Home | History | Annotate | Download | only in opts
      1 /*
      2  * Copyright 2012 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include <tmmintrin.h>  // SSSE3
      9 #include "SkBitmapProcState_opts_SSSE3.h"
     10 #include "SkPaint.h"
     11 #include "SkUtils.h"
     12 
     13 // adding anonymous namespace seemed to force gcc to inline directly the
     14 // instantiation, instead of creating the functions
     15 // S32_generic_D32_filter_DX_SSSE3<true> and
     16 // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the
     17 // external functions.
     18 namespace {
     19 // In this file, variations for alpha and non alpha versions are implemented
     20 // with a template, as it makes the code more compact and a bit easier to
     21 // maintain, while making the compiler generate the same exact code as with
     22 // two functions that only differ by a few lines.
     23 
     24 
     25 // Prepare all necessary constants for a round of processing for two pixel
     26 // pairs.
     27 // @param xy is the location where the xy parameters for four pixels should be
     28 //           read from. It is identical in concept with argument two of
     29 //           S32_{opaque}_D32_filter_DX methods.
     30 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
     31 //                  suitable to mask the bottom 14 bits of a XY value.
     32 // @param mask_000F vector of 32 bit constants containing 000F,
     33 //                  suitable to mask the bottom 4 bits of a XY value.
     34 // @param sixteen_8bit vector of 8 bit components containing the value 16.
     35 // @param mask_dist_select vector of 8 bit components containing the shuffling
     36 //                         parameters to reorder x[0-3] parameters.
     37 // @param all_x_result vector of 8 bit components that will contain the
     38 //              (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
     39 // @param sixteen_minus_x vector of 8 bit components, containing
     40 //              (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
     41 inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
     42                                           const __m128i& mask_3FFF,
     43                                           const __m128i& mask_000F,
     44                                           const __m128i& sixteen_8bit,
     45                                           const __m128i& mask_dist_select,
     46                                           __m128i* all_x_result,
     47                                           __m128i* sixteen_minus_x,
     48                                           int* x0,
     49                                           int* x1) {
     50     const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
     51 
     52     // 4 delta X
     53     // (x03, x02, x01, x00)
     54     const __m128i x0_wide = _mm_srli_epi32(xx, 18);
     55     // (x13, x12, x11, x10)
     56     const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
     57 
     58     _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
     59     _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
     60 
     61     __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
     62 
     63     // (4x(x3), 4x(x2), 4x(x1), 4x(x0))
     64     all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
     65 
     66     *all_x_result = all_x;
     67     // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
     68     *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
     69 }
     70 
     71 // Prepare all necessary constants for a round of processing for two pixel
     72 // pairs.
     73 // @param xy is the location where the xy parameters for four pixels should be
     74 //           read from. It is identical in concept with argument two of
     75 //           S32_{opaque}_D32_filter_DXDY methods.
     76 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
     77 //                  suitable to mask the bottom 14 bits of a XY value.
     78 // @param mask_000F vector of 32 bit constants containing 000F,
     79 //                  suitable to mask the bottom 4 bits of a XY value.
     80 // @param sixteen_8bit vector of 8 bit components containing the value 16.
     81 // @param mask_dist_select vector of 8 bit components containing the shuffling
     82 //                         parameters to reorder x[0-3] parameters.
     83 // @param all_xy_result vector of 8 bit components that will contain the
     84 //              (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return.
     85 // @param sixteen_minus_x vector of 8 bit components, containing
     86 //              (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)).
     87 inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy,
     88                                               const __m128i& mask_3FFF,
     89                                               const __m128i& mask_000F,
     90                                               const __m128i& sixteen_8bit,
     91                                               const __m128i& mask_dist_select,
     92                                               __m128i* all_xy_result,
     93                                               __m128i* sixteen_minus_xy,
     94                                               int* xy0, int* xy1) {
     95     const __m128i xy_wide =
     96                         _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
     97 
     98     // (x10, y10, x00, y00)
     99     __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18);
    100     // (y10, y00, x10, x00)
    101     xy0_wide =  _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1));
    102     // (x11, y11, x01, y01)
    103     __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF);
    104     // (y11, y01, x11, x01)
    105     xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1));
    106 
    107     _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide);
    108     _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide);
    109 
    110     // (x1, y1, x0, y0)
    111     __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F);
    112     // (y1, y0, x1, x0)
    113     all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1));
    114     // (4x(y1), 4x(y0), 4x(x1), 4x(x0))
    115     all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select);
    116 
    117     *all_xy_result = all_xy;
    118     // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0))
    119     *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy);
    120 }
    121 
    122 // Helper function used when processing one pixel pair.
