Home | History | Annotate | Download | only in wtf
      1 /****************************************************************
      2  *
      3  * The author of this software is David M. Gay.
      4  *
      5  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
      6  * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
      7  *
      8  * Permission to use, copy, modify, and distribute this software for any
      9  * purpose without fee is hereby granted, provided that this entire notice
     10  * is included in all copies of any software which is or includes a copy
     11  * or modification of this software and in all copies of the supporting
     12  * documentation for such software.
     13  *
     14  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
     15  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
     16  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
     17  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
     18  *
     19  ***************************************************************/
     20 
     21 /* Please send bug reports to David M. Gay (dmg at acm dot org,
     22  * with " at " changed at "@" and " dot " changed to ".").    */
     23 
     24 /* On a machine with IEEE extended-precision registers, it is
     25  * necessary to specify double-precision (53-bit) rounding precision
     26  * before invoking strtod or dtoa.  If the machine uses (the equivalent
     27  * of) Intel 80x87 arithmetic, the call
     28  *    _control87(PC_53, MCW_PC);
     29  * does this with many compilers.  Whether this or another call is
     30  * appropriate depends on the compiler; for this to work, it may be
     31  * necessary to #include "float.h" or another system-dependent header
     32  * file.
     33  */
     34 
     35 #include "config.h"
     36 #include "dtoa.h"
     37 
     38 #include "wtf/CPU.h"
     39 #include "wtf/MathExtras.h"
     40 #include "wtf/ThreadingPrimitives.h"
     41 #include "wtf/Vector.h"
     42 #include <stdio.h>
     43 
     44 #if COMPILER(MSVC)
     45 #pragma warning(disable: 4244)
     46 #pragma warning(disable: 4245)
     47 #pragma warning(disable: 4554)
     48 #endif
     49 
     50 namespace WTF {
     51 
     52 Mutex* s_dtoaP5Mutex;
     53 
     54 typedef union {
     55     double d;
     56     uint32_t L[2];
     57 } U;
     58 
     59 #if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
     60 #define word0(x) (x)->L[0]
     61 #define word1(x) (x)->L[1]
     62 #else
     63 #define word0(x) (x)->L[1]
     64 #define word1(x) (x)->L[0]
     65 #endif
     66 #define dval(x) (x)->d
     67 
     68 /* The following definition of Storeinc is appropriate for MIPS processors.
     69  * An alternative that might be better on some machines is
     70  *  *p++ = high << 16 | low & 0xffff;
     71  */
     72 static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
     73 {
     74     uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
     75 #if CPU(BIG_ENDIAN)
     76     p16[0] = high;
     77     p16[1] = low;
     78 #else
     79     p16[1] = high;
     80     p16[0] = low;
     81 #endif
     82     return p + 1;
     83 }
     84 
     85 #define Exp_shift  20
     86 #define Exp_shift1 20
     87 #define Exp_msk1    0x100000
     88 #define Exp_msk11   0x100000
     89 #define Exp_mask  0x7ff00000
     90 #define P 53
     91 #define Bias 1023
     92 #define Emin (-1022)
     93 #define Exp_1  0x3ff00000
     94 #define Exp_11 0x3ff00000
     95 #define Ebits 11
     96 #define Frac_mask  0xfffff
     97 #define Frac_mask1 0xfffff
     98 #define Ten_pmax 22
     99 #define Bletch 0x10
    100 #define Bndry_mask  0xfffff
    101 #define Bndry_mask1 0xfffff
    102 #define LSB 1
    103 #define Sign_bit 0x80000000
    104 #define Log2P 1
    105 #define Tiny0 0
    106 #define Tiny1 1
    107 #define Quick_max 14
    108 #define Int_max 14
    109 
    110 #define rounded_product(a, b) a *= b
    111 #define rounded_quotient(a, b) a /= b
    112 
    113 #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
    114 #define Big1 0xffffffff
    115 
    116 #if CPU(PPC64) || CPU(X86_64)
    117 // FIXME: should we enable this on all 64-bit CPUs?
