1 // Copyright 2006, 2008 Google Inc. 2 // Authors: Chandra Chereddi, Lincoln Smith 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 16 #include <config.h> 17 #include "blockhash.h" 18 #include "compile_assert.h" 19 #include <stdint.h> // uint32_t 20 #include <string.h> // memcpy, memcmp 21 #include "logging.h" 22 #include "rolling_hash.h" 23 24 namespace open_vcdiff { 25 26 typedef unsigned long uword_t; // a machine word NOLINT 27 28 BlockHash::BlockHash(const char* source_data, 29 size_t source_size, 30 int starting_offset) 31 : source_data_(source_data), 32 source_size_(source_size), 33 hash_table_mask_(0), 34 starting_offset_(starting_offset), 35 last_block_added_(-1) { 36 } 37 38 BlockHash::~BlockHash() { } 39 40 // kBlockSize must be at least 2 to be meaningful. Since it's a compile-time 41 // constant, check its value at compile time rather than wasting CPU cycles 42 // on runtime checks. 43 COMPILE_ASSERT(BlockHash::kBlockSize >= 2, kBlockSize_must_be_at_least_2); 44 45 // kBlockSize is required to be a power of 2 because multiplication 46 // (n * kBlockSize), division (n / kBlockSize) and MOD (n % kBlockSize) 47 // are commonly-used operations. If kBlockSize is a compile-time 48 // constant and a power of 2, the compiler can convert these three operations 49 // into bit-shift (>> or <<) and bitwise-AND (&) operations, which are much 50 // more efficient than executing full integer multiply, divide, or remainder 51 // instructions. 52 COMPILE_ASSERT((BlockHash::kBlockSize & (BlockHash::kBlockSize - 1)) == 0, 53 kBlockSize_must_be_a_power_of_2); 54 55 bool BlockHash::Init(bool populate_hash_table) { 56 if (!hash_table_.empty() || 57 !next_block_table_.empty() || 58 !last_block_table_.empty()) { 59 LOG(DFATAL) << "Init() called twice for same BlockHash object" << LOG_ENDL; 60 return false; 61 } 62 const size_t table_size = CalcTableSize(source_size_); 63 if (table_size == 0) { 64 LOG(DFATAL) << "Error finding table size for source size " << source_size_ 65 << LOG_ENDL; 66 return false; 67 } 68 // Since table_size is a power of 2, (table_size - 1) is a bit mask 69 // containing all the bits below table_size. 70 hash_table_mask_ = static_cast<uint32_t>(table_size - 1); 71 hash_table_.resize(table_size, -1); 72 next_block_table_.resize(GetNumberOfBlocks(), -1); 73 last_block_table_.resize(GetNumberOfBlocks(), -1); 74 if (populate_hash_table) { 75 AddAllBlocks(); 76 } 77 return true; 78 } 79 80 const BlockHash* BlockHash::CreateDictionaryHash(const char* dictionary_data, 81 size_t dictionary_size) { 82 BlockHash* new_dictionary_hash = new BlockHash(dictionary_data, 83 dictionary_size, 84 0); 85 if (!new_dictionary_hash->Init(/* populate_hash_table = */ true)) { 86 delete new_dictionary_hash; 87 return NULL; 88 } else { 89 return new_dictionary_hash; 90 } 91 } 92 93 BlockHash* BlockHash::CreateTargetHash(const char* target_data, 94 size_t target_size, 95 size_t dictionary_size) { 96 BlockHash* new_target_hash = new BlockHash(target_data, 97 target_size, 98 static_cast<int>(dictionary_size)); 99 if (!new_target_hash->Init(/* populate_hash_table = */ false)) { 100 delete new_target_hash; 101 return NULL; 102 } else { 103 return new_target_hash; 104 } 105 } 106 107 // Returns zero if an error occurs. 108 size_t BlockHash::CalcTableSize(const size_t dictionary_size) { 109 // Overallocate the hash table by making it the same size (in bytes) 110 // as the source data. This is a trade-off between space and time: 111 // the empty entries in the hash table will reduce the 112 // probability of a hash collision to (sizeof(int) / kblockSize), 113 // and so save time comparing false matches. 114 const size_t min_size = (dictionary_size / sizeof(int)) + 1; // NOLINT 115 size_t table_size = 1; 116 // Find the smallest power of 2 that is >= min_size, and assign 117 // that value to table_size. 118 while (table_size < min_size) { 119 table_size <<= 1; 120 // Guard against an infinite loop 121 if (table_size <= 0) { 122 LOG(DFATAL) << "Internal error: CalcTableSize(dictionary_size = " 123 << dictionary_size 124 << "): resulting table_size " << table_size 125 << " is zero or negative" << LOG_ENDL; 126 return 0; 127 } 128 } 129 // Check size sanity 130 if ((table_size & (table_size - 1)) != 0) { 131 LOG(DFATAL) << "Internal error: CalcTableSize(dictionary_size = " 132 << dictionary_size 133 << "): resulting table_size " << table_size 134 << " is not a power of 2" << LOG_ENDL; 135 return 0; 136 } 137 // The loop above tries to find the smallest power of 2 that is >= min_size. 138 // That value must lie somewhere between min_size and (min_size * 2), 139 // except for the case (dictionary_size == 0, table_size == 1). 