    123 // @param pixel0..3 are the four input pixels
    124 // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
    125 //                will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
    126 //                or (4x(x3, 16-x3), 4x(x2, 16-x2))
    127 // @return a vector of 16 bit components containing:
    128 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
    129 inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
    130                                       uint32_t pixel1,
    131                                       uint32_t pixel2,
    132                                       uint32_t pixel3,
    133                                       const __m128i& scale_x) {
    134     __m128i a0, a1, a2, a3;
    135     // Load 2 pairs of pixels
    136     a0 = _mm_cvtsi32_si128(pixel0);
    137     a1 = _mm_cvtsi32_si128(pixel1);
    138 
    139     // Interleave pixels.
    140     // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
    141     a0 = _mm_unpacklo_epi8(a0, a1);
    142 
    143     a2 = _mm_cvtsi32_si128(pixel2);
    144     a3 = _mm_cvtsi32_si128(pixel3);
    145     // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
    146     a2 = _mm_unpacklo_epi8(a2, a3);
    147 
    148     // two pairs of pixel pairs, interleaved.
    149     // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
    150     //  Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
    151     a0 = _mm_unpacklo_epi64(a0, a2);
    152 
    153     // multiply and sum to 16 bit components.
    154     // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
    155     // At that point, we use up a bit less than 12 bits for each 16 bit
    156     // component:
    157     // All components are less than 255. So,
    158     // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
    159     return _mm_maddubs_epi16(a0, scale_x);
    160 }
    161 
    162 // Scale back the results after multiplications to the [0:255] range, and scale
    163 // by alpha when has_alpha is true.
    164 // Depending on whether one set or two sets of multiplications had been applied,
    165 // the results have to be shifted by four places (dividing by 16), or shifted
    166 // by eight places (dividing by 256), since each multiplication is by a quantity
    167 // in the range [0:16].
    168 template<bool has_alpha, int scale>
    169 inline __m128i ScaleFourPixels(__m128i* pixels,
    170                                const __m128i& alpha) {
    171     // Divide each 16 bit component by 16 (or 256 depending on scale).
    172     *pixels = _mm_srli_epi16(*pixels, scale);
    173 
    174     if (has_alpha) {
    175         // Multiply by alpha.
    176         *pixels = _mm_mullo_epi16(*pixels, alpha);
    177 
    178         // Divide each 16 bit component by 256.
    179         *pixels = _mm_srli_epi16(*pixels, 8);
    180     }
    181     return *pixels;
    182 }
    183 
    184 // Wrapper to calculate two output pixels from four input pixels. The
    185 // arguments are the same as ProcessPixelPairHelper. Technically, there are
    186 // eight input pixels, but since sub_y == 0, the factors applied to half of the
    187 // pixels is zero (sub_y), and are therefore omitted here to save on some
    188 // processing.
    189 // @param alpha when has_alpha is true, scale all resulting components by this
    190 //              value.
    191 // @return a vector of 16 bit components containing:
    192 // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ...,
    193 // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true)
    194 // otherwise
    195 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
    196 // In both cases, the results are renormalized (divided by 16) to match the
    197 // expected formats when storing back the results into memory.
    198 template<bool has_alpha>
    199 inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0,
    200                                         uint32_t pixel1,
    201                                         uint32_t pixel2,
    202                                         uint32_t pixel3,
    203                                         const __m128i& scale_x,
    204                                         const __m128i& alpha) {
    205     __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
    206                                          scale_x);
    207     return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
    208 }
    209 
    210 // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a
    211 // time instead of two. As in the above function, only two pixels are needed
    212 // to generate a single pixel since sub_y == 0.
    213 // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4
    214 // 16 bit components are set.
    215 template<bool has_alpha>
    216 inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0,
    217                                        uint32_t pixel1,
    218                                        __m128i scale_x,
    219                                        __m128i alpha) {
    220     __m128i a0 = _mm_cvtsi32_si128(pixel0);
    221     __m128i a1 = _mm_cvtsi32_si128(pixel1);
    222 
    223     // Interleave
    224     a0 = _mm_unpacklo_epi8(a0, a1);
    225 
    226     // (a0 * (16-x) + a1 * x)
    227     __m128i sum = _mm_maddubs_epi16(a0, scale_x);
    228 
    229     return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
    230 }
    231 
    232 // Methods when sub_y != 0
    233 
    234 
    235 // Same as ProcessPixelPairHelper, except that the values are scaled by y.
