Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkTArray_DEFINED
      9 #define SkTArray_DEFINED
     10 
     11 #include <new>
     12 #include "SkTypes.h"
     13 #include "SkTemplates.h"
     14 
     15 template <typename T, bool MEM_COPY = false> class SkTArray;
     16 
     17 namespace SkTArrayExt {
     18 
     19 template<typename T>
     20 inline void copy(SkTArray<T, true>* self, const T* array) {
     21     memcpy(self->fMemArray, array, self->fCount * sizeof(T));
     22 }
     23 template<typename T>
     24 inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) {
     25     memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T));
     26 }
     27 
     28 template<typename T>
     29 inline void copy(SkTArray<T, false>* self, const T* array) {
     30     for (int i = 0; i < self->fCount; ++i) {
     31         SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i]));
     32     }
     33 }
     34 template<typename T>
     35 inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) {
     36     for (int i = 0; i < self->fCount; ++i) {
     37         SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i]));
     38         self->fItemArray[i].~T();
     39     }
     40 }
     41 
     42 }
     43 
     44 template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int);
     45 
     46 /** When MEM_COPY is true T will be bit copied when moved.
     47     When MEM_COPY is false, T will be copy constructed / destructed.
     48     In all cases T's constructor will be called on allocation,
     49     and its destructor will be called from this object's destructor.
     50 */
     51 template <typename T, bool MEM_COPY> class SkTArray {
     52 public:
     53     /**
     54      * Creates an empty array with no initial storage
     55      */
     56     SkTArray() {
     57         fCount = 0;
     58         fReserveCount = gMIN_ALLOC_COUNT;
     59         fAllocCount = 0;
     60         fMemArray = NULL;
     61         fPreAllocMemArray = NULL;
     62     }
     63 
     64     /**
     65      * Creates an empty array that will preallocate space for reserveCount
     66      * elements.
     67      */
     68     explicit SkTArray(int reserveCount) {
     69         this->init(NULL, 0, NULL, reserveCount);
     70     }
     71 
     72     /**
     73      * Copies one array to another. The new array will be heap allocated.
     74      */
     75     explicit SkTArray(const SkTArray& array) {
     76         this->init(array.fItemArray, array.fCount, NULL, 0);
     77     }
     78 
     79     /**
     80      * Creates a SkTArray by copying contents of a standard C array. The new
     81      * array will be heap allocated. Be careful not to use this constructor
     82      * when you really want the (void*, int) version.
     83      */
     84     SkTArray(const T* array, int count) {
     85         this->init(array, count, NULL, 0);
     86     }
     87 
     88     /**
     89      * assign copy of array to this
     90      */
     91     SkTArray& operator =(const SkTArray& array) {
     92         for (int i = 0; i < fCount; ++i) {
     93             fItemArray[i].~T();
     94         }
     95         fCount = 0;
     96         this->checkRealloc((int)array.count());
     97         fCount = array.count();
     98         SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray));
     99         return *this;
    100     }
    101 
    102     virtual ~SkTArray() {
    103         for (int i = 0; i < fCount; ++i) {
    104             fItemArray[i].~T();
    105         }
    106         if (fMemArray != fPreAllocMemArray) {
    107             sk_free(fMemArray);
    108         }
    109     }
    110 
    111     /**
    112      * Resets to count() == 0
    113      */
    114     void reset() { this->pop_back_n(fCount); }
    115 
    116     /**
    117      * Resets to count() = n newly constructed T objects.
    118      */
    119     void reset(int n) {
    120         SkASSERT(n >= 0);
    121         for (int i = 0; i < fCount; ++i) {
    122             fItemArray[i].~T();
    123         }
    124         // set fCount to 0 before calling checkRealloc so that no copy cons. are called.
    125         fCount = 0;
    126         this->checkRealloc(n);
    127         fCount = n;
    128         for (int i = 0; i < fCount; ++i) {
    129             SkNEW_PLACEMENT(fItemArray + i, T);
    130         }
    131     }
    132 
    133     /**
    134      * Resets to a copy of a C array.