140 if ((dictionary_size > 0) && (table_size > (min_size * 2))) { 141 LOG(DFATAL) << "Internal error: CalcTableSize(dictionary_size = " 142 << dictionary_size 143 << "): resulting table_size " << table_size 144 << " is too large" << LOG_ENDL; 145 return 0; 146 } 147 return table_size; 148 } 149 150 // If the hash value is already available from the rolling hash, 151 // call this function to save time. 152 void BlockHash::AddBlock(uint32_t hash_value) { 153 if (hash_table_.empty()) { 154 LOG(DFATAL) << "BlockHash::AddBlock() called before BlockHash::Init()" 155 << LOG_ENDL; 156 return; 157 } 158 // The initial value of last_block_added_ is -1. 159 int block_number = last_block_added_ + 1; 160 const int total_blocks = 161 static_cast<int>(source_size_ / kBlockSize); // round down 162 if (block_number >= total_blocks) { 163 LOG(DFATAL) << "BlockHash::AddBlock() called" 164 " with block number " << block_number 165 << " that is past last block " << (total_blocks - 1) 166 << LOG_ENDL; 167 return; 168 } 169 if (next_block_table_[block_number] != -1) { 170 LOG(DFATAL) << "Internal error in BlockHash::AddBlock(): " 171 "block number = " << block_number 172 << ", next block should be -1 but is " 173 << next_block_table_[block_number] << LOG_ENDL; 174 return; 175 } 176 const uint32_t hash_table_index = GetHashTableIndex(hash_value); 177 const int first_matching_block = hash_table_[hash_table_index]; 178 if (first_matching_block < 0) { 179 // This is the first entry with this hash value 180 hash_table_[hash_table_index] = block_number; 181 last_block_table_[block_number] = block_number; 182 } else { 183 // Add this entry at the end of the chain of matching blocks 184 const int last_matching_block = last_block_table_[first_matching_block]; 185 if (next_block_table_[last_matching_block] != -1) { 186 LOG(DFATAL) << "Internal error in BlockHash::AddBlock(): " 187 "first matching block = " << first_matching_block 188 << ", last matching block = " << last_matching_block 189 << ", next block should be -1 but is " 190 << next_block_table_[last_matching_block] << LOG_ENDL; 191 return; 192 } 193 next_block_table_[last_matching_block] = block_number; 194 last_block_table_[first_matching_block] = block_number; 195 } 196 last_block_added_ = block_number; 197 } 198 199 void BlockHash::AddAllBlocks() { 200 AddAllBlocksThroughIndex(static_cast<int>(source_size_)); 201 } 202 203 void BlockHash::AddAllBlocksThroughIndex(int end_index) { 204 if (end_index > static_cast<int>(source_size_)) { 205 LOG(DFATAL) << "BlockHash::AddAllBlocksThroughIndex() called" 206 " with index " << end_index 207 << " higher than end index " << source_size_ << LOG_ENDL; 208 return; 209 } 210 const int last_index_added = last_block_added_ * kBlockSize; 211 if (end_index <= last_index_added) { 212 LOG(DFATAL) << "BlockHash::AddAllBlocksThroughIndex() called" 213 " with index " << end_index 214 << " <= last index added ( " << last_index_added 215 << ")" << LOG_ENDL; 216 return; 217 } 218 int end_limit = end_index; 219 // Don't allow reading any indices at or past source_size_. 220 // The Hash function extends (kBlockSize - 1) bytes past the index, 221 // so leave a margin of that size. 222 int last_legal_hash_index = static_cast<int>(source_size() - kBlockSize); 223 if (end_limit > last_legal_hash_index) { 224 end_limit = last_legal_hash_index + 1; 225 } 226 const char* block_ptr = source_data() + NextIndexToAdd(); 227 const char* const end_ptr = source_data() + end_limit; 228 while (block_ptr < end_ptr) { 229 AddBlock(RollingHash<kBlockSize>::Hash(block_ptr)); 230 block_ptr += kBlockSize; 231 } 232 } 233 234 COMPILE_ASSERT((BlockHash::kBlockSize % sizeof(uword_t)) == 0, 235 kBlockSize_must_be_a_multiple_of_machine_word_size); 236 237 // A recursive template to compare a fixed number 238 // of (possibly unaligned) machine words starting 239 // at addresses block1 and block2. Returns true or false 240 // depending on whether an exact match was found. 