    236 // @param y vector of 16 bit components containing 'y' values. There are two
    237 //        cases in practice, where y will contain the sub_y constant, or will
    238 //        contain the 16 - sub_y constant.
    239 // @return vector of 16 bit components containing:
    240 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
    241 inline __m128i ProcessPixelPair(uint32_t pixel0,
    242                                 uint32_t pixel1,
    243                                 uint32_t pixel2,
    244                                 uint32_t pixel3,
    245                                 const __m128i& scale_x,
    246                                 const __m128i& y) {
    247     __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
    248                                          scale_x);
    249 
    250     // first row times 16-y or y depending on whether 'y' represents one or
    251     // the other.
    252     // Values will be up to 255 * 16 * 16 = 65280.
    253     // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
    254     //  y * (Ra0 * (16 - x0) + Ra1 * x0))
    255     sum = _mm_mullo_epi16(sum, y);
    256 
    257     return sum;
    258 }
    259 
    260 // Process two pixel pairs out of eight input pixels.
    261 // In other methods, the distinct pixels are passed one by one, but in this
    262 // case, the rows, and index offsets to the pixels into the row are passed
    263 // to generate the 8 pixels.
    264 // @param row0..1 top and bottom row where to find input pixels.
    265 // @param x0..1 offsets into the row for all eight input pixels.
    266 // @param all_y vector of 16 bit components containing the constant sub_y
    267 // @param neg_y vector of 16 bit components containing the constant 16 - sub_y
    268 // @param alpha vector of 16 bit components containing the alpha value to scale
    269 //        the results by, when has_alpha is true.
    270 // @return
    271 // (alpha * ((16-y) * (Aa2  * (16-x1) + Aa3  * x1) +
    272 //             y    * (Aa2' * (16-x1) + Aa3' * x1)),
    273 // ...
    274 //  alpha * ((16-y) * (Ra0  * (16-x0) + Ra1 * x0) +
    275 //             y    * (Ra0' * (16-x0) + Ra1' * x0))
    276 // With the factor alpha removed when has_alpha is false.
    277 // The values are scaled back to 16 bit components, but with only the bottom
    278 // 8 bits being set.
    279 template<bool has_alpha>
    280 inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
    281                                     const uint32_t* row1,
    282                                     const int* x0,
    283                                     const int* x1,
    284                                     const __m128i& scale_x,
    285                                     const __m128i& all_y,
    286                                     const __m128i& neg_y,
    287                                     const __m128i& alpha) {
    288     __m128i sum0 = ProcessPixelPair(
    289         row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
    290         scale_x, neg_y);
    291     __m128i sum1 = ProcessPixelPair(
    292         row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
    293         scale_x, all_y);
    294 
    295     // 2 samples fully summed.
    296     // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
    297     //  y * (Aa2' * (16-x1) + Aa3' * x1),
    298     // ...
    299     //  (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
    300     //  y * (Ra0' * (16-x0) + Ra1' * x0))
    301     // Each component, again can be at most 256 * 255 = 65280, so no overflow.
    302     sum0 = _mm_add_epi16(sum0, sum1);
    303 
    304     return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
    305 }
    306 
    307 // Similar to ProcessTwoPixelPairs except the pixel indexes.
    308 template<bool has_alpha>
    309 inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00,
    310                                         const uint32_t* row01,
    311                                         const uint32_t* row10,
    312                                         const uint32_t* row11,
    313                                         const int* xy0,
    314                                         const int* xy1,
    315                                         const __m128i& scale_x,
    316                                         const __m128i& all_y,
    317                                         const __m128i& neg_y,
    318                                         const __m128i& alpha) {
    319     // first row
    320     __m128i sum0 = ProcessPixelPair(
    321         row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]],
    322         scale_x, neg_y);
    323     // second row
    324     __m128i sum1 = ProcessPixelPair(
    325         row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]],
    326         scale_x, all_y);
    327 
    328     // 2 samples fully summed.
    329     // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) +
    330     //  y0 * (Aa2' * (16-x1) + Aa3' * x1),
    331     // ...
    332     //  (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) +
    333     //  y0 * (Ra0' * (16-x0) + Ra1' * x0))
    334     // Each component, again can be at most 256 * 255 = 65280, so no overflow.