    118 // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
    119 #define USE_LONG_LONG
    120 #endif
    121 
    122 struct BigInt {
    123     BigInt() : sign(0) { }
    124     int sign;
    125 
    126     void clear()
    127     {
    128         sign = 0;
    129         m_words.clear();
    130     }
    131 
    132     size_t size() const
    133     {
    134         return m_words.size();
    135     }
    136 
    137     void resize(size_t s)
    138     {
    139         m_words.resize(s);
    140     }
    141 
    142     uint32_t* words()
    143     {
    144         return m_words.data();
    145     }
    146 
    147     const uint32_t* words() const
    148     {
    149         return m_words.data();
    150     }
    151 
    152     void append(uint32_t w)
    153     {
    154         m_words.append(w);
    155     }
    156 
    157     Vector<uint32_t, 16> m_words;
    158 };
    159 
    160 static void multadd(BigInt& b, int m, int a)    /* multiply by m and add a */
    161 {
    162 #ifdef USE_LONG_LONG
    163     unsigned long long carry;
    164 #else
    165     uint32_t carry;
    166 #endif
    167 
    168     int wds = b.size();
    169     uint32_t* x = b.words();
    170     int i = 0;
    171     carry = a;
    172     do {
    173 #ifdef USE_LONG_LONG
    174         unsigned long long y = *x * (unsigned long long)m + carry;
    175         carry = y >> 32;
    176         *x++ = (uint32_t)y & 0xffffffffUL;
    177 #else
    178         uint32_t xi = *x;
    179         uint32_t y = (xi & 0xffff) * m + carry;
    180         uint32_t z = (xi >> 16) * m + (y >> 16);
    181         carry = z >> 16;
    182         *x++ = (z << 16) + (y & 0xffff);
    183 #endif
    184     } while (++i < wds);
    185 
    186     if (carry)
    187         b.append((uint32_t)carry);
    188 }
    189 
    190 static int hi0bits(uint32_t x)
    191 {
    192     int k = 0;
    193 
    194     if (!(x & 0xffff0000)) {
    195         k = 16;
    196         x <<= 16;
    197     }
    198     if (!(x & 0xff000000)) {
    199         k += 8;
    200         x <<= 8;
    201     }
    202     if (!(x & 0xf0000000)) {
    203         k += 4;
    204         x <<= 4;
    205     }
    206     if (!(x & 0xc0000000)) {
    207         k += 2;
    208         x <<= 2;
    209     }
    210     if (!(x & 0x80000000)) {
    211         k++;
    212         if (!(x & 0x40000000))
    213             return 32;
    214     }
    215     return k;
    216 }
    217 
    218 static int lo0bits(uint32_t* y)
    219 {
    220     int k;
    221     uint32_t x = *y;
    222 
    223     if (x & 7) {
    224         if (x & 1)
    225             return 0;
    226         if (x & 2) {
    227             *y = x >> 1;
    228             return 1;
    229         }
    230         *y = x >> 2;
    231         return 2;
    232     }
    233     k = 0;
    234     if (!(x & 0xffff)) {
    235         k = 16;
    236         x >>= 16;
    237     }
    238     if (!(x & 0xff)) {
    239         k += 8;
    240         x >>= 8;
    241     }
    242     if (!(x & 0xf)) {
    243         k += 4;
    244         x >>= 4;
    245     }
    246     if (!(x & 0x3)) {
    247         k += 2;
    248         x >>= 2;
    249     }
    250     if (!(x & 1)) {
    251         k++;
    252         x >>= 1;
    253         if (!x)
    254             return 32;
    255     }
    256     *y = x;
    257     return k;
    258 }
    259 
    260 static void i2b(BigInt& b, int i)
    261 {
    262     b.sign = 0;
    263     b.resize(1);
    264     b.words()[0] = i;
    265 }
    266 
    267 static void mult(BigInt& aRef, const BigInt& bRef)
    268 {
    269     const BigInt* a = &aRef;
    270     const BigInt* b = &bRef;
    271     BigInt c;
    272     int wa, wb, wc;
    273     const uint32_t* x = 0;
    274     const uint32_t* xa;
    275     const uint32_t* xb;
    276     const uint32_t* xae;
    277     const uint32_t* xbe;
    278     uint32_t* xc;
    279     uint32_t* xc0;
    280     uint32_t y;
    281 #ifdef USE_LONG_LONG
    282     unsigned long long carry, z;
    283 #else
    284     uint32_t carry, z;
    285 #endif
    286 
    287     if (a->size() < b->size()) {
    288         const BigInt* tmp = a;
    289         a = b;
    290         b = tmp;
    291     }
    292 
    293     wa = a->size();
    294     wb = b->size();
    295     wc = wa + wb;
    296     c.resize(wc);
    297 
    298     for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
    299         *xc = 0;
    300     xa = a->words();
    301     xae = xa + wa;
    302     xb = b->words();
    303     xbe = xb + wb;
    304     xc0 = c.words();
    305 #ifdef USE_LONG_LONG
    306     for (; xb < xbe; xc0++) {
    307         if ((y = *xb++)) {
    308             x = xa;
    309             xc = xc0;
    310             carry = 0;
    311             do {
    312                 z = *x++ * (unsigned long long)y + *xc + carry;
    313                 carry = z >> 32;
    314                 *xc++ = (uint32_t)z & 0xffffffffUL;
    315             } while (x < xae);
    316             *xc = (uint32_t)carry;
    317         }
    318     }
    319 #else
    320     for (; xb < xbe; xb++, xc0++) {
    321         if ((y = *xb & 0xffff)) {
    322             x = xa;
    323             xc = xc0;
    324             carry = 0;
    325             do {
    326                 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
    327                 carry = z >> 16;
    328                 uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
    329                 carry = z2 >> 16;
    330                 xc = storeInc(xc, z2, z);
    331             } while (x < xae);
    332             *xc = carry;
    333         }
    334         if ((y = *xb >> 16)) {
    335             x = xa;
    336             xc = xc0;
    337             carry = 0;
    338             uint32_t z2 = *xc;
    339             do {
    340                 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
