Home | History | Annotate | Download | only in src
      1 // Copyright 2006, 2008 Google Inc.
      2 // Authors: Chandra Chereddi, Lincoln Smith
      3 //
      4 // Licensed under the Apache License, Version 2.0 (the "License");
      5 // you may not use this file except in compliance with the License.
      6 // You may obtain a copy of the License at
      7 //
      8 //      http://www.apache.org/licenses/LICENSE-2.0
      9 //
     10 // Unless required by applicable law or agreed to in writing, software
     11 // distributed under the License is distributed on an "AS IS" BASIS,
     12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 // See the License for the specific language governing permissions and
     14 // limitations under the License.
     15 
     16 #include <config.h>
     17 #include "blockhash.h"
     18 #include "compile_assert.h"
     19 #include <stdint.h>  // uint32_t
     20 #include <string.h>  // memcpy, memcmp
     21 #include "logging.h"
     22 #include "rolling_hash.h"
     23 
     24 namespace open_vcdiff {
     25 
     26 typedef unsigned long uword_t;  // a machine word                         NOLINT
     27 
     28 BlockHash::BlockHash(const char* source_data,
     29                      size_t source_size,
     30                      int starting_offset)
     31     : source_data_(source_data),
     32       source_size_(source_size),
     33       hash_table_mask_(0),
     34       starting_offset_(starting_offset),
     35       last_block_added_(-1) {
     36 }
     37 
     38 BlockHash::~BlockHash() { }
     39 
     40 // kBlockSize must be at least 2 to be meaningful.  Since it's a compile-time
     41 // constant, check its value at compile time rather than wasting CPU cycles
     42 // on runtime checks.
     43 COMPILE_ASSERT(BlockHash::kBlockSize >= 2, kBlockSize_must_be_at_least_2);
     44 
     45 // kBlockSize is required to be a power of 2 because multiplication
     46 // (n * kBlockSize), division (n / kBlockSize) and MOD (n % kBlockSize)
     47 // are commonly-used operations.  If kBlockSize is a compile-time
     48 // constant and a power of 2, the compiler can convert these three operations
     49 // into bit-shift (>> or <<) and bitwise-AND (&) operations, which are much
     50 // more efficient than executing full integer multiply, divide, or remainder
     51 // instructions.
     52 COMPILE_ASSERT((BlockHash::kBlockSize & (BlockHash::kBlockSize - 1)) == 0,
     53                kBlockSize_must_be_a_power_of_2);
     54 
     55 bool BlockHash::Init(bool populate_hash_table) {
     56   if (!hash_table_.empty() ||
     57       !next_block_table_.empty() ||
     58       !last_block_table_.empty()) {
     59     LOG(DFATAL) << "Init() called twice for same BlockHash object" << LOG_ENDL;
     60     return false;
     61   }
     62   const size_t table_size = CalcTableSize(source_size_);
     63   if (table_size == 0) {
     64     LOG(DFATAL) << "Error finding table size for source size " << source_size_
     65                 << LOG_ENDL;
     66     return false;
     67   }
     68   // Since table_size is a power of 2, (table_size - 1) is a bit mask
     69   // containing all the bits below table_size.
     70   hash_table_mask_ = static_cast<uint32_t>(table_size - 1);
     71   hash_table_.resize(table_size, -1);
     72   next_block_table_.resize(GetNumberOfBlocks(), -1);
     73   last_block_table_.resize(GetNumberOfBlocks(), -1);
     74   if (populate_hash_table) {
     75     AddAllBlocks();
     76   }
     77   return true;
     78 }
     79 
     80 const BlockHash* BlockHash::CreateDictionaryHash(const char* dictionary_data,
     81                                                  size_t dictionary_size) {
     82   BlockHash* new_dictionary_hash = new BlockHash(dictionary_data,
     83                                                  dictionary_size,
     84                                                  0);
     85   if (!new_dictionary_hash->Init(/* populate_hash_table = */ true)) {
     86     delete new_dictionary_hash;
     87     return NULL;
     88   } else {
     89     return new_dictionary_hash;
     90   }
     91 }
     92 
     93 BlockHash* BlockHash::CreateTargetHash(const char* target_data,
     94                                        size_t target_size,
     95                                        size_t dictionary_size) {
     96   BlockHash* new_target_hash = new BlockHash(target_data,
     97                                              target_size,
     98                                              static_cast<int>(dictionary_size));
     99   if (!new_target_hash->Init(/* populate_hash_table = */ false)) {
    100     delete new_target_hash;
    101     return NULL;
    102   } else {
    103     return new_target_hash;
    104   }
    105 }
    106 
    107 // Returns zero if an error occurs.
