Home | History | Annotate | Download | only in courgette
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "courgette/encoded_program.h"
      6 
      7 #include <algorithm>
      8 #include <map>
      9 #include <string>
     10 #include <vector>
     11 
     12 #include "base/environment.h"
     13 #include "base/logging.h"
     14 #include "base/memory/scoped_ptr.h"
     15 #include "base/strings/string_util.h"
     16 #include "base/strings/utf_string_conversions.h"
     17 #include "courgette/courgette.h"
     18 #include "courgette/disassembler_elf_32_arm.h"
     19 #include "courgette/streams.h"
     20 #include "courgette/types_elf.h"
     21 
     22 namespace courgette {
     23 
     24 // Stream indexes.
     25 const int kStreamMisc    = 0;
     26 const int kStreamOps     = 1;
     27 const int kStreamBytes   = 2;
     28 const int kStreamAbs32Indexes = 3;
     29 const int kStreamRel32Indexes = 4;
     30 const int kStreamAbs32Addresses = 5;
     31 const int kStreamRel32Addresses = 6;
     32 const int kStreamCopyCounts = 7;
     33 const int kStreamOriginAddresses = kStreamMisc;
     34 
     35 const int kStreamLimit = 9;
     36 
     37 // Constructor is here rather than in the header.  Although the constructor
     38 // appears to do nothing it is fact quite large because of the implicit calls to
     39 // field constructors.  Ditto for the destructor.
     40 EncodedProgram::EncodedProgram() : image_base_(0) {}
     41 EncodedProgram::~EncodedProgram() {}
     42 
     43 // Serializes a vector of integral values using Varint32 coding.
     44 template<typename V>
     45 CheckBool WriteVector(const V& items, SinkStream* buffer) {
     46   size_t count = items.size();
     47   bool ok = buffer->WriteSizeVarint32(count);
     48   for (size_t i = 0; ok && i < count;  ++i) {
     49     COMPILE_ASSERT(sizeof(items[0]) <= sizeof(uint32),  // NOLINT
     50                    T_must_fit_in_uint32);
     51     ok = buffer->WriteSizeVarint32(items[i]);
     52   }
     53   return ok;
     54 }
     55 
     56 template<typename V>
     57 bool ReadVector(V* items, SourceStream* buffer) {
     58   uint32 count;
     59   if (!buffer->ReadVarint32(&count))
     60     return false;
     61 
     62   items->clear();
     63 
     64   bool ok = items->reserve(count);
     65   for (size_t i = 0;  ok && i < count;  ++i) {
     66     uint32 item;
     67     ok = buffer->ReadVarint32(&item);
     68     if (ok)
     69       ok = items->push_back(static_cast<typename V::value_type>(item));
     70   }
     71 
     72   return ok;
     73 }
     74 
     75 // Serializes a vector, using delta coding followed by Varint32 coding.
     76 template<typename V>
     77 CheckBool WriteU32Delta(const V& set, SinkStream* buffer) {
     78   size_t count = set.size();
     79   bool ok = buffer->WriteSizeVarint32(count);
     80   uint32 prev = 0;
     81   for (size_t i = 0;  ok && i < count;  ++i) {
     82     uint32 current = set[i];
     83     uint32 delta = current - prev;
     84     ok = buffer->WriteVarint32(delta);
     85     prev = current;
     86   }
     87   return ok;
     88 }
     89 
     90 template <typename V>
     91 static CheckBool ReadU32Delta(V* set, SourceStream* buffer) {
     92   uint32 count;
     93 
     94   if (!buffer->ReadVarint32(&count))
     95     return false;
     96 
     97   set->clear();
     98   bool ok = set->reserve(count);
     99   uint32 prev = 0;
    100 
    101   for (size_t i = 0; ok && i < count;  ++i) {
    102     uint32 delta;
    103     ok = buffer->ReadVarint32(&delta);
    104     if (ok) {
    105       uint32 current = prev + delta;
    106       ok = set->push_back(current);
    107       prev = current;
    108     }
    109   }
    110 
    111   return ok;
    112 }
    113 
    114 // Write a vector as the byte representation of the contents.