    341                 carry = z >> 16;
    342                 xc = storeInc(xc, z, z2);
    343                 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
    344                 carry = z2 >> 16;
    345             } while (x < xae);
    346             *xc = z2;
    347         }
    348     }
    349 #endif
    350     for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
    351     c.resize(wc);
    352     aRef = c;
    353 }
    354 
    355 struct P5Node {
    356     WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
    357 public:
    358     P5Node() { }
    359     BigInt val;
    360     P5Node* next;
    361 };
    362 
    363 static P5Node* p5s;
    364 static int p5sCount;
    365 
    366 static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
    367 {
    368     static int p05[3] = { 5, 25, 125 };
    369 
    370     if (int i = k & 3)
    371         multadd(b, p05[i - 1], 0);
    372 
    373     if (!(k >>= 2))
    374         return;
    375 
    376     s_dtoaP5Mutex->lock();
    377     P5Node* p5 = p5s;
    378 
    379     if (!p5) {
    380         /* first time */
    381         p5 = new P5Node;
    382         i2b(p5->val, 625);
    383         p5->next = 0;
    384         p5s = p5;
    385         p5sCount = 1;
    386     }
    387 
    388     int p5sCountLocal = p5sCount;
    389     s_dtoaP5Mutex->unlock();
    390     int p5sUsed = 0;
    391 
    392     for (;;) {
    393         if (k & 1)
    394             mult(b, p5->val);
    395 
    396         if (!(k >>= 1))
    397             break;
    398 
    399         if (++p5sUsed == p5sCountLocal) {
    400             s_dtoaP5Mutex->lock();
    401             if (p5sUsed == p5sCount) {
    402                 ASSERT(!p5->next);
    403                 p5->next = new P5Node;
    404                 p5->next->next = 0;
    405                 p5->next->val = p5->val;
    406                 mult(p5->next->val, p5->next->val);
    407                 ++p5sCount;
    408             }
    409 
    410             p5sCountLocal = p5sCount;
    411             s_dtoaP5Mutex->unlock();
    412         }
    413         p5 = p5->next;
    414     }
    415 }
    416 
    417 static ALWAYS_INLINE void lshift(BigInt& b, int k)
    418 {
    419     int n = k >> 5;
    420 
    421     int origSize = b.size();
    422     int n1 = n + origSize + 1;
    423 
    424     if (k &= 0x1f)
    425         b.resize(b.size() + n + 1);
    426     else
    427         b.resize(b.size() + n);
    428 
    429     const uint32_t* srcStart = b.words();
    430     uint32_t* dstStart = b.words();
    431     const uint32_t* src = srcStart + origSize - 1;
    432     uint32_t* dst = dstStart + n1 - 1;
    433     if (k) {
    434         uint32_t hiSubword = 0;
    435         int s = 32 - k;
    436         for (; src >= srcStart; --src) {
    437             *dst-- = hiSubword | *src >> s;
    438             hiSubword = *src << k;
    439         }
    440         *dst = hiSubword;
    441         ASSERT(dst == dstStart + n);
    442 
    443         b.resize(origSize + n + !!b.words()[n1 - 1]);
    444     }
    445     else {
    446         do {
    447             *--dst = *src--;
    448         } while (src >= srcStart);
    449     }
    450     for (dst = dstStart + n; dst != dstStart; )
    451         *--dst = 0;
    452 
    453     ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
    454 }
    455 
    456 static int cmp(const BigInt& a, const BigInt& b)
    457 {
    458     const uint32_t *xa, *xa0, *xb, *xb0;
    459     int i, j;
    460 
    461     i = a.size();
    462     j = b.size();
    463     ASSERT(i <= 1 || a.words()[i - 1]);
    464     ASSERT(j <= 1 || b.words()[j - 1]);
    465     if (i -= j)
    466         return i;
    467     xa0 = a.words();
    468     xa = xa0 + j;
    469     xb0 = b.words();
    470     xb = xb0 + j;
    471     for (;;) {
    472         if (*--xa != *--xb)
    473             return *xa < *xb ? -1 : 1;
    474         if (xa <= xa0)
    475             break;
    476     }
    477     return 0;
    478 }
    479 
    480 static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
    481 {
    482     const BigInt* a = &aRef;
    483     const BigInt* b = &bRef;
    484     int i, wa, wb;
    485     uint32_t* xc;
    486 
    487     i = cmp(*a, *b);
    488     if (!i) {
    489         c.sign = 0;
    490         c.resize(1);
    491         c.words()[0] = 0;
    492         return;
    493     }
    494     if (i < 0) {
    495         const BigInt* tmp = a;
    496         a = b;
    497         b = tmp;
    498         i = 1;
    499     } else
    500         i = 0;
    501 
    502     wa = a->size();
    503     const uint32_t* xa = a->words();
    504     const uint32_t* xae = xa + wa;
    505     wb = b->size();
    506     const uint32_t* xb = b->words();
    507     const uint32_t* xbe = xb + wb;
    508 
    509     c.resize(wa);
    510     c.sign = i;
    511     xc = c.words();
    512 #ifdef USE_LONG_LONG
    513     unsigned long long borrow = 0;
    514     do {
    515         unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
    516         borrow = y >> 32 & (uint32_t)1;
    517         *xc++ = (uint32_t)y & 0xffffffffUL;
    518     } while (xb < xbe);
    519     while (xa < xae) {
    520         unsigned long long y = *xa++ - borrow;
    521         borrow = y >> 32 & (uint32_t)1;
    522         *xc++ = (uint32_t)y & 0xffffffffUL;
    523     }
    524 #else
    525     uint32_t borrow = 0;
    526     do {
    527         uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
    528         borrow = (y & 0x10000) >> 16;
    529         uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
    530         borrow = (z & 0x10000) >> 16;
    531         xc = storeInc(xc, z, y);
    532     } while (xb < xbe);
    533     while (xa < xae) {
    534         uint32_t y = (*xa & 0xffff) - borrow;