    108 size_t BlockHash::CalcTableSize(const size_t dictionary_size) {
    109   // Overallocate the hash table by making it the same size (in bytes)
    110   // as the source data.  This is a trade-off between space and time:
    111   // the empty entries in the hash table will reduce the
    112   // probability of a hash collision to (sizeof(int) / kblockSize),
    113   // and so save time comparing false matches.
    114   const size_t min_size = (dictionary_size / sizeof(int)) + 1;  // NOLINT
    115   size_t table_size = 1;
    116   // Find the smallest power of 2 that is >= min_size, and assign
    117   // that value to table_size.
    118   while (table_size < min_size) {
    119     table_size <<= 1;
    120     // Guard against an infinite loop
    121     if (table_size <= 0) {
    122       LOG(DFATAL) << "Internal error: CalcTableSize(dictionary_size = "
    123                   << dictionary_size
    124                   << "): resulting table_size " << table_size
    125                   << " is zero or negative" << LOG_ENDL;
    126       return 0;
    127     }
    128   }
    129   // Check size sanity
    130   if ((table_size & (table_size - 1)) != 0) {
    131     LOG(DFATAL) << "Internal error: CalcTableSize(dictionary_size = "
    132                 << dictionary_size
    133                 << "): resulting table_size " << table_size
    134                 << " is not a power of 2" << LOG_ENDL;
    135     return 0;
    136   }
    137   // The loop above tries to find the smallest power of 2 that is >= min_size.
    138   // That value must lie somewhere between min_size and (min_size * 2),
    139   // except for the case (dictionary_size == 0, table_size == 1).
    140   if ((dictionary_size > 0) && (table_size > (min_size * 2))) {
    141     LOG(DFATAL) << "Internal error: CalcTableSize(dictionary_size = "
    142                 << dictionary_size
    143                 << "): resulting table_size " << table_size
    144                 << " is too large" << LOG_ENDL;
    145     return 0;
    146   }
    147   return table_size;
    148 }
    149 
    150 // If the hash value is already available from the rolling hash,
    151 // call this function to save time.
    152 void BlockHash::AddBlock(uint32_t hash_value) {
    153   if (hash_table_.empty()) {
    154     LOG(DFATAL) << "BlockHash::AddBlock() called before BlockHash::Init()"
    155                 << LOG_ENDL;
    156     return;
    157   }
    158   // The initial value of last_block_added_ is -1.