    115 //
    116 // (This only really makes sense for a type T that has sizeof(T)==1, otherwise
    117 // serialized representation is not endian-agnostic.  But it is useful to keep
    118 // the possibility of a greater size for experiments comparing Varint32 encoding
    119 // of a vector of larger integrals vs a plain form.)
    120 //
    121 template<typename V>
    122 CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
    123   size_t count = items.size();
    124   bool ok = buffer->WriteSizeVarint32(count);
    125   if (count != 0 && ok) {
    126     size_t byte_count = count * sizeof(typename V::value_type);
    127     ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
    128   }
    129   return ok;
    130 }
    131 
    132 template<typename V>
    133 bool ReadVectorU8(V* items, SourceStream* buffer) {
    134   uint32 count;
    135   if (!buffer->ReadVarint32(&count))
    136     return false;
    137 
    138   items->clear();
    139   bool ok = items->resize(count, 0);
    140   if (ok && count != 0) {
    141     size_t byte_count = count * sizeof(typename V::value_type);
    142     return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
    143   }
    144   return ok;
    145 }
    146 
    147 ////////////////////////////////////////////////////////////////////////////////
    148 
    149 CheckBool EncodedProgram::DefineRel32Label(int index, RVA value) {
    150   return DefineLabelCommon(&rel32_rva_, index, value);
    151 }
    152 
    153 CheckBool EncodedProgram::DefineAbs32Label(int index, RVA value) {
    154   return DefineLabelCommon(&abs32_rva_, index, value);
    155 }
    156 
    157 static const RVA kUnassignedRVA = static_cast<RVA>(-1);
    158 
    159 CheckBool EncodedProgram::DefineLabelCommon(RvaVector* rvas,
    160                                             int index,
    161                                             RVA rva) {
    162   bool ok = true;
    163   if (static_cast<int>(rvas->size()) <= index)
    164     ok = rvas->resize(index + 1, kUnassignedRVA);
    165 
    166   if (ok) {
    167     DCHECK_EQ((*rvas)[index], kUnassignedRVA)
    168         << "DefineLabel double assigned " << index;
    169     (*rvas)[index] = rva;
    170   }
    171 
    172   return ok;
    173 }
    174 
    175 void EncodedProgram::EndLabels() {
    176   FinishLabelsCommon(&abs32_rva_);
    177   FinishLabelsCommon(&rel32_rva_);
    178 }
    179 
    180 void EncodedProgram::FinishLabelsCommon(RvaVector* rvas) {
    181   // Replace all unassigned slots with the value at the previous index so they
    182   // delta-encode to zero.  (There might be better values than zero.  The way to
    183   // get that is have the higher level assembly program assign the unassigned
    184   // slots.)
    185   RVA previous = 0;
    186   size_t size = rvas->size();
    187   for (size_t i = 0;  i < size;  ++i) {
    188     if ((*rvas)[i] == kUnassignedRVA)
    189       (*rvas)[i] = previous;
    190     else
    191       previous = (*rvas)[i];
    192   }
    193 }
    194 
    195 CheckBool EncodedProgram::AddOrigin(RVA origin) {
    196   return ops_.push_back(ORIGIN) && origins_.push_back(origin);
    197 }
    198 
    199 CheckBool EncodedProgram::AddCopy(uint32 count, const void* bytes) {
    200   const uint8* source = static_cast<const uint8*>(bytes);
    201 
    202   bool ok = true;
    203 
    204   // Fold adjacent COPY instructions into one.  This nearly halves the size of
    205   // an EncodedProgram with only COPY1 instructions since there are approx plain
    206   // 16 bytes per reloc.  This has a working-set benefit during decompression.