    535         borrow = (y & 0x10000) >> 16;
    536         uint32_t z = (*xa++ >> 16) - borrow;
    537         borrow = (z & 0x10000) >> 16;
    538         xc = storeInc(xc, z, y);
    539     }
    540 #endif
    541     while (!*--xc)
    542         wa--;
    543     c.resize(wa);
    544 }
    545 
    546 static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
    547 {
    548     int de, k;
    549     uint32_t* x;
    550     uint32_t y, z;
    551     int i;
    552 #define d0 word0(d)
    553 #define d1 word1(d)
    554 
    555     b.sign = 0;
    556     b.resize(1);
    557     x = b.words();
    558 
    559     z = d0 & Frac_mask;
    560     d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
    561     if ((de = (int)(d0 >> Exp_shift)))
    562         z |= Exp_msk1;
    563     if ((y = d1)) {
    564         if ((k = lo0bits(&y))) {
    565             x[0] = y | (z << (32 - k));
    566             z >>= k;
    567         } else
    568             x[0] = y;
    569         if (z) {
    570             b.resize(2);
    571             x[1] = z;
    572         }
    573 
    574         i = b.size();
    575     } else {
    576         k = lo0bits(&z);
    577         x[0] = z;
    578         i = 1;
    579         b.resize(1);
    580         k += 32;
    581     }
    582     if (de) {
    583         *e = de - Bias - (P - 1) + k;
    584         *bits = P - k;
    585     } else {
    586         *e = 0 - Bias - (P - 1) + 1 + k;
    587         *bits = (32 * i) - hi0bits(x[i - 1]);
    588     }
    589 }
    590 #undef d0
    591 #undef d1
    592 
    593 static const double tens[] = {
    594     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
    595     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
    596     1e20, 1e21, 1e22
    597 };
    598 
    599 static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
    600 static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
    601     9007199254740992. * 9007199254740992.e-256
    602     /* = 2^106 * 1e-256 */
    603 };
    604 
    605 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
    606 /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
    607 #define Scale_Bit 0x10
    608 #define n_bigtens 5
    609 
    610 static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
    611 {
    612     size_t n;
    613     uint32_t* bx;
    614     uint32_t* bxe;
    615     uint32_t q;
    616     uint32_t* sx;
    617     uint32_t* sxe;
    618 #ifdef USE_LONG_LONG
    619     unsigned long long borrow, carry, y, ys;
    620 #else
    621     uint32_t borrow, carry, y, ys;
    622     uint32_t si, z, zs;
    623 #endif
    624     ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
    625     ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
    626 
    627     n = S.size();
    628     ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
    629     if (b.size() < n)
    630         return 0;
    631     sx = S.words();
    632     sxe = sx + --n;
    633     bx = b.words();
    634     bxe = bx + n;
    635     q = *bxe / (*sxe + 1);    /* ensure q <= true quotient */
    636     ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
    637     if (q) {
    638         borrow = 0;
    639         carry = 0;
    640         do {
    641 #ifdef USE_LONG_LONG
    642             ys = *sx++ * (unsigned long long)q + carry;
    643             carry = ys >> 32;
    644             y = *bx - (ys & 0xffffffffUL) - borrow;
    645             borrow = y >> 32 & (uint32_t)1;
    646             *bx++ = (uint32_t)y & 0xffffffffUL;
    647 #else
    648             si = *sx++;
    649             ys = (si & 0xffff) * q + carry;
    650             zs = (si >> 16) * q + (ys >> 16);
    651             carry = zs >> 16;
    652             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
    653             borrow = (y & 0x10000) >> 16;
    654             z = (*bx >> 16) - (zs & 0xffff) - borrow;
    655             borrow = (z & 0x10000) >> 16;
    656             bx = storeInc(bx, z, y);
    657 #endif
    658         } while (sx <= sxe);
    659         if (!*bxe) {
    660             bx = b.words();
    661             while (--bxe > bx && !*bxe)
    662                 --n;
    663             b.resize(n);
    664         }
    665     }
    666     if (cmp(b, S) >= 0) {
    667         q++;
    668         borrow = 0;
    669         carry = 0;
    670         bx = b.words();
    671         sx = S.words();
    672         do {
    673 #ifdef USE_LONG_LONG
    674             ys = *sx++ + carry;
    675             carry = ys >> 32;
    676             y = *bx - (ys & 0xffffffffUL) - borrow;
    677             borrow = y >> 32 & (uint32_t)1;
    678             *bx++ = (uint32_t)y & 0xffffffffUL;
    679 #else
    680             si = *sx++;
    681             ys = (si & 0xffff) + carry;
    682             zs = (si >> 16) + (ys >> 16);
    683             carry = zs >> 16;
    684             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
    685             borrow = (y & 0x10000) >> 16;
    686             z = (*bx >> 16) - (zs & 0xffff) - borrow;
    687             borrow = (z & 0x10000) >> 16;
    688             bx = storeInc(bx, z, y);
    689 #endif
    690         } while (sx <= sxe);
    691         bx = b.words();
    692         bxe = bx + n;
    693         if (!*bxe) {
    694             while (--bxe > bx && !*bxe)
    695                 --n;
    696             b.resize(n);
    697         }
    698     }
    699     return q;
    700 }
    701 
    702 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
    703  *
    704  * Inspired by "How to Print Floating-Point Numbers Accurately" by
    705  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
    706  *
    707  * Modifications:
    708  *    1. Rather than iterating, we use a simple numeric overestimate
    709  *       to determine k = floor(log10(d)).  We scale relevant
    710  *       quantities using O(log2(k)) rather than O(k) multiplications.