    159   int block_number = last_block_added_ + 1;
    160   const int total_blocks =
    161       static_cast<int>(source_size_ / kBlockSize);  // round down
    162   if (block_number >= total_blocks) {
    163     LOG(DFATAL) << "BlockHash::AddBlock() called"
    164                    " with block number " << block_number
    165                 << " that is past last block " << (total_blocks - 1)
    166                 << LOG_ENDL;
    167     return;
    168   }
    169   if (next_block_table_[block_number] != -1) {
    170     LOG(DFATAL) << "Internal error in BlockHash::AddBlock(): "
    171                    "block number = " << block_number
    172                 << ", next block should be -1 but is "
    173                 << next_block_table_[block_number] << LOG_ENDL;
    174     return;
    175   }
    176   const uint32_t hash_table_index = GetHashTableIndex(hash_value);
    177   const int first_matching_block = hash_table_[hash_table_index];
    178   if (first_matching_block < 0) {
    179     // This is the first entry with this hash value
    180     hash_table_[hash_table_index] = block_number;
    181     last_block_table_[block_number] = block_number;
    182   } else {
    183     // Add this entry at the end of the chain of matching blocks
    184     const int last_matching_block = last_block_table_[first_matching_block];
    185     if (next_block_table_[last_matching_block] != -1) {
    186       LOG(DFATAL) << "Internal error in BlockHash::AddBlock(): "
    187                      "first matching block = " << first_matching_block
    188                   << ", last matching block = " << last_matching_block
    189                   << ", next block should be -1 but is "
    190                   << next_block_table_[last_matching_block] << LOG_ENDL;
    191       return;
    192     }
    193     next_block_table_[last_matching_block] = block_number;
    194     last_block_table_[first_matching_block] = block_number;
    195   }
    196   last_block_added_ = block_number;
    197 }
    198 
    199 void BlockHash::AddAllBlocks() {
    200   AddAllBlocksThroughIndex(static_cast<int>(source_size_));
    201 }
    202 
    203 void BlockHash::AddAllBlocksThroughIndex(int end_index) {
    204   if (end_index > static_cast<int>(source_size_)) {
    205     LOG(DFATAL) << "BlockHash::AddAllBlocksThroughIndex() called"
    206                    " with index " << end_index
    207                 << " higher than end index  " << source_size_ << LOG_ENDL;
    208     return;
    209   }
    210   const int last_index_added = last_block_added_ * kBlockSize;
    211   if (end_index <= last_index_added) {
    212     LOG(DFATAL) << "BlockHash::AddAllBlocksThroughIndex() called"
    213                    " with index " << end_index
    214                 << " <= last index added ( " << last_index_added
    215                 << ")" << LOG_ENDL;
    216     return;
    217   }
    218   int end_limit = end_index;
    219   // Don't allow reading any indices at or past source_size_.
    220   // The Hash function extends (kBlockSize - 1) bytes past the index,
    221   // so leave a margin of that size.
    222   int last_legal_hash_index = static_cast<int>(source_size() - kBlockSize);
    223   if (end_limit > last_legal_hash_index) {
    224     end_limit = last_legal_hash_index + 1;
    225   }
    226   const char* block_ptr = source_data() + NextIndexToAdd();
    227   const char* const end_ptr = source_data() + end_limit;
    228   while (block_ptr < end_ptr) {
    229     AddBlock(RollingHash<kBlockSize>::Hash(block_ptr));
    230     block_ptr += kBlockSize;
    231   }
    232 }
    233 
    234 COMPILE_ASSERT((BlockHash::kBlockSize % sizeof(uword_t)) == 0,
    235                kBlockSize_must_be_a_multiple_of_machine_word_size);
    236 
    237 // A recursive template to compare a fixed number
    238 // of (possibly unaligned) machine words starting
    239 // at addresses block1 and block2.  Returns true or false
    240 // depending on whether an exact match was found.
    241 template<int number_of_words>
    242 inline bool CompareWholeWordValues(const char* block1,
    243                                    const char* block2) {
    244   return CompareWholeWordValues<1>(block1, block2) &&
    245          CompareWholeWordValues<number_of_words - 1>(block1 + sizeof(uword_t),
    246                                                      block2 + sizeof(uword_t));
    247 }
    248 
    249 // The base of the recursive template: compare one pair of machine words.
    250 template<>
    251 inline bool CompareWholeWordValues<1>(const char* word1,
    252                                       const char* word2) {
    253   uword_t aligned_word1, aligned_word2;
    254   memcpy(&aligned_word1, word1, sizeof(aligned_word1));
    255   memcpy(&aligned_word2, word2, sizeof(aligned_word2));
    256   return aligned_word1 == aligned_word2;
    257 }
    258 
    259 // A block must be composed of an integral number of machine words
    260 // (uword_t values.)  This function takes advantage of that fact
    261 // by comparing the blocks as series of (possibly unaligned) word values.
