Home | History | Annotate | Download | only in trees
      1 // Copyright 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "cc/trees/layer_sorter.h"
      6 
      7 #include <algorithm>
      8 #include <deque>
      9 #include <limits>
     10 #include <vector>
     11 
     12 #include "base/logging.h"
     13 #include "cc/base/math_util.h"
     14 #include "cc/layers/render_surface_impl.h"
     15 #include "ui/gfx/transform.h"
     16 
     17 namespace cc {
     18 
     19 // This epsilon is used to determine if two layers are too close to each other
     20 // to be able to tell which is in front of the other.  It's a relative epsilon
     21 // so it is robust to changes in scene scale.  This value was chosen by picking
     22 // a value near machine epsilon and then increasing it until the flickering on
     23 // the test scene went away.
     24 const float k_layer_epsilon = 1e-4f;
     25 
     26 inline static float PerpProduct(gfx::Vector2dF u, gfx::Vector2dF v) {
     27   return u.x() * v.y() - u.y() * v.x();
     28 }
     29 
     30 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
     31 // Returns true and the point of intersection if they do and false otherwise.
     32 static bool EdgeEdgeTest(gfx::PointF a,
     33                          gfx::PointF b,
     34                          gfx::PointF c,
     35                          gfx::PointF d,
     36                          gfx::PointF* r) {
     37   gfx::Vector2dF u = b - a;
     38   gfx::Vector2dF v = d - c;
     39   gfx::Vector2dF w = a - c;
     40 
     41   float denom = PerpProduct(u, v);
     42 
     43   // If denom == 0 then the edges are parallel. While they could be overlapping
     44   // we don't bother to check here as the we'll find their intersections from
     45   // the corner to quad tests.
     46   if (!denom)
     47     return false;
     48 
     49   float s = PerpProduct(v, w) / denom;
     50   if (s < 0.f || s > 1.f)
     51     return false;
     52 
     53   float t = PerpProduct(u, w) / denom;
     54   if (t < 0.f || t > 1.f)
     55     return false;
     56 
     57   u.Scale(s);
     58   *r = a + u;
     59   return true;
     60 }
     61 
     62 GraphNode::GraphNode(LayerImpl* layer_impl)
     63     : layer(layer_impl),
     64       incoming_edge_weight(0.f) {}
     65 
     66 GraphNode::~GraphNode() {}
     67 
     68 LayerSorter::LayerSorter()
     69     : z_range_(0.f) {}
     70 
     71 LayerSorter::~LayerSorter() {}
     72 
     73 static float CheckFloatingPointNumericAccuracy(float a, float b) {
     74   float abs_dif = std::abs(b - a);
     75   float abs_max = std::max(std::abs(b), std::abs(a));
     76   // Check to see if we've got a result with a reasonable amount of error.
     77   return abs_dif / abs_max;
     78 }
     79 
     80 // Checks whether layer "a" draws on top of layer "b". The weight value returned
     81 // is an indication of the maximum z-depth difference between the layers or zero
     82 // if the layers are found to be intesecting (some features are in front and
     83 // some are behind).
     84 LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a,
     85                                                        LayerShape* b,
     86                                                        float z_threshold,
     87                                                        float* weight) {
     88   *weight = 0.f;
     89 
     90   // Early out if the projected bounds don't overlap.
     91   if (!a->projected_bounds.Intersects(b->projected_bounds))
     92     return None;
     93 
     94   gfx::PointF aPoints[4] = { a->projected_quad.p1(),
     95                              a->projected_quad.p2(),
     96                              a->projected_quad.p3(),
     97                              a->projected_quad.p4() };
     98   gfx::PointF bPoints[4] = { b->projected_quad.p1(),
     99                              b->projected_quad.p2(),
    100                              b->projected_quad.p3(),
    101                              b->projected_quad.p4() };
    102 
    103   // Make a list of points that inside both layer quad projections.
    104   std::vector<gfx::PointF> overlap_points;
    105 
    106   // Check all four corners of one layer against the other layer's quad.
    107   for (int i = 0; i < 4; ++i) {
    108     if (a->projected_quad.Contains(bPoints[i]))
    109       overlap_points.push_back(bPoints[i]);
    110     if (b->projected_quad.Contains(aPoints[i]))
    111       overlap_points.push_back(aPoints[i]);
    112   }
    113 
    114   // Check all the edges of one layer for intersection with the other layer's
    115   // edges.
    116   gfx::PointF r;
    117   for (int ea = 0; ea < 4; ++ea)
    118     for (int eb = 0; eb < 4; ++eb)
    119       if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4],
    120                        bPoints[eb], bPoints[(eb + 1) % 4],
    121                        &r))
    122         overlap_points.push_back(r);
    123 
    124   if (overlap_points.empty())
    125     return None;
    126 
    127   // Check the corresponding layer depth value for all overlap points to
    128   // determine which layer is in front.