241 template<int number_of_words> 242 inline bool CompareWholeWordValues(const char* block1, 243 const char* block2) { 244 return CompareWholeWordValues<1>(block1, block2) && 245 CompareWholeWordValues<number_of_words - 1>(block1 + sizeof(uword_t), 246 block2 + sizeof(uword_t)); 247 } 248 249 // The base of the recursive template: compare one pair of machine words. 250 template<> 251 inline bool CompareWholeWordValues<1>(const char* word1, 252 const char* word2) { 253 uword_t aligned_word1, aligned_word2; 254 memcpy(&aligned_word1, word1, sizeof(aligned_word1)); 255 memcpy(&aligned_word2, word2, sizeof(aligned_word2)); 256 return aligned_word1 == aligned_word2; 257 } 258 259 // A block must be composed of an integral number of machine words 260 // (uword_t values.) This function takes advantage of that fact 261 // by comparing the blocks as series of (possibly unaligned) word values. 262 // A word-sized comparison can be performed as a single 263 // machine instruction. Comparing words instead of bytes means that, 264 // on a 64-bit platform, this function will use 8 times fewer test-and-branch 265 // instructions than a byte-by-byte comparison. Even with the extra 266 // cost of the calls to memcpy, this method is still at least twice as fast 267 // as memcmp (measured using gcc on a 64-bit platform, with a block size 268 // of 32.) For blocks with identical contents (a common case), this method 269 // is over six times faster than memcmp. 270 inline bool BlockCompareWordsInline(const char* block1, const char* block2) { 271 static const size_t kWordsPerBlock = BlockHash::kBlockSize / sizeof(uword_t); 272 return CompareWholeWordValues<kWordsPerBlock>(block1, block2); 273 } 274 275 bool BlockHash::BlockCompareWords(const char* block1, const char* block2) { 276 return BlockCompareWordsInline(block1, block2); 277 } 278 279 inline bool BlockContentsMatchInline(const char* block1, const char* block2) { 280 // Optimize for mismatch in first byte. Since this function is called only 281 // when the hash values of the two blocks match, it is very likely that either 282 // the blocks are identical, or else the first byte does not match. 283 if (*block1 != *block2) { 284 return false; 285 } 286 #ifdef VCDIFF_USE_BLOCK_COMPARE_WORDS 287 return BlockCompareWordsInline(block1, block2); 288 #else // !VCDIFF_USE_BLOCK_COMPARE_WORDS 289 return memcmp(block1, block2, BlockHash::kBlockSize) == 0; 290 #endif // VCDIFF_USE_BLOCK_COMPARE_WORDS 291 } 292 293 bool BlockHash::BlockContentsMatch(const char* block1, const char* block2) { 294 return BlockContentsMatchInline(block1, block2); 295 } 296 297 inline int BlockHash::SkipNonMatchingBlocks(int block_number, 298 const char* block_ptr) const { 299 int probes = 0; 300 while ((block_number >= 0) && 301 !BlockContentsMatchInline(block_ptr, 302 &source_data_[block_number * kBlockSize])) { 303 if (++probes > kMaxProbes) { 304 return -1; // Avoid too much chaining 305 } 306 block_number = next_block_table_[block_number]; 307 } 308 return block_number; 309 } 310 311 // Init() must have been called and returned true before using 312 // FirstMatchingBlock or NextMatchingBlock. No check is performed 313 // for this condition; the code will crash if this condition is violated. 314 inline int BlockHash::FirstMatchingBlockInline(uint32_t hash_value, 315 const char* block_ptr) const { 316 return SkipNonMatchingBlocks(hash_table_[GetHashTableIndex(hash_value)], 317 block_ptr); 318 } 319 320 int BlockHash::FirstMatchingBlock(uint32_t hash_value, 321 const char* block_ptr) const { 322 return FirstMatchingBlockInline(hash_value, block_ptr); 323 } 324 325 int BlockHash::NextMatchingBlock(int block_number, 326 const char* block_ptr) const { 327 if (static_cast<size_t>(block_number) >= GetNumberOfBlocks()) { 328 LOG(DFATAL) << "NextMatchingBlock called for invalid block number " 329 << block_number << LOG_ENDL; 330 return -1; 331 } 332 return SkipNonMatchingBlocks(next_block_table_[block_number], block_ptr); 333 } 334 335 // Keep a count of the number of matches found. This will throttle the 336 // number of iterations in FindBestMatch. For example, if the entire 337 // dictionary is made up of spaces (' ') and the search string is also 338 // made up of spaces, there will be one match for each block in the 339 // dictionary. 