    262 // A word-sized comparison can be performed as a single
    263 // machine instruction.  Comparing words instead of bytes means that,
    264 // on a 64-bit platform, this function will use 8 times fewer test-and-branch
    265 // instructions than a byte-by-byte comparison.  Even with the extra
    266 // cost of the calls to memcpy, this method is still at least twice as fast
    267 // as memcmp (measured using gcc on a 64-bit platform, with a block size
    268 // of 32.)  For blocks with identical contents (a common case), this method
    269 // is over six times faster than memcmp.
    270 inline bool BlockCompareWordsInline(const char* block1, const char* block2) {
    271   static const size_t kWordsPerBlock = BlockHash::kBlockSize / sizeof(uword_t);
    272   return CompareWholeWordValues<kWordsPerBlock>(block1, block2);
    273 }
    274 
    275 bool BlockHash::BlockCompareWords(const char* block1, const char* block2) {
    276   return BlockCompareWordsInline(block1, block2);
    277 }
    278 
    279 inline bool BlockContentsMatchInline(const char* block1, const char* block2) {
    280   // Optimize for mismatch in first byte.  Since this function is called only
    281   // when the hash values of the two blocks match, it is very likely that either
    282   // the blocks are identical, or else the first byte does not match.
    283   if (*block1 != *block2) {
    284     return false;
    285   }
    286 #ifdef VCDIFF_USE_BLOCK_COMPARE_WORDS
    287   return BlockCompareWordsInline(block1, block2);
    288 #else  // !VCDIFF_USE_BLOCK_COMPARE_WORDS
    289   return memcmp(block1, block2, BlockHash::kBlockSize) == 0;
    290 #endif  // VCDIFF_USE_BLOCK_COMPARE_WORDS
    291 }
    292 
    293 bool BlockHash::BlockContentsMatch(const char* block1, const char* block2) {
    294   return BlockContentsMatchInline(block1, block2);
    295 }
    296 
    297 inline int BlockHash::SkipNonMatchingBlocks(int block_number,
    298                                             const char* block_ptr) const {
    299   int probes = 0;
    300   while ((block_number >= 0) &&
    301          !BlockContentsMatchInline(block_ptr,
    302                                    &source_data_[block_number * kBlockSize])) {
    303     if (++probes > kMaxProbes) {
    304       return -1;  // Avoid too much chaining
    305     }
    306     block_number = next_block_table_[block_number];
    307   }
    308   return block_number;
    309 }
    310 
    311 // Init() must have been called and returned true before using
    312 // FirstMatchingBlock or NextMatchingBlock.  No check is performed
    313 // for this condition; the code will crash if this condition is violated.
    314 inline int BlockHash::FirstMatchingBlockInline(uint32_t hash_value,
    315                                                const char* block_ptr) const {
    316   return SkipNonMatchingBlocks(hash_table_[GetHashTableIndex(hash_value)],
    317                                block_ptr);
    318 }
    319 
    320 int BlockHash::FirstMatchingBlock(uint32_t hash_value,
    321                                   const char* block_ptr) const {
    322   return FirstMatchingBlockInline(hash_value, block_ptr);
    323 }
    324 
    325 int BlockHash::NextMatchingBlock(int block_number,
    326                                  const char* block_ptr) const {
    327   if (static_cast<size_t>(block_number) >= GetNumberOfBlocks()) {
    328     LOG(DFATAL) << "NextMatchingBlock called for invalid block number "
    329                 << block_number << LOG_ENDL;
    330     return -1;
    331   }
    332   return SkipNonMatchingBlocks(next_block_table_[block_number], block_ptr);
    333 }
    334 
    335 // Keep a count of the number of matches found.  This will throttle the
    336 // number of iterations in FindBestMatch.  For example, if the entire
    337 // dictionary is made up of spaces (' ') and the search string is also
    338 // made up of spaces, there will be one match for each block in the
    339 // dictionary.
    340 inline bool BlockHash::TooManyMatches(int* match_counter) {
    341   ++(*match_counter);
    342   return (*match_counter) > kMaxMatchesToCheck;
    343 }
    344 
    345 // Returns the number of bytes to the left of source_match_start
    346 // that match the corresponding bytes to the left of target_match_start.
    347 // Will not examine more than max_bytes bytes, which is to say that
    348 // the return value will be in the range [0, max_bytes] inclusive.
