Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkIntersections.h"
      8 #include "SkPathOpsLine.h"
      9 #include "SkPathOpsQuad.h"
     10 
     11 /*
     12 Find the interection of a line and quadratic by solving for valid t values.
     13 
     14 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
     15 
     16 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
     17 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
     18 A, B and C are points and t goes from zero to one.
     19 
     20 This will give you two equations:
     21 
     22   x = a(1 - t)^2 + b(1 - t)t + ct^2
     23   y = d(1 - t)^2 + e(1 - t)t + ft^2
     24 
     25 If you add for instance the line equation (y = kx + m) to that, you'll end up
     26 with three equations and three unknowns (x, y and t)."
     27 
     28 Similar to above, the quadratic is represented as
     29   x = a(1-t)^2 + 2b(1-t)t + ct^2
     30   y = d(1-t)^2 + 2e(1-t)t + ft^2
     31 and the line as
     32   y = g*x + h
     33 
     34 Using Mathematica, solve for the values of t where the quadratic intersects the
     35 line:
     36 
     37   (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
     38                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
     39   (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
     40          g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
     41   (in)  Solve[t1 == 0, t]
     42   (out) {
     43     {t -> (-2 d + 2 e +   2 a g - 2 b g    -
     44       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
     45           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
     46          (2 (-d + 2 e - f + a g - 2 b g    + c g))
     47          },
     48     {t -> (-2 d + 2 e +   2 a g - 2 b g    +
     49       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
     50           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
     51          (2 (-d + 2 e - f + a g - 2 b g    + c g))
     52          }
     53         }
     54 
     55 Using the results above (when the line tends towards horizontal)
     56        A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
     57        B = 2*( (d -   e    ) - g*(a -   b    )     )
     58        C =   (-(d          ) + g*(a          ) + h )
     59 
     60 If g goes to infinity, we can rewrite the line in terms of x.
     61   x = g'*y + h'
     62 
     63 And solve accordingly in Mathematica:
     64 
     65   (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
     66                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
     67   (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
     68          g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
     69   (in)  Solve[t2 == 0, t]
     70   (out) {
     71     {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
     72     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
     73           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
     74          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
     75          },
     76     {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
     77     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
     78           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
     79          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
     80          }
     81         }
     82 
     83 Thus, if the slope of the line tends towards vertical, we use:
     84        A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
     85        B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
     86        C =   ( (a          ) - g'*(d           ) - h' )
     87  */
     88 
     89 
     90 class LineQuadraticIntersections {
     91 public:
     92     enum PinTPoint {
     93         kPointUninitialized,
     94         kPointInitialized
     95     };
     96 
     97     LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
     98         : fQuad(q)
     99         , fLine(l)
    100         , fIntersections(i)
    101         , fAllowNear(true) {
    102     }
    103 
    104     void allowNear(bool allow) {
    105         fAllowNear = allow;
    106     }
    107 
    108     int intersectRay(double roots[2]) {
    109     /*
    110         solve by rotating line+quad so line is horizontal, then finding the roots
    111         set up matrix to rotate quad to x-axis
    112         |cos(a) -sin(a)|
    113         |sin(a)  cos(a)|
    114         note that cos(a) = A(djacent) / Hypoteneuse
    115                   sin(a) = O(pposite) / Hypoteneuse
    116         since we are computing Ts, we can ignore hypoteneuse, the scale factor:
    117         |  A     -O    |
    118         |  O      A    |
    119         A = line[1].fX - line[0].fX (adjacent side of the right triangle)
    120         O = line[1].fY - line[0].fY (opposite side of the right triangle)
    121         for each of the three points (e.g. n = 0 to 2)
    122         quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
    123     */
    124         double adj = fLine[1].fX - fLine[0].fX;
    125         double opp = fLine[1].fY - fLine[0].fY;
    126         double r[3];
    127         for (int n = 0; n < 3; ++n) {
    128             r[n] = (fQuad[n].fY - fLine[0].fY) * adj - (fQuad[n].fX - fLine[0].fX) * opp;
    129         }
    130         double A = r[2];
    131         double B = r[1];
    132         double C = r[0];
    133         A += C - 2 * B;  // A = a - 2*b + c
    134         B -= C;  // B = -(b - c)
    135         return SkDQuad::RootsValidT(A, 2 * B, C, roots);