    335     sum0 = _mm_add_epi16(sum0, sum1);
    336 
    337     return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
    338 }
    339 
    340 
    341 // Same as ProcessPixelPair, except that performing the math one output pixel
    342 // at a time. This means that only the bottom four 16 bit components are set.
    343 inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
    344                                const __m128i& scale_x, const __m128i& y) {
    345     __m128i a0 = _mm_cvtsi32_si128(pixel0);
    346     __m128i a1 = _mm_cvtsi32_si128(pixel1);
    347 
    348     // Interleave
    349     // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
    350     a0 = _mm_unpacklo_epi8(a0, a1);
    351 
    352     // (a0 * (16-x) + a1 * x)
    353     a0 = _mm_maddubs_epi16(a0, scale_x);
    354 
    355     // scale row by y
    356     return _mm_mullo_epi16(a0, y);
    357 }
    358 
    359 // Notes about the various tricks that are used in this implementation:
    360 // - specialization for sub_y == 0.
    361 // Statistically, 1/16th of the samples will have sub_y == 0. When this
    362 // happens, the math goes from:
    363 // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11
    364 // to:
    365 // (16 - x)*a00 + 16*x*a01
    366 // much simpler. The simplification makes for an easy boost in performance.
    367 // - calculating 4 output pixels at a time.
    368 //  This allows loading the coefficients x0 and x1 and shuffling them to the
    369 // optimum location only once per loop, instead of twice per loop.
    370 // This also allows us to store the four pixels with a single store.
    371 // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
    372 // version):
    373 // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
    374 // in 32 bit values to 8 bit values repeated four times.
    375 // _mm_maddubs_epi16 : this allows us to perform multiplications and additions
    376 // in one swoop of 8bit values storing the results in 16 bit values. This
    377 // instruction is actually crucial for the speed of the implementation since
    378 // as one can see in the SSE2 implementation, all inputs have to be used as
    379 // 16 bits because the results are 16 bits. This basically allows us to process
    380 // twice as many pixel components per iteration.
    381 //
    382 // As a result, this method behaves faster than the traditional SSE2. The actual
    383 // boost varies greatly on the underlying architecture.
    384 template<bool has_alpha>
    385 void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
    386                                      const uint32_t* xy,
    387                                      int count, uint32_t* colors) {
    388     SkASSERT(count > 0 && colors != NULL);
    389     SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel);
    390     SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config);
    391     if (has_alpha) {
    392         SkASSERT(s.fAlphaScale < 256);
    393     } else {
    394         SkASSERT(s.fAlphaScale == 256);
    395     }
    396 
    397     const uint8_t* src_addr =
    398             static_cast<const uint8_t*>(s.fBitmap->getPixels());
    399     const size_t rb = s.fBitmap->rowBytes();
    400     const uint32_t XY = *xy++;
    401     const unsigned y0 = XY >> 14;
    402     const uint32_t* row0 =
    403             reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
    404     const uint32_t* row1 =
    405             reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
    406     const unsigned sub_y = y0 & 0xF;
    407 
    408     // vector constants
    409     const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
    410                                                   8,  8,  8,  8,
    411                                                   4,  4,  4,  4,
    412                                                   0,  0,  0,  0);
    413     const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
    414     const __m128i mask_000F = _mm_set1_epi32(0x000F);
    415     const __m128i sixteen_8bit = _mm_set1_epi8(16);
    416     // (0, 0, 0, 0, 0, 0, 0, 0)
    417     const __m128i zero = _mm_setzero_si128();
    418 
    419     __m128i alpha = _mm_setzero_si128();
    420     if (has_alpha)
    421         // 8x(alpha)
    422         alpha = _mm_set1_epi16(s.fAlphaScale);
    423 
    424     if (sub_y == 0) {
    425         // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
    426         while (count > 3) {
    427             count -= 4;
    428 
    429             int x0[4];
    430             int x1[4];
    431             __m128i all_x, sixteen_minus_x;
    432             PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
    433                                           sixteen_8bit, mask_dist_select,
    434                                           &all_x, &sixteen_minus_x, x0, x1);
    435             xy += 4;
    436 
    437             // First pair of pixel pairs.