    129   float max_positive = 0.f;
    130   float max_negative = 0.f;
    131 
    132   // This flag tracks the existance of a numerically accurate seperation
    133   // between two layers.  If there is no accurate seperation, the layers
    134   // cannot be effectively sorted.
    135   bool accurate = false;
    136 
    137   for (size_t o = 0; o < overlap_points.size(); o++) {
    138     float za = a->LayerZFromProjectedPoint(overlap_points[o]);
    139     float zb = b->LayerZFromProjectedPoint(overlap_points[o]);
    140 
    141     // Here we attempt to avoid numeric issues with layers that are too
    142     // close together.  If we have 2-sided quads that are very close
    143     // together then we will draw them in document order to avoid
    144     // flickering.  The correct solution is for the content maker to turn
    145     // on back-face culling or move the quads apart (if they're not two
    146     // sides of one object).
    147     if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon)
    148       accurate = true;
    149 
    150     float diff = za - zb;
    151     if (diff > max_positive)
    152       max_positive = diff;
    153     if (diff < max_negative)
    154       max_negative = diff;
    155   }
    156 
    157   // If we can't tell which should come first, we use document order.
    158   if (!accurate)
    159     return ABeforeB;
    160 
    161   float max_diff =
    162       std::abs(max_positive) > std::abs(max_negative) ?
    163           max_positive : max_negative;
    164 
    165   // If the results are inconsistent (and the z difference substantial to rule
    166   // out numerical errors) then the layers are intersecting. We will still
    167   // return an order based on the maximum depth difference but with an edge
    168   // weight of zero these layers will get priority if a graph cycle is present
    169   // and needs to be broken.
    170   if (max_positive > z_threshold && max_negative < -z_threshold)
    171     *weight = 0.f;
    172   else
    173     *weight = std::abs(max_diff);
    174 
    175   // Maintain relative order if the layers have the same depth at all
    176   // intersection points.
    177   if (max_diff <= 0.f)
    178     return ABeforeB;
    179 
    180   return BBeforeA;
    181 }
    182 
    183 LayerShape::LayerShape() {}
    184 
    185 LayerShape::LayerShape(float width,
    186                        float height,
    187                        const gfx::Transform& draw_transform) {
    188   gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height));
    189 
    190   // Compute the projection of the layer quad onto the z = 0 plane.
    191 
    192   gfx::PointF clipped_quad[8];
    193   int num_vertices_in_clipped_quad;
    194   MathUtil::MapClippedQuad(draw_transform,
    195                            layer_quad,
    196                            clipped_quad,
    197                            &num_vertices_in_clipped_quad);
    198 
    199   if (num_vertices_in_clipped_quad < 3) {
    200     projected_bounds = gfx::RectF();
    201     return;
    202   }
    203 
    204   projected_bounds =
    205       MathUtil::ComputeEnclosingRectOfVertices(clipped_quad,
    206                                                num_vertices_in_clipped_quad);
    207 
    208   // NOTE: it will require very significant refactoring and overhead to deal
    209   // with generalized polygons or multiple quads per layer here. For the sake of
    210   // layer sorting it is equally correct to take a subsection of the polygon
    211   // that can be made into a quad. This will only be incorrect in the case of
    212   // intersecting layers, which are not supported yet anyway.
    213   projected_quad.set_p1(clipped_quad[0]);
    214   projected_quad.set_p2(clipped_quad[1]);
    215   projected_quad.set_p3(clipped_quad[2]);
    216   if (num_vertices_in_clipped_quad >= 4) {
    217     projected_quad.set_p4(clipped_quad[3]);
    218   } else {
    219     // This will be a degenerate quad that is actually a triangle.
    220     projected_quad.set_p4(clipped_quad[2]);
    221   }
    222 
    223   // Compute the normal of the layer's plane.
    224   bool clipped = false;
    225   gfx::Point3F c1 =
    226       MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped);
    227   gfx::Point3F c2 =
    228       MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped);
    229   gfx::Point3F c3 =
    230       MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped);
    231   // TODO(shawnsingh): Deal with clipping.
    232   gfx::Vector3dF c12 = c2 - c1;
    233   gfx::Vector3dF c13 = c3 - c1;
    234   layer_normal = gfx::CrossProduct(c13, c12);
    235 
    236   transform_origin = c1;
    237 }
    238 
    239 LayerShape::~LayerShape() {}
    240 
    241 // Returns the Z coordinate of a point on the layer that projects
    242 // to point p which lies on the z = 0 plane. It does it by computing the
    243 // intersection of a line starting from p along the Z axis and the plane
    244 // of the layer.