    135      */
    136     void reset(const T* array, int count) {
    137         for (int i = 0; i < fCount; ++i) {
    138             fItemArray[i].~T();
    139         }
    140         int delta = count - fCount;
    141         this->checkRealloc(delta);
    142         fCount = count;
    143         for (int i = 0; i < count; ++i) {
    144             SkTArrayExt::copy(this, array);
    145         }
    146     }
    147 
    148     /**
    149      * Number of elements in the array.
    150      */
    151     int count() const { return fCount; }
    152 
    153     /**
    154      * Is the array empty.
    155      */
    156     bool empty() const { return !fCount; }
    157 
    158     /**
    159      * Adds 1 new default-constructed T value and returns in by reference. Note
    160      * the reference only remains valid until the next call that adds or removes
    161      * elements.
    162      */
    163     T& push_back() {
    164         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
    165         SkNEW_PLACEMENT(newT, T);
    166         return *newT;
    167     }
    168 
    169     /**
    170      * Version of above that uses a copy constructor to initialize the new item
    171      */
    172     T& push_back(const T& t) {
    173         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
    174         SkNEW_PLACEMENT_ARGS(newT, T, (t));
    175         return *newT;
    176     }
    177 
    178     /**
    179      * Allocates n more default T values, and returns the address of the start
    180      * of that new range. Note: this address is only valid until the next API
    181      * call made on the array that might add or remove elements.
    182      */
    183     T* push_back_n(int n) {
    184         SkASSERT(n >= 0);
    185         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
    186         for (int i = 0; i < n; ++i) {
    187             SkNEW_PLACEMENT(newTs + i, T);
    188         }
    189         return newTs;
    190     }
    191 
    192     /**
    193      * Version of above that uses a copy constructor to initialize all n items
    194      * to the same T.
    195      */
    196     T* push_back_n(int n, const T& t) {
    197         SkASSERT(n >= 0);
    198         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
    199         for (int i = 0; i < n; ++i) {
    200             SkNEW_PLACEMENT_ARGS(newTs[i], T, (t));
    201         }
    202         return newTs;
    203     }
    204 
    205     /**
    206      * Version of above that uses a copy constructor to initialize the n items
    207      * to separate T values.
    208      */
    209     T* push_back_n(int n, const T t[]) {
    210         SkASSERT(n >= 0);
    211         this->checkRealloc(n);
    212         for (int i = 0; i < n; ++i) {
    213             SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i]));
    214         }
    215         fCount += n;
    216         return fItemArray + fCount - n;
    217     }
    218 
    219     /**
    220      * Removes the last element. Not safe to call when count() == 0.
    221      */
    222     void pop_back() {
    223         SkASSERT(fCount > 0);
    224         --fCount;
    225         fItemArray[fCount].~T();
    226         this->checkRealloc(0);
    227     }
    228 
    229     /**
    230      * Removes the last n elements. Not safe to call when count() < n.
    231      */
    232     void pop_back_n(int n) {
    233         SkASSERT(n >= 0);
    234         SkASSERT(fCount >= n);
    235         fCount -= n;
    236         for (int i = 0; i < n; ++i) {
    237             fItemArray[fCount + i].~T();
    238         }
    239         this->checkRealloc(0);
    240     }
    241 
    242     /**
    243      * Pushes or pops from the back to resize. Pushes will be default
    244      * initialized.
    245      */
    246     void resize_back(int newCount) {
    247         SkASSERT(newCount >= 0);
    248 
    249         if (newCount > fCount) {
    250             this->push_back_n(newCount - fCount);
    251         } else if (newCount < fCount) {
    252             this->pop_back_n(fCount - newCount);
    253         }
    254     }
    255 
    256     T* begin() {
    257         return fItemArray;
    258     }
    259     const T* begin() const {
    260         return fItemArray;
    261     }
    262     T* end() {
    263         return fItemArray ? fItemArray + fCount : NULL;
    264     }
    265     const T* end() const {
    266         return fItemArray ? fItemArray + fCount : NULL;;
    267     }
    268 
    269    /**
    270      * Get the i^th element.