    207   // For compression of files with large differences this makes a small (4%)
    208   // improvement in size.  For files with small differences this degrades the
    209   // compressed size by 1.3%
    210   if (!ops_.empty()) {
    211     if (ops_.back() == COPY1) {
    212       ops_.back() = COPY;
    213       ok = copy_counts_.push_back(1);
    214     }
    215     if (ok && ops_.back() == COPY) {
    216       copy_counts_.back() += count;
    217       for (uint32 i = 0; ok && i < count; ++i) {
    218         ok = copy_bytes_.push_back(source[i]);
    219       }
    220       return ok;
    221     }
    222   }
    223 
    224   if (ok) {
    225     if (count == 1) {
    226       ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
    227     } else {
    228       ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
    229       for (uint32 i = 0; ok && i < count; ++i) {
    230         ok = copy_bytes_.push_back(source[i]);
    231       }
    232     }
    233   }
    234 
    235   return ok;
    236 }
    237 
    238 CheckBool EncodedProgram::AddAbs32(int label_index) {
    239   return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
    240 }
    241 
    242 CheckBool EncodedProgram::AddRel32(int label_index) {
    243   return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
    244 }
    245 
    246 CheckBool EncodedProgram::AddRel32ARM(uint16 op, int label_index) {
    247   return ops_.push_back(static_cast<OP>(op)) &&
    248       rel32_ix_.push_back(label_index);
    249 }
    250 
    251 CheckBool EncodedProgram::AddPeMakeRelocs() {
    252   return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
    253 }
    254 
    255 CheckBool EncodedProgram::AddElfMakeRelocs() {
    256   return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
    257 }
    258 
    259 CheckBool EncodedProgram::AddElfARMMakeRelocs() {
    260   return ops_.push_back(MAKE_ELF_ARM_RELOCATION_TABLE);
    261 }
    262 
    263 void EncodedProgram::DebuggingSummary() {
    264   VLOG(1) << "EncodedProgram Summary"
    265           << "\n  image base  " << image_base_
    266           << "\n  abs32 rvas  " << abs32_rva_.size()
    267           << "\n  rel32 rvas  " << rel32_rva_.size()
    268           << "\n  ops         " << ops_.size()
    269           << "\n  origins     " << origins_.size()
    270           << "\n  copy_counts " << copy_counts_.size()
    271           << "\n  copy_bytes  " << copy_bytes_.size()
    272           << "\n  abs32_ix    " << abs32_ix_.size()
    273           << "\n  rel32_ix    " << rel32_ix_.size();
    274 }
    275 
    276 ////////////////////////////////////////////////////////////////////////////////
    277 
    278 // For algorithm refinement purposes it is useful to write subsets of the file
    279 // format.  This gives us the ability to estimate the entropy of the
    280 // differential compression of the individual streams, which can provide
    281 // invaluable insights.  The default, of course, is to include all the streams.
    282 //
    283 enum FieldSelect {
    284   INCLUDE_ABS32_ADDRESSES = 0x0001,
    285   INCLUDE_REL32_ADDRESSES = 0x0002,
    286   INCLUDE_ABS32_INDEXES   = 0x0010,
    287   INCLUDE_REL32_INDEXES   = 0x0020,
    288   INCLUDE_OPS             = 0x0100,
    289   INCLUDE_BYTES           = 0x0200,
    290   INCLUDE_COPY_COUNTS     = 0x0400,
    291   INCLUDE_MISC            = 0x1000
    292 };
    293 
    294 static FieldSelect GetFieldSelect() {
    295 #if 1
    296   // TODO(sra): Use better configuration.
    297   scoped_ptr<base::Environment> env(base::Environment::Create());
    298   std::string s;
    299   env->GetVar("A_FIELDS", &s);
    300   if (!s.empty()) {
    301     return static_cast<FieldSelect>(wcstoul(ASCIIToWide(s).c_str(), 0, 0));
    302   }
    303 #endif
    304   return  static_cast<FieldSelect>(~0);
    305 }
    306 
    307 CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
    308   FieldSelect select = GetFieldSelect();
    309 
    310   // The order of fields must be consistent in WriteTo and ReadFrom, regardless
    311   // of the streams used.  The code can be configured with all kStreamXXX
    312   // constants the same.