340 inline bool BlockHash::TooManyMatches(int* match_counter) { 341 ++(*match_counter); 342 return (*match_counter) > kMaxMatchesToCheck; 343 } 344 345 // Returns the number of bytes to the left of source_match_start 346 // that match the corresponding bytes to the left of target_match_start. 347 // Will not examine more than max_bytes bytes, which is to say that 348 // the return value will be in the range [0, max_bytes] inclusive. 349 int BlockHash::MatchingBytesToLeft(const char* source_match_start, 350 const char* target_match_start, 351 int max_bytes) { 352 const char* source_ptr = source_match_start; 353 const char* target_ptr = target_match_start; 354 int bytes_found = 0; 355 while (bytes_found < max_bytes) { 356 --source_ptr; 357 --target_ptr; 358 if (*source_ptr != *target_ptr) { 359 break; 360 } 361 ++bytes_found; 362 } 363 return bytes_found; 364 } 365 366 // Returns the number of bytes starting at source_match_end 367 // that match the corresponding bytes starting at target_match_end. 368 // Will not examine more than max_bytes bytes, which is to say that 369 // the return value will be in the range [0, max_bytes] inclusive. 370 int BlockHash::MatchingBytesToRight(const char* source_match_end, 371 const char* target_match_end, 372 int max_bytes) { 373 const char* source_ptr = source_match_end; 374 const char* target_ptr = target_match_end; 375 int bytes_found = 0; 376 while ((bytes_found < max_bytes) && (*source_ptr == *target_ptr)) { 377 ++bytes_found; 378 ++source_ptr; 379 ++target_ptr; 380 } 381 return bytes_found; 382 } 383 384 // No NULL checks are performed on the pointer arguments. The caller 385 // must guarantee that none of the arguments is NULL, or a crash will occur. 386 // 387 // The vast majority of calls to FindBestMatch enter the loop *zero* times, 388 // which is to say that most candidate blocks find no matches in the dictionary. 389 // The important sections for optimization are therefore the code outside the 390 // loop and the code within the loop conditions. Keep this to a minimum. 391 void BlockHash::FindBestMatch(uint32_t hash_value, 392 const char* target_candidate_start, 393 const char* target_start, 394 size_t target_size, 395 Match* best_match) const { 396 int match_counter = 0; 397 for (int block_number = FirstMatchingBlockInline(hash_value, 398 target_candidate_start); 399 (block_number >= 0) && !TooManyMatches(&match_counter); 400 block_number = NextMatchingBlock(block_number, target_candidate_start)) { 401 int source_match_offset = block_number * kBlockSize; 402 const int source_match_end = source_match_offset + kBlockSize; 403 404 int target_match_offset = 405 static_cast<int>(target_candidate_start - target_start); 406 const int target_match_end = target_match_offset + kBlockSize; 407 408 size_t match_size = kBlockSize; 409 { 410 // Extend match start towards beginning of unencoded data 411 const int limit_bytes_to_left = std::min(source_match_offset, 412 target_match_offset); 413 const int matching_bytes_to_left = 414 MatchingBytesToLeft(source_data_ + source_match_offset, 415 target_start + target_match_offset, 416 limit_bytes_to_left); 417 source_match_offset -= matching_bytes_to_left; 418 target_match_offset -= matching_bytes_to_left; 419 match_size += matching_bytes_to_left; 420 } 421 { 422 // Extend match end towards end of unencoded data 423 const size_t source_bytes_to_right = source_size_ - source_match_end; 424 const size_t target_bytes_to_right = target_size - target_match_end; 425 const size_t limit_bytes_to_right = std::min(source_bytes_to_right, 426 target_bytes_to_right); 427 match_size += 428 MatchingBytesToRight(source_data_ + source_match_end, 429 target_start + target_match_end, 430 static_cast<int>(limit_bytes_to_right)); 431 } 432 // Update in/out parameter if the best match found was better 433 // than any match already stored in *best_match. 434 best_match->ReplaceIfBetterMatch(match_size, 435 source_match_offset + starting_offset_, 436 target_match_offset); 437 } 438 } 439 440 } // namespace open_vcdiff 441