    711  *    2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
    712  *       try to generate digits strictly left to right.  Instead, we
    713  *       compute with fewer bits and propagate the carry if necessary
    714  *       when rounding the final digit up.  This is often faster.
    715  *    3. Under the assumption that input will be rounded nearest,
    716  *       mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
    717  *       That is, we allow equality in stopping tests when the
    718  *       round-nearest rule will give the same floating-point value
    719  *       as would satisfaction of the stopping test with strict
    720  *       inequality.
    721  *    4. We remove common factors of powers of 2 from relevant
    722  *       quantities.
    723  *    5. When converting floating-point integers less than 1e16,
    724  *       we use floating-point arithmetic rather than resorting
    725  *       to multiple-precision integers.
    726  *    6. When asked to produce fewer than 15 digits, we first try
    727  *       to get by with floating-point arithmetic; we resort to
    728  *       multiple-precision integer arithmetic only if we cannot
    729  *       guarantee that the floating-point calculation has given
    730  *       the correctly rounded result.  For k requested digits and
    731  *       "uniformly" distributed input, the probability is
    732  *       something like 10^(k-15) that we must resort to the int32_t
    733  *       calculation.
    734  *
    735  * Note: 'leftright' translates to 'generate shortest possible string'.
    736  */
    737 template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
    738 void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
    739 {
    740     // Exactly one rounding mode must be specified.
    741     ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
    742     // roundingNone only allowed (only sensible?) with leftright set.
    743     ASSERT(!roundingNone || leftright);
    744 
    745     ASSERT(std::isfinite(dd));
    746 
    747     int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
    748         j, j1, k, k0, k_check, m2, m5, s2, s5,
    749         spec_case;
    750     int32_t L;
    751     int denorm;
    752     uint32_t x;
    753     BigInt b, delta, mlo, mhi, S;
    754     U d2, eps, u;
    755     double ds;
    756     char* s;
    757     char* s0;
    758 
    759     u.d = dd;
    760 
    761     /* Infinity or NaN */
    762     ASSERT((word0(&u) & Exp_mask) != Exp_mask);
    763 
    764     // JavaScript toString conversion treats -0 as 0.
    765     if (!dval(&u)) {
    766         signOut = false;
    767         exponentOut = 0;
    768         precisionOut = 1;
    769         result[0] = '0';
    770         result[1] = '\0';
    771         return;
    772     }
    773 
    774     if (word0(&u) & Sign_bit) {
    775         signOut = true;
    776         word0(&u) &= ~Sign_bit; // clear sign bit
    777     } else
    778         signOut = false;
    779 
    780     d2b(b, &u, &be, &bbits);
    781     if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
    782         dval(&d2) = dval(&u);
    783         word0(&d2) &= Frac_mask1;
    784         word0(&d2) |= Exp_11;
    785 
    786         /* log(x)    ~=~ log(1.5) + (x-1.5)/1.5
    787          * log10(x)     =  log(x) / log(10)
    788          *        ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
    789          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
    790          *
    791          * This suggests computing an approximation k to log10(d) by
    792          *
    793          * k = (i - Bias)*0.301029995663981
    794          *    + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
    795          *
    796          * We want k to be too large rather than too small.
    797          * The error in the first-order Taylor series approximation
    798          * is in our favor, so we just round up the constant enough
    799          * to compensate for any error in the multiplication of
    800          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
    801          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
    802          * adding 1e-13 to the constant term more than suffices.
    803          * Hence we adjust the constant term to 0.1760912590558.
    804          * (We could get a more accurate k by invoking log10,
    805          *  but this is probably not worthwhile.)