    313   //
    314   // If we change the code to pipeline reading with assembly (to avoid temporary
    315   // storage vectors by consuming operands directly from the stream) then we
    316   // need to read the base address and the random access address tables first,
    317   // the rest can be interleaved.
    318 
    319   if (select & INCLUDE_MISC) {
    320     // TODO(sra): write 64 bits.
    321     if (!streams->stream(kStreamMisc)->WriteVarint32(
    322             static_cast<uint32>(image_base_))) {
    323       return false;
    324     }
    325   }
    326 
    327   bool success = true;
    328 
    329   if (select & INCLUDE_ABS32_ADDRESSES) {
    330     success &= WriteU32Delta(abs32_rva_,
    331                              streams->stream(kStreamAbs32Addresses));
    332   }
    333 
    334   if (select & INCLUDE_REL32_ADDRESSES) {
    335     success &= WriteU32Delta(rel32_rva_,
    336                              streams->stream(kStreamRel32Addresses));
    337   }
    338 
    339   if (select & INCLUDE_MISC)
    340     success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
    341 
    342   if (select & INCLUDE_OPS) {
    343     // 5 for length.
    344     success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
    345     success &= WriteVector(ops_, streams->stream(kStreamOps));
    346   }
    347 
    348   if (select & INCLUDE_COPY_COUNTS)
    349     success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
    350 
    351   if (select & INCLUDE_BYTES)
    352     success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
    353 
    354   if (select & INCLUDE_ABS32_INDEXES)
    355     success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
    356 
    357   if (select & INCLUDE_REL32_INDEXES)
    358     success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
    359 
    360   return success;
    361 }
    362 
    363 bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
    364   // TODO(sra): read 64 bits.
    365   uint32 temp;
    366   if (!streams->stream(kStreamMisc)->ReadVarint32(&temp))
    367     return false;
    368   image_base_ = temp;
    369 
    370   if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
    371     return false;
    372   if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
    373     return false;
    374   if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
    375     return false;
    376   if (!ReadVector(&ops_, streams->stream(kStreamOps)))
    377     return false;
    378   if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
    379     return false;
    380   if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
    381     return false;
    382   if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
    383     return false;
    384   if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
    385     return false;
    386 
    387   // Check that streams have been completely consumed.
    388   for (int i = 0;  i < kStreamLimit;  ++i) {
    389     if (streams->stream(i)->Remaining() > 0)
    390       return false;
    391   }
    392 
    393   return true;
    394 }
    395 
    396 // Safe, non-throwing version of std::vector::at().  Returns 'true' for success,
    397 // 'false' for out-of-bounds index error.
