Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: kushalav (at) google.com (Avanish Kushal)
     30 
     31 #ifndef CERES_NO_SUITESPARSE
     32 
     33 #include "ceres/visibility.h"
     34 
     35 #include <cmath>
     36 #include <ctime>
     37 #include <algorithm>
     38 #include <set>
     39 #include <vector>
     40 #include <utility>
     41 #include "ceres/block_structure.h"
     42 #include "ceres/collections_port.h"
     43 #include "ceres/graph.h"
     44 #include "glog/logging.h"
     45 
     46 namespace ceres {
     47 namespace internal {
     48 
     49 void ComputeVisibility(const CompressedRowBlockStructure& block_structure,
     50                        const int num_eliminate_blocks,
     51                        vector< set<int> >* visibility) {
     52   CHECK_NOTNULL(visibility);
     53 
     54   // Clear the visibility vector and resize it to hold a
     55   // vector for each camera.
     56   visibility->resize(0);
     57   visibility->resize(block_structure.cols.size() - num_eliminate_blocks);
     58 
     59   for (int i = 0; i < block_structure.rows.size(); ++i) {
     60     const vector<Cell>& cells = block_structure.rows[i].cells;
     61     int block_id = cells[0].block_id;
     62     // If the first block is not an e_block, then skip this row block.
     63     if (block_id >= num_eliminate_blocks) {
     64       continue;
     65     }
     66 
     67     for (int j = 1; j < cells.size(); ++j) {
     68       int camera_block_id = cells[j].block_id - num_eliminate_blocks;
     69       DCHECK_GE(camera_block_id, 0);
     70       DCHECK_LT(camera_block_id, visibility->size());
     71       (*visibility)[camera_block_id].insert(block_id);
     72     }
     73   }
     74 }
     75 
     76 Graph<int>* CreateSchurComplementGraph(const vector<set<int> >& visibility) {
     77   const time_t start_time = time(NULL);
     78   // Compute the number of e_blocks/point blocks. Since the visibility
     79   // set for each e_block/camera contains the set of e_blocks/points
     80   // visible to it, we find the maximum across all visibility sets.
     81   int num_points = 0;
     82   for (int i = 0; i < visibility.size(); i++) {
     83     if (visibility[i].size() > 0) {
     84       num_points = max(num_points, (*visibility[i].rbegin()) + 1);
     85     }
     86   }
     87 
     88   // Invert the visibility. The input is a camera->point mapping,
     89   // which tells us which points are visible in which
     90   // cameras. However, to compute the sparsity structure of the Schur
     91   // Complement efficiently, its better to have the point->camera
     92   // mapping.
     93   vector<set<int> > inverse_visibility(num_points);
     94   for (int i = 0; i < visibility.size(); i++) {
     95     const set<int>& visibility_set = visibility[i];
     96     for (set<int>::const_iterator it = visibility_set.begin();
     97          it != visibility_set.end();
     98          ++it) {
     99       inverse_visibility[*it].insert(i);
    100     }
    101   }
    102 
    103   // Map from camera pairs to number of points visible to both cameras
    104   // in the pair.
    105   HashMap<pair<int, int>, int > camera_pairs;
    106 
    107   // Count the number of points visible to each camera/f_block pair.
    108   for (vector<set<int> >::const_iterator it = inverse_visibility.begin();
    109        it != inverse_visibility.end();
    110        ++it) {
    111     const set<int>& inverse_visibility_set = *it;
    112     for (set<int>::const_iterator camera1 = inverse_visibility_set.begin();
    113          camera1 != inverse_visibility_set.end();
    114          ++camera1) {
    115       set<int>::const_iterator camera2 = camera1;
    116       for (++camera2; camera2 != inverse_visibility_set.end(); ++camera2) {
    117         ++(camera_pairs[make_pair(*camera1, *camera2)]);
    118       }
    119     }
    120   }
    121 
    122   Graph<int>* graph = new Graph<int>();
    123 
    124   // Add vertices and initialize the pairs for self edges so that self
    125   // edges are guaranteed. This is needed for the Canonical views
    126   // algorithm to work correctly.
    127   static const double kSelfEdgeWeight = 1.0;
    128   for (int i = 0; i < visibility.size(); ++i) {
    129     graph->AddVertex(i);
    130     graph->AddEdge(i, i, kSelfEdgeWeight);
    131   }
    132 
    133   // Add an edge for each camera pair.
    134   for (HashMap<pair<int, int>, int>::const_iterator it = camera_pairs.begin();
    135        it != camera_pairs.end();
    136        ++it) {
    137     const int camera1 = it->first.first;
    138     const int camera2 = it->first.second;
    139     CHECK_NE(camera1, camera2);
    140 
    141     const int count = it->second;
    142     // Static cast necessary for Windows.
    143     const double weight = static_cast<double>(count) /
    144         (sqrt(static_cast<double>(
    145                   visibility[camera1].size() * visibility[camera2].size())));
    146     graph->AddEdge(camera1, camera2, weight);
    147   }
    148 
    149   VLOG(2) << "Schur complement graph time: " << (time(NULL) - start_time);
    150   return graph;
    151 }
    152 
    153 }  // namespace internal
    154 }  // namespace ceres
    155 
    156 #endif  // CERES_NO_SUITESPARSE
    157