    438             // (4x(x1, 16-x1), 4x(x0, 16-x0))
    439             __m128i scale_x;
    440             scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
    441 
    442             __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>(
    443                 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
    444                 scale_x, alpha);
    445 
    446             // second pair of pixel pairs
    447             // (4x (x3, 16-x3), 4x (16-x2, x2))
    448             scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
    449 
    450             __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>(
    451                 row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]],
    452                 scale_x, alpha);
    453 
    454             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    455             sum0 = _mm_packus_epi16(sum0, sum1);
    456 
    457             // Extract low int and store.
    458             _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
    459 
    460             colors += 4;
    461         }
    462 
    463         // handle remainder
    464         while (count-- > 0) {
    465             uint32_t xx = *xy++;  // x0:14 | 4 | x1:14
    466             unsigned x0 = xx >> 18;
    467             unsigned x1 = xx & 0x3FFF;
    468 
    469             // 16x(x)
    470             const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
    471 
    472             // (16x(16-x))
    473             __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
    474 
    475             scale_x = _mm_unpacklo_epi8(scale_x, all_x);
    476 
    477             __m128i sum = ProcessOnePixelZeroSubY<has_alpha>(
    478                 row0[x0], row0[x1],
    479                 scale_x, alpha);
    480 
    481             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    482             sum = _mm_packus_epi16(sum, zero);
    483 
    484             // Extract low int and store.
    485             *colors++ = _mm_cvtsi128_si32(sum);
    486         }
    487     } else {  // more general case, y != 0
    488         // 8x(16)
    489         const __m128i sixteen_16bit = _mm_set1_epi16(16);
    490 
    491         // 8x (y)
    492         const __m128i all_y = _mm_set1_epi16(sub_y);
    493 
    494         // 8x (16-y)
    495         const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
    496 
    497         // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
    498         while (count > 3) {
    499             count -= 4;
    500 
    501             int x0[4];
    502             int x1[4];
    503             __m128i all_x, sixteen_minus_x;
    504             PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
    505                                           sixteen_8bit, mask_dist_select,
    506                                           &all_x, &sixteen_minus_x, x0, x1);
    507             xy += 4;
    508 
    509             // First pair of pixel pairs
    510             // (4x(x1, 16-x1), 4x(x0, 16-x0))
    511             __m128i scale_x;
    512             scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
    513 
    514             __m128i sum0 = ProcessTwoPixelPairs<has_alpha>(
    515                 row0, row1, x0, x1,
    516                 scale_x, all_y, neg_y, alpha);
    517 
    518             // second pair of pixel pairs
    519             // (4x (x3, 16-x3), 4x (16-x2, x2))
    520             scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
    521 
    522             __m128i sum1 = ProcessTwoPixelPairs<has_alpha>(
    523                 row0, row1, x0 + 2, x1 + 2,
    524                 scale_x, all_y, neg_y, alpha);
    525 
    526             // Do the final packing of the two results
    527 
    528             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    529             sum0 = _mm_packus_epi16(sum0, sum1);
    530 
    531             // Extract low int and store.
    532             _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
    533 
    534             colors += 4;
    535         }
    536 
    537         // Left over.
    538         while (count-- > 0) {
    539             const uint32_t xx = *xy++;  // x0:14 | 4 | x1:14
    540             const unsigned x0 = xx >> 18;
    541             const unsigned x1 = xx & 0x3FFF;
    542 
    543             // 16x(x)
    544             const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
    545 
    546             // 16x (16-x)
    547             __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
    548 
    549             // (8x (x, 16-x))
    550             scale_x = _mm_unpacklo_epi8(scale_x, all_x);
    551 
    552             // first row.
    553             __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
    554             // second row.
    555             __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
    556 
    557             // Add both rows for full sample
    558             sum0 = _mm_add_epi16(sum0, sum1);
    559 
    560             sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
    561 
    562             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    563             sum0 = _mm_packus_epi16(sum0, zero);
    564 
    565             // Extract low int and store.
    566             *colors++ = _mm_cvtsi128_si32(sum0);
    567         }
    568     }
    569 }
    570 
    571 /*
    572  * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the
    573  * special case suby == 0 as suby is changing in every loop.