    398 template<typename V, typename T>
    399 bool VectorAt(const V& v, size_t index, T* output) {
    400   if (index >= v.size())
    401     return false;
    402   *output = v[index];
    403   return true;
    404 }
    405 
    406 CheckBool EncodedProgram::EvaluateRel32ARM(OP op,
    407                                            size_t& ix_rel32_ix,
    408                                            RVA& current_rva,
    409                                            SinkStream* output) {
    410   switch (op & 0x0000F000) {
    411     case REL32ARM8: {
    412       uint32 index;
    413       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    414         return false;
    415       ++ix_rel32_ix;
    416       RVA rva;
    417       if (!VectorAt(rel32_rva_, index, &rva))
    418         return false;
    419       uint32 decompressed_op;
    420       if (!DisassemblerElf32ARM::Decompress(ARM_OFF8,
    421                                             static_cast<uint16>(op),
    422                                             static_cast<uint32>(rva -
    423                                                                 current_rva),
    424                                             &decompressed_op)) {
    425         return false;
    426       }
    427       uint16 op16 = decompressed_op;
    428       if (!output->Write(&op16, 2))
    429         return false;
    430       current_rva += 2;
    431       break;
    432     }
    433     case REL32ARM11: {
    434       uint32 index;
    435       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    436         return false;
    437       ++ix_rel32_ix;
    438       RVA rva;
    439       if (!VectorAt(rel32_rva_, index, &rva))
    440         return false;
    441       uint32 decompressed_op;
    442       if (!DisassemblerElf32ARM::Decompress(ARM_OFF11, (uint16) op,
    443                                             (uint32) (rva - current_rva),
    444                                             &decompressed_op)) {
    445         return false;
    446       }
    447       uint16 op16 = decompressed_op;
    448       if (!output->Write(&op16, 2))
    449         return false;
    450       current_rva += 2;
    451       break;
    452     }
    453     case REL32ARM24: {
    454       uint32 index;
    455       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    456         return false;
    457       ++ix_rel32_ix;
    458       RVA rva;
    459       if (!VectorAt(rel32_rva_, index, &rva))
    460         return false;
    461       uint32 decompressed_op;
    462       if (!DisassemblerElf32ARM::Decompress(ARM_OFF24, (uint16) op,
    463                                             (uint32) (rva - current_rva),
    464                                             &decompressed_op)) {
    465         return false;
    466       }
    467       if (!output->Write(&decompressed_op, 4))
    468         return false;
    469       current_rva += 4;
    470       break;
    471     }
    472     case REL32ARM25: {
    473       uint32 index;
    474       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    475         return false;
    476       ++ix_rel32_ix;
    477       RVA rva;
    478       if (!VectorAt(rel32_rva_, index, &rva))
    479         return false;
    480       uint32 decompressed_op;
    481       if (!DisassemblerElf32ARM::Decompress(ARM_OFF25, (uint16) op,
    482                                             (uint32) (rva - current_rva),
    483                                             &decompressed_op)) {
    484         return false;
    485       }
    486       uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
    487       if (!output->Write(&words, 4))
    488         return false;
    489       current_rva += 4;
    490       break;
    491     }
    492     case REL32ARM21: {
    493       uint32 index;
    494       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    495         return false;
    496       ++ix_rel32_ix;
    497       RVA rva;
    498       if (!VectorAt(rel32_rva_, index, &rva))
    499         return false;
    500       uint32 decompressed_op;
    501       if (!DisassemblerElf32ARM::Decompress(ARM_OFF21, (uint16) op,
    502                                             (uint32) (rva - current_rva),
    503                                             &decompressed_op)) {
    504         return false;
    505       }
    506       uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
    507       if (!output->Write(&words, 4))
    508         return false;
    509       current_rva += 4;
    510       break;
    511     }
    512     default:
    513       return false;
    514   }
    515 
    516   return true;
    517 }
    518 
    519 CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
    520   // For the most part, the assembly process walks the various tables.
    521   // ix_mumble is the index into the mumble table.
