array data table format:
    121  *  ushort ident = 0x0300   magic value
    122  *  ushort width            width of each element in the table
    123  *  uint   size             number of elements in the table
    124  *  ubyte  data[size*width] table of data values (may contain a single-byte
    125  *                          padding at the end)
    126  *
    127  * Total size is 4+(width * size + 1)/2 16-bit code units.
    128  */
    129 void X86Mir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) {
    130   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
    131   // Add the table to the list - we'll process it later
    132   FillArrayData *tab_rec =
    133       static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), ArenaAllocator::kAllocData));
    134   tab_rec->table = table;
    135   tab_rec->vaddr = current_dalvik_offset_;
    136   uint16_t width = tab_rec->table[1];
    137   uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
    138   tab_rec->size = (size * width) + 8;
    139 
    140   fill_array_data_.Insert(tab_rec);
    141 
    142   // Making a call - use explicit registers
    143   FlushAllRegs();   /* Everything to home location */
    144   LoadValueDirectFixed(rl_src, rX86_ARG0);
    145   // Materialize a pointer to the fill data image
    146   NewLIR1(kX86StartOfMethod, rX86_ARG2);
    147   NewLIR2(kX86PcRelAdr, rX86_ARG1, reinterpret_cast<uintptr_t>(tab_rec));
    148   NewLIR2(kX86Add32RR, rX86_ARG1, rX86_ARG2);
    149   CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData), rX86_ARG0,
    150                           rX86_ARG1, true);
    151 }
    152 
    153 void X86Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
    154   FlushAllRegs();
    155   LoadValueDirectFixed(rl_src, rCX);  // Get obj
    156   LockCallTemps();  // Prepare for explicit register usage
    157   GenNullCheck(rl_src.s_reg_low, rCX, opt_flags);
    158   // If lock is unheld, try to grab it quickly with compare and exchange
    159   // TODO: copy and clear hash state?
    160   NewLIR2(kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
    161   NewLIR2(kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
    162   NewLIR2(kX86Xor32RR, rAX, rAX);
    163   NewLIR3(kX86LockCmpxchgMR, rCX, mirror::Object::MonitorOffset().Int32Value(), rDX);
    164   LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
    165   // If lock is held, go the expensive route - artLockObjectFromCode(self, obj);
    166   CallRuntimeHelperReg(QUICK_ENTRYPOINT_OFFSET(pLockObject), rCX, true);
    167   branch->target = NewLIR0(kPseudoTargetLabel);
    168 }
    169 
    170 void X86Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
    171   FlushAllRegs();
    172   LoadValueDirectFixed(rl_src, rAX);  // Get obj
    173   LockCallTemps();  // Prepare for explicit register usage
    174   GenNullCheck(rl_src.s_reg_low, rAX, opt_flags);
    175   // If lock is held by the current thread, clear it to quickly release it
    176   // TODO: clear hash state?
    177   NewLIR2(kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
    178   NewLIR2(kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
    179   NewLIR3(kX86Mov32RM, rCX, rAX, mirror::Object::MonitorOffset().Int32Value());
    180   OpRegReg(kOpSub, rCX, rDX);
    181   LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
    182   NewLIR3(kX86Mov32MR, rAX, mirror::Object::MonitorOffset().Int32Value(), rCX);
    183   LIR* branch2 = NewLIR1(kX86Jmp8, 0);
    184   branch->target = NewLIR0(kPseudoTargetLabel);
    185   // Otherwise, go the expensive route - UnlockObjectFromCode(obj);
    186   CallRuntimeHelperReg(QUICK_ENTRYPOINT_OFFSET(pUnlockObject), rAX, true);
    187   branch2->target = NewLIR0(kPseudoTargetLabel);
    188 }
    189 
    190 void X86Mir2Lir::GenMoveException(RegLocation rl_dest) {
    191   int ex_offset = Thread::ExceptionOffset().Int32Value();
    192   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    193   NewLIR2(kX86Mov32RT, rl_result.low_reg, ex_offset);
    194   NewLIR2(kX86Mov32TI, ex_offset, 0);
    195   StoreValue(rl_dest, rl_result);
    196 }
    197 
    198 /*
    199  * Mark garbage collection card. Skip if the value we're storing is null.
    200  */
    201 void X86Mir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) {
    202   int reg_card_base = AllocTemp();
    203   int reg_card_no = AllocTemp();
    204   LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
    205   NewLIR2(kX86Mov32RT, reg_card_base, Thread::CardTableOffset().Int32Value());
    206   OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
    207   StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
    208                    kUnsignedByte);
    209   LIR* target = NewLIR0(kPseudoTargetLabel);
    210   branch_over->target = target;
    211   FreeTemp(reg_card_base);
    212   FreeTemp(reg_card_no);
    213 }
    214 
    215 void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
    216   /*
    217    * On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live.  Let the register
    218    * allocation mechanism know so it doesn't try to use any of them when
    219    * expanding the frame or flushing.  This leaves the utility
    220    * code with no spare temps.
    221    */
    222   LockTemp(rX86_ARG0);
    223   LockTemp(rX86_ARG1);
    224   LockTemp(rX86_ARG2);
    225 
    226   /* Build frame, return address already on stack */
    227   OpRegImm(kOpSub, rX86_SP, frame_size_ - 4);
    228 
    229   /*
    230    * We can safely skip the stack overflow check if we're
    231    * a leaf *and* our frame size < fudge factor.
    232    */
    233   bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
    234                 (static_cast<size_t>(frame_size_) <
    235                 Thread::kStackOverflowReservedBytes));
    236   NewLIR0(kPseudoMethodEntry);
    237   /* Spill core callee saves */
    238   SpillCoreRegs();
    239   /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
    240   DCHECK_EQ(num_fp_spills_, 0);
    241   if (!skip_overflow_check) {
    242     // cmp rX86_SP, fs:[stack_end_]; jcc throw_launchpad
    243     LIR* tgt = RawLIR(0, kPseudoThrowTarget, kThrowStackOverflow, 0, 0, 0, 0);
    244     OpRegThreadMem(kOpCmp, rX86_SP, Thread::StackEndOffset());
    245     OpCondBranch(kCondUlt, tgt);
    246     // Remember branch target - will process later
    247     throw_launchpads_.Insert(tgt);
    248   }
    249 
    250   FlushIns(ArgLocs, rl_method);
    251 
    252   FreeTemp(rX86_ARG0);
    253   FreeTemp(rX86_ARG1);
    254   FreeTemp(rX86_ARG2);
    255 }
    256 
    257 void X86Mir2Lir::GenExitSequence() {
    258   /*
    259    * In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
    260    * allocated by the register utilities as temps.
    261    */
    262   LockTemp(rX86_RET0);
    263   LockTemp(rX86_RET1);
    264 
    265   NewLIR0(kPseudoMethodExit);
    266   UnSpillCoreRegs();
    267   /* Remove frame except for return address */
    268   OpRegImm(kOpAdd, rX86_SP, frame_size_ - 4);
    269   NewLIR0(kX86Ret);
    270 }
    271 
    272 }  // namespace art
    273