    245 float LayerShape::LayerZFromProjectedPoint(gfx::PointF p) const {
    246   gfx::Vector3dF z_axis(0.f, 0.f, 1.f);
    247   gfx::Vector3dF w = gfx::Point3F(p) - transform_origin;
    248 
    249   float d = gfx::DotProduct(layer_normal, z_axis);
    250   float n = -gfx::DotProduct(layer_normal, w);
    251 
    252   // Check if layer is parallel to the z = 0 axis which will make it
    253   // invisible and hence returning zero is fine.
    254   if (!d)
    255     return 0.f;
    256 
    257   // The intersection point would be given by:
    258   // p + (n / d) * u  but since we are only interested in the
    259   // z coordinate and p's z coord is zero, all we need is the value of n/d.
    260   return n / d;
    261 }
    262 
    263 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first,
    264                                    LayerImplList::iterator last) {
    265   DVLOG(2) << "Creating graph nodes:";
    266   float min_z = FLT_MAX;
    267   float max_z = -FLT_MAX;
    268   for (LayerImplList::const_iterator it = first; it < last; it++) {
    269     nodes_.push_back(GraphNode(*it));
    270     GraphNode& node = nodes_.at(nodes_.size() - 1);
    271     RenderSurfaceImpl* render_surface = node.layer->render_surface();
    272     if (!node.layer->DrawsContent() && !render_surface)
    273       continue;
    274 
    275     DVLOG(2) << "Layer " << node.layer->id() <<
    276         " (" << node.layer->bounds().width() <<
    277         " x " << node.layer->bounds().height() << ")";
    278 
    279     gfx::Transform draw_transform;
    280     float layer_width, layer_height;
    281     if (render_surface) {
    282       draw_transform = render_surface->draw_transform();
    283       layer_width = render_surface->content_rect().width();
    284       layer_height = render_surface->content_rect().height();
    285     } else {
    286       draw_transform = node.layer->draw_transform();
    287       layer_width = node.layer->content_bounds().width();
    288       layer_height = node.layer->content_bounds().height();
    289     }
    290 
    291     node.shape = LayerShape(layer_width, layer_height, draw_transform);
    292 
    293     max_z = std::max(max_z, node.shape.transform_origin.z());
    294     min_z = std::min(min_z, node.shape.transform_origin.z());
    295   }
    296 
    297   z_range_ = std::abs(max_z - min_z);
    298 }
    299 
    300 void LayerSorter::CreateGraphEdges() {
    301   DVLOG(2) << "Edges:";
    302   // Fraction of the total z_range below which z differences
    303   // are not considered reliable.
    304   const float z_threshold_factor = 0.01f;
    305   float z_threshold = z_range_ * z_threshold_factor;
    306 
    307   for (size_t na = 0; na < nodes_.size(); na++) {
    308     GraphNode& node_a = nodes_[na];
    309     if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface())
    310       continue;
    311     for (size_t nb = na + 1; nb < nodes_.size(); nb++) {
    312       GraphNode& node_b = nodes_[nb];
    313       if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface())
    314         continue;
    315       float weight = 0.f;
    316       ABCompareResult overlap_result = CheckOverlap(&node_a.shape,
    317                                                     &node_b.shape,
    318                                                     z_threshold,
    319                                                     &weight);
    320       GraphNode* start_node = NULL;
    321       GraphNode* end_node = NULL;
    322       if (overlap_result == ABeforeB) {
    323         start_node = &node_a;
    324         end_node = &node_b;
    325       } else if (overlap_result == BBeforeA) {
    326         start_node = &node_b;
    327         end_node = &node_a;
    328       }
    329 
    330       if (start_node) {
    331         DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id();
    332         edges_.push_back(GraphEdge(start_node, end_node, weight));
    333       }
    334     }
    335   }
    336 
    337   for (size_t i = 0; i < edges_.size(); i++) {
    338     GraphEdge& edge = edges_[i];
    339     active_edges_[&edge] = &edge;
    340     edge.from->outgoing.push_back(&edge);
    341     edge.to->incoming.push_back(&edge);
    342     edge.to->incoming_edge_weight += edge.weight;
    343   }
    344 }
    345 
    346 // Finds and removes an edge from the list by doing a swap with the
    347 // last element of the list.
    348 void LayerSorter::RemoveEdgeFromList(GraphEdge* edge,
    349                                      std::vector<GraphEdge*>* list) {
    350   std::vector<GraphEdge*>::iterator iter =
    351       std::find(list->begin(), list->end(), edge);
    352   DCHECK(iter != list->end());
    353   list->erase(iter);
    354 }
    355 
    356 // Sorts the given list of layers such that they can be painted in a
    357 // back-to-front order. Sorting produces correct results for non-intersecting
    358 // layers that don't have cyclical order dependencies. Cycles and intersections
    359 // are broken (somewhat) aribtrarily. Sorting of layers is done via a
    360 // topological sort of a directed graph whose nodes are the layers themselves.