    522   size_t ix_origins = 0;
    523   size_t ix_copy_counts = 0;
    524   size_t ix_copy_bytes = 0;
    525   size_t ix_abs32_ix = 0;
    526   size_t ix_rel32_ix = 0;
    527 
    528   RVA current_rva = 0;
    529 
    530   bool pending_pe_relocation_table = false;
    531   Elf32_Word pending_elf_relocation_table_type = 0;
    532   SinkStream bytes_following_relocation_table;
    533 
    534   SinkStream* output = final_buffer;
    535 
    536   for (size_t ix_ops = 0;  ix_ops < ops_.size();  ++ix_ops) {
    537     OP op = ops_[ix_ops];
    538 
    539     switch (op) {
    540       default:
    541         if (!EvaluateRel32ARM(op, ix_rel32_ix, current_rva, output))
    542           return false;
    543         break;
    544 
    545       case ORIGIN: {
    546         RVA section_rva;
    547         if (!VectorAt(origins_, ix_origins, &section_rva))
    548           return false;
    549         ++ix_origins;
    550         current_rva = section_rva;
    551         break;
    552       }
    553 
    554       case COPY: {
    555         uint32 count;
    556         if (!VectorAt(copy_counts_, ix_copy_counts, &count))
    557           return false;
    558         ++ix_copy_counts;
    559         for (uint32 i = 0;  i < count;  ++i) {
    560           uint8 b;
    561           if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
    562             return false;
    563           ++ix_copy_bytes;
    564           if (!output->Write(&b, 1))
    565             return false;
    566         }
    567         current_rva += count;
    568         break;
    569       }
    570 
    571       case COPY1: {
    572         uint8 b;
    573         if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
    574           return false;
    575         ++ix_copy_bytes;
    576         if (!output->Write(&b, 1))
    577           return false;
    578         current_rva += 1;
    579         break;
    580       }
    581 
    582       case REL32: {
    583         uint32 index;
    584         if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    585           return false;
    586         ++ix_rel32_ix;
    587         RVA rva;
    588         if (!VectorAt(rel32_rva_, index, &rva))
    589           return false;
    590         uint32 offset = (rva - (current_rva + 4));
    591         if (!output->Write(&offset, 4))
    592           return false;
    593         current_rva += 4;
    594         break;
    595       }
    596 
    597       case ABS32: {
    598         uint32 index;
    599         if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
    600           return false;
    601         ++ix_abs32_ix;
    602         RVA rva;
    603         if (!VectorAt(abs32_rva_, index, &rva))
    604           return false;
    605         uint32 abs32 = static_cast<uint32>(rva + image_base_);
    606         if (!abs32_relocs_.push_back(current_rva) || !output->Write(&abs32, 4))
    607           return false;
    608         current_rva += 4;
    609         break;
    610       }
    611 
    612       case MAKE_PE_RELOCATION_TABLE: {
    613         // We can see the base relocation anywhere, but we only have the
    614         // information to generate it at the very end.  So we divert the bytes
    615         // we are generating to a temporary stream.
    616         if (pending_pe_relocation_table)  // Can't have two base relocation
    617                                             // tables.
    618           return false;
    619 
    620         pending_pe_relocation_table = true;
    621         output = &bytes_following_relocation_table;
    622         break;
    623         // There is a potential problem *if* the instruction stream contains
    624         // some REL32 relocations following the base relocation and in the same
    625         // section.  We don't know the size of the table, so 'current_rva' will
    626         // be wrong, causing REL32 offsets to be miscalculated.  This never
    627         // happens; the base relocation table is usually in a section of its
    628         // own, a data-only section, and following everything else in the
    629         // executable except some padding zero bytes.  We could fix this by
    630         // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
    631       }
    632 
    633       case MAKE_ELF_ARM_RELOCATION_TABLE: {
    634         // We can see the base relocation anywhere, but we only have the
    635         // information to generate it at the very end.  So we divert the bytes
    636         // we are generating to a temporary stream.
    637         if (pending_elf_relocation_table_type)  // Can't have two relocation
    638                                                 // tables.
    639           return false;
    640 
    641         pending_elf_relocation_table_type = R_ARM_RELATIVE;
    642         output = &bytes_following_relocation_table;
    643         break;
    644       }
    645 
    646       case MAKE_ELF_RELOCATION_TABLE: {
    647         // We can see the base relocation anywhere, but we only have the
    648         // information to generate it at the very end.  So we divert the bytes
    649         // we are generating to a temporary stream.
    650         if (pending_elf_relocation_table_type)  // Can't have two relocation
    651                                                 // tables.
    652           return false;
    653 
    654         pending_elf_relocation_table_type = R_386_RELATIVE;
    655         output = &bytes_following_relocation_table;
    656         break;
    657       }
    658     }
    659   }
    660 
    661   if (pending_pe_relocation_table) {
    662     if (!GeneratePeRelocations(final_buffer) ||
    663         !final_buffer->Append(&bytes_following_relocation_table))
    664       return false;
    665   }
    666 
    667   if (pending_elf_relocation_table_type) {
    668     if (!GenerateElfRelocations(pending_elf_relocation_table_type,
    669                                 final_buffer) ||
    670         !final_buffer->Append(&bytes_following_relocation_table))
    671       return false;
    672   }
    673 
    674   // Final verification check: did we consume all lists?
