Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: moll.markus (at) arcor.de (Markus Moll)
     30 //         sameeragarwal (at) google.com (Sameer Agarwal)
     31 
     32 #ifndef CERES_INTERNAL_POLYNOMIAL_SOLVER_H_
     33 #define CERES_INTERNAL_POLYNOMIAL_SOLVER_H_
     34 
     35 #include <vector>
     36 #include "ceres/internal/eigen.h"
     37 #include "ceres/internal/port.h"
     38 
     39 namespace ceres {
     40 namespace internal {
     41 
     42 // All polynomials are assumed to be the form
     43 //
     44 //   sum_{i=0}^N polynomial(i) x^{N-i}.
     45 //
     46 // and are given by a vector of coefficients of size N + 1.
     47 
     48 // Evaluate the polynomial at x using the Horner scheme.
     49 inline double EvaluatePolynomial(const Vector& polynomial, double x) {
     50   double v = 0.0;
     51   for (int i = 0; i < polynomial.size(); ++i) {
     52     v = v * x + polynomial(i);
     53   }
     54   return v;
     55 }
     56 
     57 // Use the companion matrix eigenvalues to determine the roots of the
     58 // polynomial.
     59 //
     60 // This function returns true on success, false otherwise.
     61 // Failure indicates that the polynomial is invalid (of size 0) or
     62 // that the eigenvalues of the companion matrix could not be computed.
     63 // On failure, a more detailed message will be written to LOG(ERROR).
     64 // If real is not NULL, the real parts of the roots will be returned in it.
     65 // Likewise, if imaginary is not NULL, imaginary parts will be returned in it.
     66 bool FindPolynomialRoots(const Vector& polynomial,
     67                          Vector* real,
     68                          Vector* imaginary);
     69 
     70 // Return the derivative of the given polynomial. It is assumed that
     71 // the input polynomial is at least of degree zero.
     72 Vector DifferentiatePolynomial(const Vector& polynomial);
     73 
     74 // Find the minimum value of the polynomial in the interval [x_min,
     75 // x_max]. The minimum is obtained by computing all the roots of the
     76 // derivative of the input polynomial. All real roots within the
     77 // interval [x_min, x_max] are considered as well as the end points
     78 // x_min and x_max. Since polynomials are differentiable functions,
     79 // this ensures that the true minimum is found.
     80 void MinimizePolynomial(const Vector& polynomial,
     81                         double x_min,
     82                         double x_max,
     83                         double* optimal_x,
     84                         double* optimal_value);
     85 
     86 // Structure for storing sample values of a function.
     87 //
     88 // Clients can use this struct to communicate the value of the
     89 // function and or its gradient at a given point x.
     90 struct FunctionSample {
     91   FunctionSample()
     92       : x(0.0),
     93         value(0.0),
     94         value_is_valid(false),
     95         gradient(0.0),
     96         gradient_is_valid(false) {
     97   }
     98 
     99   double x;
    100   double value;      // value = f(x)
    101   bool value_is_valid;
    102   double gradient;   // gradient = f'(x)
    103   bool gradient_is_valid;
    104 };
    105 
    106 // Given a set of function value and/or gradient samples, find a
    107 // polynomial whose value and gradients are exactly equal to the ones
    108 // in samples.
    109 //
    110 // Generally speaking,
    111 //
    112 // degree = # values + # gradients - 1
    113 //
    114 // Of course its possible to sample a polynomial any number of times,
    115 // in which case, generally speaking the spurious higher order
    116 // coefficients will be zero.
    117 Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples);
    118 
    119 // Interpolate the function described by samples with a polynomial,
    120 // and minimize it on the interval [x_min, x_max]. Depending on the
    121 // input samples, it is possible that the interpolation or the root
    122 // finding algorithms may fail due to numerical difficulties. But the
    123 // function is guaranteed to return its best guess of an answer, by
    124 // considering the samples and the end points as possible solutions.
    125 void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
    126                                      double x_min,
    127                                      double x_max,
    128                                      double* optimal_x,
    129                                      double* optimal_value);
    130 
    131 }  // namespace internal
    132 }  // namespace ceres
    133 
    134 #endif  // CERES_INTERNAL_POLYNOMIAL_SOLVER_H_
    135