    271      */
    272     T& operator[] (int i) {
    273         SkASSERT(i < fCount);
    274         SkASSERT(i >= 0);
    275         return fItemArray[i];
    276     }
    277 
    278     const T& operator[] (int i) const {
    279         SkASSERT(i < fCount);
    280         SkASSERT(i >= 0);
    281         return fItemArray[i];
    282     }
    283 
    284     /**
    285      * equivalent to operator[](0)
    286      */
    287     T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
    288 
    289     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
    290 
    291     /**
    292      * equivalent to operator[](count() - 1)
    293      */
    294     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
    295 
    296     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
    297 
    298     /**
    299      * equivalent to operator[](count()-1-i)
    300      */
    301     T& fromBack(int i) {
    302         SkASSERT(i >= 0);
    303         SkASSERT(i < fCount);
    304         return fItemArray[fCount - i - 1];
    305     }
    306 
    307     const T& fromBack(int i) const {
    308         SkASSERT(i >= 0);
    309         SkASSERT(i < fCount);
    310         return fItemArray[fCount - i - 1];
    311     }
    312 
    313     bool operator==(const SkTArray<T, MEM_COPY>& right) const {
    314         int leftCount = this->count();
    315         if (leftCount != right.count()) {
    316             return false;
    317         }
    318         for (int index = 0; index < leftCount; ++index) {
    319             if (fItemArray[index] != right.fItemArray[index]) {
    320                 return false;
    321             }
    322         }
    323         return true;
    324     }
    325 
    326     bool operator!=(const SkTArray<T, MEM_COPY>& right) const {
    327         return !(*this == right);
    328     }
    329 
    330 protected:
    331     /**
    332      * Creates an empty array that will use the passed storage block until it
    333      * is insufficiently large to hold the entire array.
    334      */
    335     template <int N>
    336     SkTArray(SkAlignedSTStorage<N,T>* storage) {
    337         this->init(NULL, 0, storage->get(), N);
    338     }
    339 
    340     /**
    341      * Copy another array, using preallocated storage if preAllocCount >=
    342      * array.count(). Otherwise storage will only be used when array shrinks
    343      * to fit.
    344      */
    345     template <int N>
    346     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
    347         this->init(array.fItemArray, array.fCount, storage->get(), N);
    348     }
    349 
    350     /**
    351      * Copy a C array, using preallocated storage if preAllocCount >=
    352      * count. Otherwise storage will only be used when array shrinks
    353      * to fit.
    354      */
    355     template <int N>
    356     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
    357         this->init(array, count, storage->get(), N);
    358     }
    359 
    360     void init(const T* array, int count,
    361                void* preAllocStorage, int preAllocOrReserveCount) {
    362         SkASSERT(count >= 0);
    363         SkASSERT(preAllocOrReserveCount >= 0);
    364         fCount              = count;
    365         fReserveCount       = (preAllocOrReserveCount > 0) ?
    366                                     preAllocOrReserveCount :
    367                                     gMIN_ALLOC_COUNT;
    368         fPreAllocMemArray   = preAllocStorage;
    369         if (fReserveCount >= fCount &&
    370             NULL != preAllocStorage) {
    371             fAllocCount = fReserveCount;
    372             fMemArray = preAllocStorage;
    373         } else {
    374             fAllocCount = SkMax32(fCount, fReserveCount);
    375             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
    376         }
    377 
    378         SkTArrayExt::copy(this, array);
    379     }
    380 
    381 private:
    382 
    383     static const int gMIN_ALLOC_COUNT = 8;
    384 
    385     // Helper function that makes space for n objects, adjusts the count, but does not initialize
    386     // the new objects.