    675   if (ix_copy_counts != copy_counts_.size())
    676     return false;
    677   if (ix_copy_bytes != copy_bytes_.size())
    678     return false;
    679   if (ix_abs32_ix != abs32_ix_.size())
    680     return false;
    681   if (ix_rel32_ix != rel32_ix_.size())
    682     return false;
    683 
    684   return true;
    685 }
    686 
    687 // RelocBlock has the layout of a block of relocations in the base relocation
    688 // table file format.
    689 //
    690 struct RelocBlockPOD {
    691   uint32 page_rva;
    692   uint32 block_size;
    693   uint16 relocs[4096];  // Allow up to one relocation per byte of a 4k page.
    694 };
    695 
    696 COMPILE_ASSERT(offsetof(RelocBlockPOD, relocs) == 8, reloc_block_header_size);
    697 
    698 class RelocBlock {
    699  public:
    700   RelocBlock() {
    701     pod.page_rva = ~0;
    702     pod.block_size = 8;
    703   }
    704 
    705   void Add(uint16 item) {
    706     pod.relocs[(pod.block_size-8)/2] = item;
    707     pod.block_size += 2;
    708   }
    709 
    710   CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT {
    711     bool ok = true;
    712     if (pod.block_size != 8) {
    713       if (pod.block_size % 4 != 0) {  // Pad to make size multiple of 4 bytes.
    714         Add(0);
    715       }
    716       ok = buffer->Write(&pod, pod.block_size);
    717       pod.block_size = 8;
    718     }
    719     return ok;
    720   }
    721   RelocBlockPOD pod;
    722 };
    723 
    724 CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer) {
    725   std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
    726 
    727   RelocBlock block;
    728 
    729   bool ok = true;
    730   for (size_t i = 0;  ok && i < abs32_relocs_.size();  ++i) {
    731     uint32 rva = abs32_relocs_[i];
    732     uint32 page_rva = rva & ~0xFFF;
    733     if (page_rva != block.pod.page_rva) {
    734       ok &= block.Flush(buffer);
    735       block.pod.page_rva = page_rva;
    736     }
    737     if (ok)
    738       block.Add(0x3000 | (rva & 0xFFF));
    739   }
    740   ok &= block.Flush(buffer);
    741   return ok;
    742 }
    743 
    744 CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
    745                                                  SinkStream* buffer) {
    746   std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
    747 
    748   Elf32_Rel relocation_block;
    749 
    750   relocation_block.r_info = r_info;
    751 
    752   bool ok = true;
    753   for (size_t i = 0;  ok && i < abs32_relocs_.size();  ++i) {
    754     relocation_block.r_offset = abs32_relocs_[i];
    755     ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
    756   }
    757 
    758   return ok;
    759 }
    760 ////////////////////////////////////////////////////////////////////////////////
    761 
    762 Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
    763   if (!encoded->WriteTo(sink))
    764     return C_STREAM_ERROR;
    765   return C_OK;
    766 }
    767 
    768 Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
    769   EncodedProgram* encoded = new EncodedProgram();
    770   if (encoded->ReadFrom(streams)) {
    771     *output = encoded;
    772     return C_OK;
    773   }
    774   delete encoded;
    775   return C_DESERIALIZATION_FAILED;
    776 }
    777 
    778 Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
    779   bool assembled = encoded->AssembleTo(buffer);
    780   if (assembled)
    781     return C_OK;
    782   return C_ASSEMBLY_FAILED;
    783 }
    784 
    785 void DeleteEncodedProgram(EncodedProgram* encoded) {
    786   delete encoded;
    787 }
    788 
    789 }  // end namespace
    790