    574  */
    575 template<bool has_alpha>
    576 void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
    577                                        const uint32_t* xy,
    578                                        int count, uint32_t* colors) {
    579     SkASSERT(count > 0 && colors != NULL);
    580     SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel);
    581     SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config);
    582     if (has_alpha) {
    583         SkASSERT(s.fAlphaScale < 256);
    584     } else {
    585         SkASSERT(s.fAlphaScale == 256);
    586     }
    587 
    588     const uint8_t* src_addr =
    589                         static_cast<const uint8_t*>(s.fBitmap->getPixels());
    590     const size_t rb = s.fBitmap->rowBytes();
    591 
    592     // vector constants
    593     const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
    594                                                   8,  8,  8,  8,
    595                                                   4,  4,  4,  4,
    596                                                   0,  0,  0,  0);
    597     const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
    598     const __m128i mask_000F = _mm_set1_epi32(0x000F);
    599     const __m128i sixteen_8bit = _mm_set1_epi8(16);
    600 
    601     __m128i alpha;
    602     if (has_alpha) {
    603         // 8x(alpha)
    604         alpha = _mm_set1_epi16(s.fAlphaScale);
    605     }
    606 
    607     // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small)
    608     while (count >= 2) {
    609         int xy0[4];
    610         int xy1[4];
    611         __m128i all_xy, sixteen_minus_xy;
    612         PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F,
    613                                           sixteen_8bit, mask_dist_select,
    614                                          &all_xy, &sixteen_minus_xy, xy0, xy1);
    615 
    616         // (4x(x1, 16-x1), 4x(x0, 16-x0))
    617         __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy);
    618         // (4x(0, y1), 4x(0, y0))
    619         __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128());
    620         __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y);
    621 
    622         const uint32_t* row00 =
    623                     reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb);
    624         const uint32_t* row01 =
    625                     reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb);
    626         const uint32_t* row10 =
    627                     reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb);
    628         const uint32_t* row11 =
    629                     reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb);
    630 
    631         __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>(
    632                                         row00, row01, row10, row11, xy0, xy1,
    633                                         scale_x, all_y, neg_y, alpha);
    634 
    635         // Pack lower 4 16 bit values of sum into lower 4 bytes.
    636         sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
    637 
    638         // Extract low int and store.
    639         _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0);
    640 
    641         xy += 4;
    642         colors += 2;
    643         count -= 2;
    644     }
    645 
    646     // Handle the remainder
    647     while (count-- > 0) {
    648         uint32_t data = *xy++;
    649         unsigned y0 = data >> 14;
    650         unsigned y1 = data & 0x3FFF;
    651         unsigned subY = y0 & 0xF;
    652         y0 >>= 4;
    653 
    654         data = *xy++;
    655         unsigned x0 = data >> 14;
    656         unsigned x1 = data & 0x3FFF;
    657         unsigned subX = x0 & 0xF;
    658         x0 >>= 4;
    659 
    660         const uint32_t* row0 =
    661                         reinterpret_cast<const uint32_t*>(src_addr + y0 * rb);
    662         const uint32_t* row1 =
    663                         reinterpret_cast<const uint32_t*>(src_addr + y1 * rb);
    664 
    665         // 16x(x)
    666         const __m128i all_x = _mm_set1_epi8(subX);
    667 
    668         // 16x (16-x)
    669         __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
    670 
    671         // (8x (x, 16-x))
    672         scale_x = _mm_unpacklo_epi8(scale_x, all_x);
    673 
    674         // 8x(16)
    675         const __m128i sixteen_16bit = _mm_set1_epi16(16);
    676 
    677         // 8x (y)
    678         const __m128i all_y = _mm_set1_epi16(subY);
    679 
    680         // 8x (16-y)
    681         const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
    682 
    683         // first row.
    684         __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
    685         // second row.
    686         __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
    687 
    688         // Add both rows for full sample
    689         sum0 = _mm_add_epi16(sum0, sum1);
    690 
    691         sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
    692 
    693         // Pack lower 4 16 bit values of sum into lower 4 bytes.
    694         sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
    695 
    696         // Extract low int and store.
    697         *colors++ = _mm_cvtsi128_si32(sum0);
    698     }
    699 }
    700 }  // namepace
    701 
    702 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
    703                                     const uint32_t* xy,
    704                                     int count, uint32_t* colors) {
    705     S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors);
    706 }
    707 
    708 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
    709                                    const uint32_t* xy,
    710                                    int count, uint32_t* colors) {
    711     S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors);
    712 }
    713 
    714 void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
    715                                     const uint32_t* xy,
    716                                     int count, uint32_t* colors) {
    717     S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors);
    718 }
    719 
    720 void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
    721                                    const uint32_t* xy,
    722                                    int count, uint32_t* colors) {
    723     S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors);
    724 }
    725