    806          */
    807 
    808         i -= Bias;
    809         denorm = 0;
    810     } else {
    811         /* d is denormalized */
    812 
    813         i = bbits + be + (Bias + (P - 1) - 1);
    814         x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
    815                 : word1(&u) << (32 - i);
    816         dval(&d2) = x;
    817         word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
    818         i -= (Bias + (P - 1) - 1) + 1;
    819         denorm = 1;
    820     }
    821     ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
    822     k = (int)ds;
    823     if (ds < 0. && ds != k)
    824         k--;    /* want k = floor(ds) */
    825     k_check = 1;
    826     if (k >= 0 && k <= Ten_pmax) {
    827         if (dval(&u) < tens[k])
    828             k--;
    829         k_check = 0;
    830     }
    831     j = bbits - i - 1;
    832     if (j >= 0) {
    833         b2 = 0;
    834         s2 = j;
    835     } else {
    836         b2 = -j;
    837         s2 = 0;
    838     }
    839     if (k >= 0) {
    840         b5 = 0;
    841         s5 = k;
    842         s2 += k;
    843     } else {
    844         b2 -= k;
    845         b5 = -k;
    846         s5 = 0;
    847     }
    848 
    849     if (roundingNone) {
    850         ilim = ilim1 = -1;
    851         i = 18;
    852         ndigits = 0;
    853     }
    854     if (roundingSignificantFigures) {
    855         if (ndigits <= 0)
    856             ndigits = 1;
    857         ilim = ilim1 = i = ndigits;
    858     }
    859     if (roundingDecimalPlaces) {
    860         i = ndigits + k + 1;
    861         ilim = i;
    862         ilim1 = i - 1;
    863         if (i <= 0)
    864             i = 1;
    865     }
    866 
    867     s = s0 = result;
    868 
    869     if (ilim >= 0 && ilim <= Quick_max) {
    870         /* Try to get by with floating-point arithmetic. */
    871 
    872         i = 0;
    873         dval(&d2) = dval(&u);
    874         k0 = k;
    875         ilim0 = ilim;
    876         ieps = 2; /* conservative */
    877         if (k > 0) {
    878             ds = tens[k & 0xf];
    879             j = k >> 4;
    880             if (j & Bletch) {
    881                 /* prevent overflows */
    882                 j &= Bletch - 1;
    883                 dval(&u) /= bigtens[n_bigtens - 1];
    884                 ieps++;
    885             }
    886             for (; j; j >>= 1, i++) {
    887                 if (j & 1) {
    888                     ieps++;
    889                     ds *= bigtens[i];
    890                 }
    891             }
    892             dval(&u) /= ds;
    893         } else if ((j1 = -k)) {
    894             dval(&u) *= tens[j1 & 0xf];
    895             for (j = j1 >> 4; j; j >>= 1, i++) {
    896                 if (j & 1) {
    897                     ieps++;
    898                     dval(&u) *= bigtens[i];
    899                 }
    900             }
    901         }
    902         if (k_check && dval(&u) < 1. && ilim > 0) {
    903             if (ilim1 <= 0)
    904                 goto fastFailed;
    905             ilim = ilim1;
    906             k--;
    907             dval(&u) *= 10.;
    908             ieps++;
    909         }
    910         dval(&eps) = (ieps * dval(&u)) + 7.;
    911         word0(&eps) -= (P - 1) * Exp_msk1;
    912         if (!ilim) {
    913             S.clear();
    914             mhi.clear();
    915             dval(&u) -= 5.;
    916             if (dval(&u) > dval(&eps))
    917                 goto oneDigit;
    918             if (dval(&u) < -dval(&eps))
    919                 goto noDigits;
    920             goto fastFailed;
    921         }
    922         if (leftright) {
    923             /* Use Steele & White method of only
    924              * generating digits needed.
    925              */
    926             dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
    927             for (i = 0;;) {
    928                 L = (long int)dval(&u);
    929                 dval(&u) -= L;
    930                 *s++ = '0' + (int)L;
    931                 if (dval(&u) < dval(&eps))
    932                     goto ret;
    933                 if (1. - dval(&u) < dval(&eps))
    934                     goto bumpUp;
    935                 if (++i >= ilim)
    936                     break;
    937                 dval(&eps) *= 10.;
    938                 dval(&u) *= 10.;
    939             }
    940         } else {
    941             /* Generate ilim digits, then fix them up. */
    942             dval(&eps) *= tens[ilim - 1];
    943             for (i = 1;; i++, dval(&u) *= 10.) {
    944                 L = (int32_t)(dval(&u));
    945                 if (!(dval(&u) -= L))
    946                     ilim = i;
    947                 *s++ = '0' + (int)L;
    948                 if (i == ilim) {
    949                     if (dval(&u) > 0.5 + dval(&eps))
    950                         goto bumpUp;
    951                     if (dval(&u) < 0.5 - dval(&eps)) {
    952                         while (*--s == '0') { }
    953                         s++;
    954                         goto ret;
    955                     }
    956                     break;
    957                 }
    958             }
    959         }
    960 fastFailed:
    961         s = s0;
    962         dval(&u) = dval(&d2);
    963         k = k0;
    964         ilim = ilim0;
    965     }
    966 
    967     /* Do we have a "small" integer? */
    968 
    969     if (be >= 0 && k <= Int_max) {
    970         /* Yes. */
    971         ds = tens[k];
    972         if (ndigits < 0 && ilim <= 0) {
    973             S.clear();
    974             mhi.clear();
    975             if (ilim < 0 || dval(&u) <= 5 * ds)
    976                 goto noDigits;
    977             goto oneDigit;
    978         }
    979         for (i = 1;; i++, dval(&u) *= 10.) {
    980             L = (int32_t)(dval(&u) / ds);
    981             dval(&u) -= L * ds;
    982             *s++ = '0' + (int)L;
    983             if (!dval(&u)) {
    984                 break;
    985             }
    986             if (i == ilim) {
    987                 dval(&u) += dval(&u);
    988                 if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
    989 bumpUp:
    990                     while (*--s == '9')
    991                         if (s == s0) {
    992                             k++;
    993                             *s = '0';
    994                             break;
    995                         }
    996                     ++*s++;
    997                 }
    998                 break;
    999             }
   1000         }
   1001         goto ret;
   1002     }
   1003 
   1004     m2 = b2;
   1005     m5 = b5;
   1006     mhi.clear();
   1007     mlo.clear();
   1008     if (leftright) {
   1009         i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
   1010         b2 += i;
   1011         s2 += i;
   1012         i2b(mhi, 1);
   1013     }
   1014     if (m2 > 0 && s2 > 0) {
   1015         i = m2 < s2 ? m2 : s2;
   1016         b2 -= i;
   1017         m2 -= i;
   1018         s2 -= i;
   1019     }
   1020     if (b5 > 0) {
   1021         if (leftright) {
   1022             if (m5 > 0) {
   1023                 pow5mult(mhi, m5);
   1024                 mult(b, mhi);
   1025             }
   1026             if ((j = b5 - m5))
   1027                 pow5mult(b, j);
   1028         } else
   1029             pow5mult(b, b5);
   1030     }
   1031     i2b(S, 1);
   1032     if (s5 > 0)
   1033         pow5mult(S, s5);
   1034 
   1035     /* Check for special case that d is a normalized power of 2. */
   1036 
   1037     spec_case = 0;
   1038     if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
   1039         /* The special case */
   1040         b2 += Log2P;
   1041         s2 += Log2P;
   1042         spec_case = 1;
   1043     }
   1044 
   1045     /* Arrange for convenient computation of quotients:
   1046      * shift left if necessary so divisor has 4 leading 0 bits.