    349 int BlockHash::MatchingBytesToLeft(const char* source_match_start,
    350                                    const char* target_match_start,
    351                                    int max_bytes) {
    352   const char* source_ptr = source_match_start;
    353   const char* target_ptr = target_match_start;
    354   int bytes_found = 0;
    355   while (bytes_found < max_bytes) {
    356     --source_ptr;
    357     --target_ptr;
    358     if (*source_ptr != *target_ptr) {
    359       break;
    360     }
    361     ++bytes_found;
    362   }
    363   return bytes_found;
    364 }
    365 
    366 // Returns the number of bytes starting at source_match_end
    367 // that match the corresponding bytes starting at target_match_end.
    368 // Will not examine more than max_bytes bytes, which is to say that
    369 // the return value will be in the range [0, max_bytes] inclusive.
    370 int BlockHash::MatchingBytesToRight(const char* source_match_end,
    371                                     const char* target_match_end,
    372                                     int max_bytes) {
    373   const char* source_ptr = source_match_end;
    374   const char* target_ptr = target_match_end;
    375   int bytes_found = 0;
    376   while ((bytes_found < max_bytes) && (*source_ptr == *target_ptr)) {
    377     ++bytes_found;
    378     ++source_ptr;
    379     ++target_ptr;
    380   }
    381   return bytes_found;
    382 }
    383 
    384 // No NULL checks are performed on the pointer arguments.  The caller
    385 // must guarantee that none of the arguments is NULL, or a crash will occur.
    386 //
    387 // The vast majority of calls to FindBestMatch enter the loop *zero* times,
    388 // which is to say that most candidate blocks find no matches in the dictionary.
    389 // The important sections for optimization are therefore the code outside the
    390 // loop and the code within the loop conditions.  Keep this to a minimum.
    391 void BlockHash::FindBestMatch(uint32_t hash_value,
    392                               const char* target_candidate_start,
    393                               const char* target_start,
    394                               size_t target_size,
    395                               Match* best_match) const {
    396   int match_counter = 0;
    397   for (int block_number = FirstMatchingBlockInline(hash_value,
    398                                                    target_candidate_start);
    399        (block_number >= 0) && !TooManyMatches(&match_counter);
    400        block_number = NextMatchingBlock(block_number, target_candidate_start)) {
    401     int source_match_offset = block_number * kBlockSize;
    402     const int source_match_end = source_match_offset + kBlockSize;
    403 
    404     int target_match_offset =
    405         static_cast<int>(target_candidate_start - target_start);
    406     const int target_match_end = target_match_offset + kBlockSize;
    407 
    408     size_t match_size = kBlockSize;
    409     {
    410       // Extend match start towards beginning of unencoded data
    411       const int limit_bytes_to_left = std::min(source_match_offset,
    412                                                target_match_offset);
    413       const int matching_bytes_to_left =
    414           MatchingBytesToLeft(source_data_ + source_match_offset,
    415                               target_start + target_match_offset,
    416                               limit_bytes_to_left);
    417       source_match_offset -= matching_bytes_to_left;
    418       target_match_offset -= matching_bytes_to_left;
    419       match_size += matching_bytes_to_left;
    420     }
    421     {
    422       // Extend match end towards end of unencoded data
    423       const size_t source_bytes_to_right = source_size_ - source_match_end;
    424       const size_t target_bytes_to_right = target_size - target_match_end;
    425       const size_t limit_bytes_to_right = std::min(source_bytes_to_right,
    426                                                    target_bytes_to_right);
    427       match_size +=
    428           MatchingBytesToRight(source_data_ + source_match_end,
    429                                target_start + target_match_end,
    430                                static_cast<int>(limit_bytes_to_right));
    431     }
    432     // Update in/out parameter if the best match found was better
    433     // than any match already stored in *best_match.
    434     best_match->ReplaceIfBetterMatch(match_size,
    435                                      source_match_offset + starting_offset_,
    436                                      target_match_offset);
    437   }
    438 }
    439 
    440 }  // namespace open_vcdiff
    441