    361 // An edge from node A to node B signifies that layer A needs to be drawn before
    362 // layer B. If A and B have no dependency between each other, then we preserve
    363 // the ordering of those layers as they were in the original list.
    364 //
    365 // The draw order between two layers is determined by projecting the two
    366 // triangles making up each layer quad to the Z = 0 plane, finding points of
    367 // intersection between the triangles and backprojecting those points to the
    368 // plane of the layer to determine the corresponding Z coordinate. The layer
    369 // with the lower Z coordinate (farther from the eye) needs to be rendered
    370 // first.
    371 //
    372 // If the layer projections don't intersect, then no edges (dependencies) are
    373 // created between them in the graph. HOWEVER, in this case we still need to
    374 // preserve the ordering of the original list of layers, since that list should
    375 // already have proper z-index ordering of layers.
    376 //
    377 void LayerSorter::Sort(LayerImplList::iterator first,
    378                        LayerImplList::iterator last) {
    379   DVLOG(2) << "Sorting start ----";
    380   CreateGraphNodes(first, last);
    381 
    382   CreateGraphEdges();
    383 
    384   std::vector<GraphNode*> sorted_list;
    385   std::deque<GraphNode*> no_incoming_edge_node_list;
    386 
    387   // Find all the nodes that don't have incoming edges.
    388   for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) {
    389     if (!la->incoming.size())
    390       no_incoming_edge_node_list.push_back(&(*la));
    391   }
    392 
    393   DVLOG(2) << "Sorted list: ";
    394   while (active_edges_.size() || no_incoming_edge_node_list.size()) {
    395     while (no_incoming_edge_node_list.size()) {
    396       // It is necessary to preserve the existing ordering of layers, when there
    397       // are no explicit dependencies (because this existing ordering has
    398       // correct z-index/layout ordering). To preserve this ordering, we process
    399       // Nodes in the same order that they were added to the list.
    400       GraphNode* from_node = no_incoming_edge_node_list.front();
    401       no_incoming_edge_node_list.pop_front();
    402 
    403       // Add it to the final list.
    404       sorted_list.push_back(from_node);
    405 
    406       DVLOG(2) << from_node->layer->id() << ", ";
    407 
    408       // Remove all its outgoing edges from the graph.
    409       for (size_t i = 0; i < from_node->outgoing.size(); i++) {
    410         GraphEdge* outgoing_edge = from_node->outgoing[i];
    411 
    412         active_edges_.erase(outgoing_edge);
    413         RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming);
    414         outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight;
    415 
    416         if (!outgoing_edge->to->incoming.size())
    417           no_incoming_edge_node_list.push_back(outgoing_edge->to);
    418       }
    419       from_node->outgoing.clear();
    420     }
    421 
    422     if (!active_edges_.size())
    423       break;
    424 
    425     // If there are still active edges but the list of nodes without incoming
    426     // edges is empty then we have run into a cycle. Break the cycle by finding
    427     // the node with the smallest overall incoming edge weight and use it. This
    428     // will favor nodes that have zero-weight incoming edges i.e. layers that
    429     // are being occluded by a layer that intersects them.
    430     float min_incoming_edge_weight = FLT_MAX;
    431     GraphNode* next_node = NULL;
    432     for (size_t i = 0; i < nodes_.size(); i++) {
    433       if (nodes_[i].incoming.size() &&
    434           nodes_[i].incoming_edge_weight < min_incoming_edge_weight) {
    435         min_incoming_edge_weight = nodes_[i].incoming_edge_weight;
    436         next_node = &nodes_[i];
    437       }
    438     }
    439     DCHECK(next_node);
    440     // Remove all its incoming edges.
    441     for (size_t e = 0; e < next_node->incoming.size(); e++) {
    442       GraphEdge* incoming_edge = next_node->incoming[e];
    443 
    444       active_edges_.erase(incoming_edge);
    445       RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing);
    446     }
    447     next_node->incoming.clear();
    448     next_node->incoming_edge_weight = 0.f;
    449     no_incoming_edge_node_list.push_back(next_node);
    450     DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
    451         next_node->layer->id() <<
    452         " (weight = " << min_incoming_edge_weight << ")";
    453   }
    454 
    455   // Note: The original elements of the list are in no danger of having their
    456   // ref count go to zero here as they are all nodes of the layer hierarchy and
    457   // are kept alive by their parent nodes.
    458   int count = 0;
    459   for (LayerImplList::iterator it = first; it < last; it++)
    460     *it = sorted_list[count++]->layer;
    461 
    462   DVLOG(2) << "Sorting end ----";
    463 
    464   nodes_.clear();
    465   edges_.clear();
    466   active_edges_.clear();
    467 }
    468 
    469 }  // namespace cc
    470