    387     void* push_back_raw(int n) {
    388         this->checkRealloc(n);
    389         void* ptr = fItemArray + fCount;
    390         fCount += n;
    391         return ptr;
    392     }
    393 
    394     inline void checkRealloc(int delta) {
    395         SkASSERT(fCount >= 0);
    396         SkASSERT(fAllocCount >= 0);
    397 
    398         SkASSERT(-delta <= fCount);
    399 
    400         int newCount = fCount + delta;
    401         int newAllocCount = fAllocCount;
    402 
    403         if (newCount > fAllocCount || newCount < (fAllocCount / 3)) {
    404             // whether we're growing or shrinking, we leave at least 50% extra space for future
    405             // growth (clamped to the reserve count).
    406             newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount);
    407         }
    408         if (newAllocCount != fAllocCount) {
    409 
    410             fAllocCount = newAllocCount;
    411             char* newMemArray;
    412 
    413             if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) {
    414                 newMemArray = (char*) fPreAllocMemArray;
    415             } else {
    416                 newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T));
    417             }
    418 
    419             SkTArrayExt::copyAndDelete<T>(this, newMemArray);
    420 
    421             if (fMemArray != fPreAllocMemArray) {
    422                 sk_free(fMemArray);
    423             }
    424             fMemArray = newMemArray;
    425         }
    426     }
    427 
    428     friend void* operator new<T>(size_t, SkTArray*, int);
    429 
    430     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*);
    431     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*);
    432 
    433     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*);
    434     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*);
    435 
    436     int fReserveCount;
    437     int fCount;
    438     int fAllocCount;
    439     void*    fPreAllocMemArray;
    440     union {
    441         T*       fItemArray;
    442         void*    fMemArray;
    443     };
    444 };
    445 
    446 // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly
    447 template <typename T, bool MEM_COPY>
    448 void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) {
    449     // Currently, we only support adding to the end of the array. When the array class itself
    450     // supports random insertion then this should be updated.
    451     // SkASSERT(atIndex >= 0 && atIndex <= array->count());
    452     SkASSERT(atIndex == array->count());
    453     return array->push_back_raw(1);
    454 }
    455 
    456 // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete
    457 // to match the op new silences warnings about missing op delete when a constructor throws an
    458 // exception.
    459 template <typename T, bool MEM_COPY>
    460 void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) {
    461     SK_CRASH();
    462 }
    463 
    464 // Constructs a new object as the last element of an SkTArray.
    465 #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args)  \
    466     (new ((array_ptr), (array_ptr)->count()) type_name args)
    467 
    468 
    469 /**
    470  * Subclass of SkTArray that contains a preallocated memory block for the array.
    471  */
    472 template <int N, typename T, bool MEM_COPY = false>
    473 class SkSTArray : public SkTArray<T, MEM_COPY> {
    474 private:
    475     typedef SkTArray<T, MEM_COPY> INHERITED;
    476 
    477 public:
    478     SkSTArray() : INHERITED(&fStorage) {
    479     }
    480 
    481     SkSTArray(const SkSTArray& array)
    482         : INHERITED(array, &fStorage) {
    483     }
    484 
    485     explicit SkSTArray(const INHERITED& array)
    486         : INHERITED(array, &fStorage) {
    487     }
    488 
    489     SkSTArray(const T* array, int count)
    490         : INHERITED(array, count, &fStorage) {
    491     }
    492 
    493     SkSTArray& operator= (const SkSTArray& array) {
    494         return *this = *(const INHERITED*)&array;
    495     }
    496 
    497     SkSTArray& operator= (const INHERITED& array) {
    498         INHERITED::operator=(array);
    499         return *this;
    500     }
    501 
    502 private:
    503     SkAlignedSTStorage<N,T> fStorage;
    504 };
    505 
    506 #endif
    507