    136     }
    137 
    138     int intersect() {
    139         addExactEndPoints();
    140         double rootVals[2];
    141         int roots = intersectRay(rootVals);
    142         for (int index = 0; index < roots; ++index) {
    143             double quadT = rootVals[index];
    144             double lineT = findLineT(quadT);
    145             SkDPoint pt;
    146             if (pinTs(&quadT, &lineT, &pt, kPointUninitialized)) {
    147                 fIntersections->insert(quadT, lineT, pt);
    148             }
    149         }
    150         if (fAllowNear) {
    151             addNearEndPoints();
    152         }
    153         return fIntersections->used();
    154     }
    155 
    156     int horizontalIntersect(double axisIntercept, double roots[2]) {
    157         double D = fQuad[2].fY;  // f
    158         double E = fQuad[1].fY;  // e
    159         double F = fQuad[0].fY;  // d
    160         D += F - 2 * E;         // D = d - 2*e + f
    161         E -= F;                 // E = -(d - e)
    162         F -= axisIntercept;
    163         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    164     }
    165 
    166     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
    167         addExactHorizontalEndPoints(left, right, axisIntercept);
    168         double rootVals[2];
    169         int roots = horizontalIntersect(axisIntercept, rootVals);
    170         for (int index = 0; index < roots; ++index) {
    171             double quadT = rootVals[index];
    172             SkDPoint pt = fQuad.ptAtT(quadT);
    173             double lineT = (pt.fX - left) / (right - left);
    174             if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
    175                 fIntersections->insert(quadT, lineT, pt);
    176             }
    177         }
    178         if (fAllowNear) {
    179             addNearHorizontalEndPoints(left, right, axisIntercept);
    180         }
    181         if (flipped) {
    182             fIntersections->flip();
    183         }
    184         return fIntersections->used();
    185     }
    186 
    187     int verticalIntersect(double axisIntercept, double roots[2]) {
    188         double D = fQuad[2].fX;  // f
    189         double E = fQuad[1].fX;  // e
    190         double F = fQuad[0].fX;  // d
    191         D += F - 2 * E;         // D = d - 2*e + f
    192         E -= F;                 // E = -(d - e)
    193         F -= axisIntercept;
    194         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    195     }
    196 
    197     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
    198         addExactVerticalEndPoints(top, bottom, axisIntercept);
    199         double rootVals[2];
    200         int roots = verticalIntersect(axisIntercept, rootVals);
    201         for (int index = 0; index < roots; ++index) {
    202             double quadT = rootVals[index];
    203             SkDPoint pt = fQuad.ptAtT(quadT);
    204             double lineT = (pt.fY - top) / (bottom - top);
    205             if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
    206                 fIntersections->insert(quadT, lineT, pt);
    207             }
    208         }
    209         if (fAllowNear) {
    210             addNearVerticalEndPoints(top, bottom, axisIntercept);
    211         }
    212         if (flipped) {
    213             fIntersections->flip();
    214         }
    215         return fIntersections->used();
    216     }
    217 
    218 protected:
    219     // add endpoints first to get zero and one t values exactly
    220     void addExactEndPoints() {
    221         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    222             double lineT = fLine.exactPoint(fQuad[qIndex]);
    223             if (lineT < 0) {
    224                 continue;
    225             }
    226             double quadT = (double) (qIndex >> 1);
    227             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    228         }
    229     }
    230 
    231     void addNearEndPoints() {
    232         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    233             double quadT = (double) (qIndex >> 1);
    234             if (fIntersections->hasT(quadT)) {
    235                 continue;
    236             }
    237             double lineT = fLine.nearPoint(fQuad[qIndex]);
    238             if (lineT < 0) {
    239                 continue;
    240             }
    241             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    242         }
    243         // FIXME: see if line end is nearly on quad
    244     }
    245 
    246     void addExactHorizontalEndPoints(double left, double right, double y) {
    247         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    248             double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
    249             if (lineT < 0) {
    250                 continue;
    251             }
    252             double quadT = (double) (qIndex >> 1);
    253             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    254         }
    255     }
    256 
    257     void addNearHorizontalEndPoints(double left, double right, double y) {
    258         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    259             double quadT = (double) (qIndex >> 1);
    260             if (fIntersections->hasT(quadT)) {
    261                 continue;
    262             }
    263             double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
    264             if (lineT < 0) {