   1047      *
   1048      * Perhaps we should just compute leading 28 bits of S once
   1049      * and for all and pass them and a shift to quorem, so it
   1050      * can do shifts and ors to compute the numerator for q.
   1051      */
   1052     if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
   1053         i = 32 - i;
   1054     if (i > 4) {
   1055         i -= 4;
   1056         b2 += i;
   1057         m2 += i;
   1058         s2 += i;
   1059     } else if (i < 4) {
   1060         i += 28;
   1061         b2 += i;
   1062         m2 += i;
   1063         s2 += i;
   1064     }
   1065     if (b2 > 0)
   1066         lshift(b, b2);
   1067     if (s2 > 0)
   1068         lshift(S, s2);
   1069     if (k_check) {
   1070         if (cmp(b, S) < 0) {
   1071             k--;
   1072             multadd(b, 10, 0);    /* we botched the k estimate */
   1073             if (leftright)
   1074                 multadd(mhi, 10, 0);
   1075             ilim = ilim1;
   1076         }
   1077     }
   1078     if (ilim <= 0 && roundingDecimalPlaces) {
   1079         if (ilim < 0)
   1080             goto noDigits;
   1081         multadd(S, 5, 0);
   1082         // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
   1083         if (cmp(b, S) < 0)
   1084             goto noDigits;
   1085         goto oneDigit;
   1086     }
   1087     if (leftright) {
   1088         if (m2 > 0)
   1089             lshift(mhi, m2);
   1090 
   1091         /* Compute mlo -- check for special case
   1092          * that d is a normalized power of 2.
   1093          */
   1094 
   1095         mlo = mhi;
   1096         if (spec_case)
   1097             lshift(mhi, Log2P);
   1098 
   1099         for (i = 1;;i++) {
   1100             dig = quorem(b, S) + '0';
   1101             /* Do we yet have the shortest decimal string
   1102              * that will round to d?
   1103              */
   1104             j = cmp(b, mlo);
   1105             diff(delta, S, mhi);
   1106             j1 = delta.sign ? 1 : cmp(b, delta);
   1107 #ifdef DTOA_ROUND_BIASED
   1108             if (j < 0 || !j) {
   1109 #else
   1110             // FIXME: ECMA-262 specifies that equidistant results round away from
   1111             // zero, which probably means we shouldn't be on the unbiased code path
   1112             // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
   1113             // yet understood this code well enough to make the call, but we should
   1114             // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
   1115             // case to understand is probably "Math.pow(0.5, 24).toString()".
   1116             // I believe this value is interesting because I think it is precisely
   1117             // representable in binary floating point, and its decimal representation
   1118             // has a single digit that Steele & White reduction can remove, with the
   1119             // value 5 (thus equidistant from the next numbers above and below).
   1120             // We produce the correct answer using either codepath, and I don't as
   1121             // yet understand why. :-)
   1122             if (!j1 && !(word1(&u) & 1)) {
   1123                 if (dig == '9')
   1124                     goto round9up;
   1125                 if (j > 0)
   1126                     dig++;
   1127                 *s++ = dig;
   1128                 goto ret;
   1129             }
   1130             if (j < 0 || (!j && !(word1(&u) & 1))) {
   1131 #endif
   1132                 if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
   1133                     lshift(b, 1);
   1134                     j1 = cmp(b, S);
   1135                     // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
   1136                     // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
   1137                     // be rounded away from zero.
