Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/implicit_schur_complement.h"
     32 
     33 #include "Eigen/Dense"
     34 #include "ceres/block_sparse_matrix.h"
     35 #include "ceres/block_structure.h"
     36 #include "ceres/internal/eigen.h"
     37 #include "ceres/internal/scoped_ptr.h"
     38 #include "ceres/types.h"
     39 #include "glog/logging.h"
     40 
     41 namespace ceres {
     42 namespace internal {
     43 
     44 ImplicitSchurComplement::ImplicitSchurComplement(int num_eliminate_blocks,
     45                                                  bool preconditioner)
     46     : num_eliminate_blocks_(num_eliminate_blocks),
     47       preconditioner_(preconditioner),
     48       A_(NULL),
     49       D_(NULL),
     50       b_(NULL),
     51       block_diagonal_EtE_inverse_(NULL),
     52       block_diagonal_FtF_inverse_(NULL) {
     53 }
     54 
     55 ImplicitSchurComplement::~ImplicitSchurComplement() {
     56 }
     57 
     58 void ImplicitSchurComplement::Init(const BlockSparseMatrix& A,
     59                                    const double* D,
     60                                    const double* b) {
     61   // Since initialization is reasonably heavy, perhaps we can save on
     62   // constructing a new object everytime.
     63   if (A_ == NULL) {
     64     A_.reset(new PartitionedMatrixView(A, num_eliminate_blocks_));
     65   }
     66 
     67   D_ = D;
     68   b_ = b;
     69 
     70   // Initialize temporary storage and compute the block diagonals of
     71   // E'E and F'E.
     72   if (block_diagonal_EtE_inverse_ == NULL) {
     73     block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
     74     if (preconditioner_) {
     75       block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
     76     }
     77     rhs_.resize(A_->num_cols_f());
     78     rhs_.setZero();
     79     tmp_rows_.resize(A_->num_rows());
     80     tmp_e_cols_.resize(A_->num_cols_e());
     81     tmp_e_cols_2_.resize(A_->num_cols_e());
     82     tmp_f_cols_.resize(A_->num_cols_f());
     83   } else {
     84     A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
     85     if (preconditioner_) {
     86       A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
     87     }
     88   }
     89 
     90   // The block diagonals of the augmented linear system contain
     91   // contributions from the diagonal D if it is non-null. Add that to
     92   // the block diagonals and invert them.
     93   AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
     94   if (preconditioner_)  {
     95     AddDiagonalAndInvert((D_ ==  NULL) ? NULL : D_ + A_->num_cols_e(),
     96                          block_diagonal_FtF_inverse_.get());
     97   }
     98 
     99   // Compute the RHS of the Schur complement system.
    100   UpdateRhs();
    101 }
    102 
    103 // Evaluate the product
    104 //
    105 //   Sx = [F'F - F'E (E'E)^-1 E'F]x
    106 //
    107 // By breaking it down into individual matrix vector products
    108 // involving the matrices E and F. This is implemented using a
    109 // PartitionedMatrixView of the input matrix A.
    110 void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
    111   // y1 = F x
    112   tmp_rows_.setZero();
    113   A_->RightMultiplyF(x, tmp_rows_.data());
    114 
    115   // y2 = E' y1
    116   tmp_e_cols_.setZero();
    117   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
    118 
    119   // y3 = -(E'E)^-1 y2
    120   tmp_e_cols_2_.setZero();
    121   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
    122                                              tmp_e_cols_2_.data());
    123   tmp_e_cols_2_ *= -1.0;
    124 
    125   // y1 = y1 + E y3
    126   A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
    127 
    128   // y5 = D * x
    129   if (D_ != NULL) {
    130     ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
    131     VectorRef(y, num_cols()) =
    132         (Dref.array().square() *
    133          ConstVectorRef(x, num_cols()).array()).matrix();
    134   } else {
    135     VectorRef(y, num_cols()).setZero();
    136   }
    137 
    138   // y = y5 + F' y1
    139   A_->LeftMultiplyF(tmp_rows_.data(), y);
    140 }
    141 
    142 // Given a block diagonal matrix and an optional array of diagonal
    143 // entries D, add them to the diagonal of the matrix and compute the
    144 // inverse of each diagonal block.
    145 void ImplicitSchurComplement::AddDiagonalAndInvert(
    146     const double* D,
    147     BlockSparseMatrix* block_diagonal) {
    148   const CompressedRowBlockStructure* block_diagonal_structure =
    149       block_diagonal->block_structure();
    150   for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
    151     const int row_block_pos = block_diagonal_structure->rows[r].block.position;
    152     const int row_block_size = block_diagonal_structure->rows[r].block.size;
    153     const Cell& cell = block_diagonal_structure->rows[r].cells[0];
    154     MatrixRef m(block_diagonal->mutable_values() + cell.position,
    155                 row_block_size, row_block_size);
    156 
    157     if (D != NULL) {
    158       ConstVectorRef d(D + row_block_pos, row_block_size);
    159       m += d.array().square().matrix().asDiagonal();
    160     }
    161 
    162     m = m
    163         .selfadjointView<Eigen::Upper>()
    164         .llt()
    165         .solve(Matrix::Identity(row_block_size, row_block_size));
    166   }
    167 }
    168 
    169 // Similar to RightMultiply, use the block structure of the matrix A
    170 // to compute y = (E'E)^-1 (E'b - E'F x).
    171 void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
    172   const int num_cols_e = A_->num_cols_e();
    173   const int num_cols_f = A_->num_cols_f();
    174   const int num_cols =  A_->num_cols();
    175   const int num_rows = A_->num_rows();
    176 
    177   // y1 = F x
    178   tmp_rows_.setZero();
    179   A_->RightMultiplyF(x, tmp_rows_.data());
    180 
    181   // y2 = b - y1
    182   tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
    183 
    184   // y3 = E' y2
    185   tmp_e_cols_.setZero();
    186   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
    187 
    188   // y = (E'E)^-1 y3
    189   VectorRef(y, num_cols).setZero();
    190   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
    191 
    192   // The full solution vector y has two blocks. The first block of
    193   // variables corresponds to the eliminated variables, which we just
    194   // computed via back substitution. The second block of variables
    195   // corresponds to the Schur complement system, so we just copy those
    196   // values from the solution to the Schur complement.
    197   VectorRef(y + num_cols_e, num_cols_f) =  ConstVectorRef(x, num_cols_f);
    198 }
    199 
    200 // Compute the RHS of the Schur complement system.
    201 //
    202 // rhs = F'b - F'E (E'E)^-1 E'b
    203 //
    204 // Like BackSubstitute, we use the block structure of A to implement
    205 // this using a series of matrix vector products.
    206 void ImplicitSchurComplement::UpdateRhs() {
    207   // y1 = E'b
    208   tmp_e_cols_.setZero();
    209   A_->LeftMultiplyE(b_, tmp_e_cols_.data());
    210 
    211   // y2 = (E'E)^-1 y1
    212   Vector y2 = Vector::Zero(A_->num_cols_e());
    213   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
    214 
    215   // y3 = E y2
    216   tmp_rows_.setZero();
    217   A_->RightMultiplyE(y2.data(), tmp_rows_.data());
    218 
    219   // y3 = b - y3
    220   tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
    221 
    222   // rhs = F' y3
    223   rhs_.setZero();
    224   A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
    225 }
    226 
    227 }  // namespace internal
    228 }  // namespace ceres
    229