    265                 continue;
    266             }
    267             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    268         }
    269         // FIXME: see if line end is nearly on quad
    270     }
    271 
    272     void addExactVerticalEndPoints(double top, double bottom, double x) {
    273         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    274             double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
    275             if (lineT < 0) {
    276                 continue;
    277             }
    278             double quadT = (double) (qIndex >> 1);
    279             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    280         }
    281     }
    282 
    283     void addNearVerticalEndPoints(double top, double bottom, double x) {
    284         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    285             double quadT = (double) (qIndex >> 1);
    286             if (fIntersections->hasT(quadT)) {
    287                 continue;
    288             }
    289             double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
    290             if (lineT < 0) {
    291                 continue;
    292             }
    293             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    294         }
    295         // FIXME: see if line end is nearly on quad
    296     }
    297 
    298     double findLineT(double t) {
    299         SkDPoint xy = fQuad.ptAtT(t);
    300         double dx = fLine[1].fX - fLine[0].fX;
    301         double dy = fLine[1].fY - fLine[0].fY;
    302         double dxT = (xy.fX - fLine[0].fX) / dx;
    303         double dyT = (xy.fY - fLine[0].fY) / dy;
    304         if (!between(FLT_EPSILON, dxT, 1 - FLT_EPSILON) && between(0, dyT, 1)) {
    305             return dyT;
    306         }
    307         if (!between(FLT_EPSILON, dyT, 1 - FLT_EPSILON) && between(0, dxT, 1)) {
    308             return dxT;
    309         }
    310         return fabs(dx) > fabs(dy) ? dxT : dyT;
    311     }
    312 
    313     bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
    314         if (!approximately_one_or_less(*lineT)) {
    315             return false;
    316         }
    317         if (!approximately_zero_or_more(*lineT)) {
    318             return false;
    319         }
    320         double qT = *quadT = SkPinT(*quadT);
    321         double lT = *lineT = SkPinT(*lineT);
    322         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
    323             *pt = fLine.ptAtT(lT);
    324         } else if (ptSet == kPointUninitialized) {
    325             *pt = fQuad.ptAtT(qT);
    326         }
    327         return true;
    328     }
    329 
    330 private:
    331     const SkDQuad& fQuad;
    332     const SkDLine& fLine;
    333     SkIntersections* fIntersections;
    334     bool fAllowNear;
    335 };
    336 
    337 // utility for pairs of coincident quads
    338 static double horizontalIntersect(const SkDQuad& quad, const SkDPoint& pt) {
    339     LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)),
    340             static_cast<SkIntersections*>(0));
    341     double rootVals[2];
    342     int roots = q.horizontalIntersect(pt.fY, rootVals);
    343     for (int index = 0; index < roots; ++index) {
    344         double t = rootVals[index];
    345         SkDPoint qPt = quad.ptAtT(t);
    346         if (AlmostEqualUlps(qPt.fX, pt.fX)) {
    347             return t;
    348         }
    349     }
    350     return -1;
    351 }
    352 
    353 static double verticalIntersect(const SkDQuad& quad, const SkDPoint& pt) {
    354     LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)),
    355             static_cast<SkIntersections*>(0));
    356     double rootVals[2];
    357     int roots = q.verticalIntersect(pt.fX, rootVals);
    358     for (int index = 0; index < roots; ++index) {
    359         double t = rootVals[index];
    360         SkDPoint qPt = quad.ptAtT(t);
    361         if (AlmostEqualUlps(qPt.fY, pt.fY)) {
    362             return t;
    363         }
    364     }
    365     return -1;
    366 }
    367 
    368 double SkIntersections::Axial(const SkDQuad& q1, const SkDPoint& p, bool vertical) {
    369     if (vertical) {
    370         return verticalIntersect(q1, p);
    371     }
    372     return horizontalIntersect(q1, p);
    373 }
    374 
    375 int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
    376                                 bool flipped) {
    377     SkDLine line = {{{ left, y }, { right, y }}};
    378     LineQuadraticIntersections q(quad, line, this);
    379     return q.horizontalIntersect(y, left, right, flipped);
    380 }
    381 
    382 int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
    383                               bool flipped) {
    384     SkDLine line = {{{ x, top }, { x, bottom }}};
    385     LineQuadraticIntersections q(quad, line, this);
    386     return q.verticalIntersect(x, top, bottom, flipped);
    387 }
    388 
    389 int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
    390     LineQuadraticIntersections q(quad, line, this);
    391     q.allowNear(fAllowNear);
    392     return q.intersect();
    393 }
    394 
    395 int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
    396     LineQuadraticIntersections q(quad, line, this);
    397     fUsed = q.intersectRay(fT[0]);
    398     for (int index = 0; index < fUsed; ++index) {
    399         fPt[index] = quad.ptAtT(fT[0][index]);
    400     }
    401     return fUsed;
    402 }
    403