   1138                     if (j1 >= 0) {
   1139                         if (dig == '9')
   1140                             goto round9up;
   1141                         dig++;
   1142                     }
   1143                 }
   1144                 *s++ = dig;
   1145                 goto ret;
   1146             }
   1147             if (j1 > 0) {
   1148                 if (dig == '9') { /* possible if i == 1 */
   1149 round9up:
   1150                     *s++ = '9';
   1151                     goto roundoff;
   1152                 }
   1153                 *s++ = dig + 1;
   1154                 goto ret;
   1155             }
   1156             *s++ = dig;
   1157             if (i == ilim)
   1158                 break;
   1159             multadd(b, 10, 0);
   1160             multadd(mlo, 10, 0);
   1161             multadd(mhi, 10, 0);
   1162         }
   1163     } else {
   1164         for (i = 1;; i++) {
   1165             *s++ = dig = quorem(b, S) + '0';
   1166             if (!b.words()[0] && b.size() <= 1)
   1167                 goto ret;
   1168             if (i >= ilim)
   1169                 break;
   1170             multadd(b, 10, 0);
   1171         }
   1172     }
   1173 
   1174     /* Round off last digit */
   1175 
   1176     lshift(b, 1);
   1177     j = cmp(b, S);
   1178     // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
   1179     // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
   1180     // be rounded away from zero.
   1181     if (j >= 0) {
   1182 roundoff:
   1183         while (*--s == '9')
   1184             if (s == s0) {
   1185                 k++;
   1186                 *s++ = '1';
   1187                 goto ret;
   1188             }
   1189         ++*s++;
   1190     } else {
   1191         while (*--s == '0') { }
   1192         s++;
   1193     }
   1194     goto ret;
   1195 noDigits:
   1196     exponentOut = 0;
   1197     precisionOut = 1;
   1198     result[0] = '0';
   1199     result[1] = '\0';
   1200     return;
   1201 oneDigit:
   1202     *s++ = '1';
   1203     k++;
   1204     goto ret;
   1205 ret:
   1206     ASSERT(s > result);
   1207     *s = 0;
   1208     exponentOut = k;
   1209     precisionOut = s - result;
   1210 }
   1211 
   1212 void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
   1213 {
   1214     // flags are roundingNone, leftright.
   1215     dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
   1216 }
   1217 
   1218 void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
   1219 {
   1220     // flag is roundingSignificantFigures.
   1221     dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
   1222 }
   1223 
   1224 void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
   1225 {
   1226     // flag is roundingDecimalPlaces.
   1227     dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
   1228 }
   1229 
   1230 const char* numberToString(double d, NumberToStringBuffer buffer)
   1231 {
   1232     double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
   1233     const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
   1234     converter.ToShortest(d, &builder);
   1235     return builder.Finalize();
   1236 }
   1237 
   1238 static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
   1239 {
   1240     size_t length = builder.position();
   1241     size_t decimalPointPosition = 0;
   1242     for (; decimalPointPosition < length; ++decimalPointPosition) {
   1243         if (buffer[decimalPointPosition] == '.')
   1244             break;
   1245     }
   1246 
   1247     // No decimal seperator found, early exit.
   1248     if (decimalPointPosition == length)
   1249         return builder.Finalize();
   1250 
   1251     size_t truncatedLength = length - 1;
   1252     for (; truncatedLength > decimalPointPosition; --truncatedLength) {
   1253         if (buffer[truncatedLength] != '0')
   1254             break;
   1255     }
   1256 
   1257     // No trailing zeros found to strip.
   1258     if (truncatedLength == length - 1)
   1259         return builder.Finalize();
   1260 
   1261     // If we removed all trailing zeros, remove the decimal point as well.
   1262     if (truncatedLength == decimalPointPosition) {
   1263         ASSERT(truncatedLength > 0);
   1264         --truncatedLength;
   1265     }
   1266 
   1267     // Truncate the StringBuilder, and return the final result.
   1268     builder.SetPosition(truncatedLength + 1);
   1269     return builder.Finalize();
   1270 }
   1271 
   1272 const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
   1273 {
   1274     // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
   1275     // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
   1276     // The e format is used only when the exponent of the value is less than 4 or greater than or equal to the
   1277     // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
   1278     // "precision": The precision specifies the maximum number of significant digits printed.
   1279     double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
   1280     const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
   1281     converter.ToPrecision(d, significantFigures, &builder);
   1282     if (!truncateTrailingZeros)
   1283         return builder.Finalize();
   1284     return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
   1285 }
   1286 
   1287 const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
   1288 {
   1289     // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
   1290     // "f": Signed value having the form [  ]dddd.dddd, where dddd is one or more decimal digits.
   1291     // The number of digits before the decimal point depends on the magnitude of the number, and
   1292     // the number of digits after the decimal point depends on the requested precision.
   1293     // "precision": The precision value specifies the number of digits after the decimal point.
   1294     // If a decimal point appears, at least one digit appears before it.
   1295     // The value is rounded to the appropriate number of digits.
   1296     double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
   1297     const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
   1298     converter.ToFixed(d, decimalPlaces, &builder);
   1299     return builder.Finalize();
   1300 }
   1301 
   1302 namespace Internal {
   1303 
   1304 double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
   1305 {
   1306     Vector<LChar> conversionBuffer(length);
   1307     for (size_t i = 0; i < length; ++i)
   1308         conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
   1309     return parseDouble(conversionBuffer.data(), length, parsedLength);
   1310 }
   1311 
   1312 } // namespace Internal
   1313 
   1314 } // namespace WTF
   1315