Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2004 May 26
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 **
     13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
     14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
     15 ** only within the VDBE.  Interface routines refer to a Mem using the
     16 ** name sqlite_value
     17 */
     18 #include "sqliteInt.h"
     19 #include "vdbeInt.h"
     20 
     21 /*
     22 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
     23 ** P if required.
     24 */
     25 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
     26 
     27 /*
     28 ** If pMem is an object with a valid string representation, this routine
     29 ** ensures the internal encoding for the string representation is
     30 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
     31 **
     32 ** If pMem is not a string object, or the encoding of the string
     33 ** representation is already stored using the requested encoding, then this
     34 ** routine is a no-op.
     35 **
     36 ** SQLITE_OK is returned if the conversion is successful (or not required).
     37 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
     38 ** between formats.
     39 */
     40 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
     41   int rc;
     42   assert( (pMem->flags&MEM_RowSet)==0 );
     43   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
     44            || desiredEnc==SQLITE_UTF16BE );
     45   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
     46     return SQLITE_OK;
     47   }
     48   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
     49 #ifdef SQLITE_OMIT_UTF16
     50   return SQLITE_ERROR;
     51 #else
     52 
     53   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
     54   ** then the encoding of the value may not have changed.
     55   */
     56   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
     57   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
     58   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
     59   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
     60   return rc;
     61 #endif
     62 }
     63 
     64 /*
     65 ** Make sure pMem->z points to a writable allocation of at least
     66 ** n bytes.
     67 **
     68 ** If the memory cell currently contains string or blob data
     69 ** and the third argument passed to this function is true, the
     70 ** current content of the cell is preserved. Otherwise, it may
     71 ** be discarded.
     72 **
     73 ** This function sets the MEM_Dyn flag and clears any xDel callback.
     74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
     75 ** not set, Mem.n is zeroed.
     76 */
     77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
     78   assert( 1 >=
     79     ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
     80     (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
     81     ((pMem->flags&MEM_Ephem) ? 1 : 0) +
     82     ((pMem->flags&MEM_Static) ? 1 : 0)
     83   );
     84   assert( (pMem->flags&MEM_RowSet)==0 );
     85 
     86   if( n<32 ) n = 32;
     87   if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
     88     if( preserve && pMem->z==pMem->zMalloc ){
     89       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
     90       preserve = 0;
     91     }else{
     92       sqlite3DbFree(pMem->db, pMem->zMalloc);
     93       pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
     94     }
     95   }
     96 
     97   if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
     98     memcpy(pMem->zMalloc, pMem->z, pMem->n);
     99   }
    100   if( pMem->flags&MEM_Dyn && pMem->xDel ){
    101     pMem->xDel((void *)(pMem->z));
    102   }
    103 
    104   pMem->z = pMem->zMalloc;
    105   if( pMem->z==0 ){
    106     pMem->flags = MEM_Null;
    107   }else{
    108     pMem->flags &= ~(MEM_Ephem|MEM_Static);
    109   }
    110   pMem->xDel = 0;
    111   return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
    112 }
    113 
    114 /*
    115 ** Make the given Mem object MEM_Dyn.  In other words, make it so
    116 ** that any TEXT or BLOB content is stored in memory obtained from
    117 ** malloc().  In this way, we know that the memory is safe to be
    118 ** overwritten or altered.
    119 **
    120 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
    121 */
    122 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
    123   int f;
    124   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    125   assert( (pMem->flags&MEM_RowSet)==0 );
    126   expandBlob(pMem);
    127   f = pMem->flags;
    128   if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
    129     if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
    130       return SQLITE_NOMEM;
    131     }
    132     pMem->z[pMem->n] = 0;
    133     pMem->z[pMem->n+1] = 0;
    134     pMem->flags |= MEM_Term;
    135 #ifdef SQLITE_DEBUG
    136     pMem->pScopyFrom = 0;
    137 #endif
    138   }
    139 
    140   return SQLITE_OK;
    141 }
    142 
    143 /*
    144 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
    145 ** blob stored in dynamically allocated space.
    146 */
    147 #ifndef SQLITE_OMIT_INCRBLOB
    148 int sqlite3VdbeMemExpandBlob(Mem *pMem){
    149   if( pMem->flags & MEM_Zero ){
    150     int nByte;
    151     assert( pMem->flags&MEM_Blob );
    152     assert( (pMem->flags&MEM_RowSet)==0 );
    153     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    154 
    155     /* Set nByte to the number of bytes required to store the expanded blob. */
    156     nByte = pMem->n + pMem->u.nZero;
    157     if( nByte<=0 ){
    158       nByte = 1;
    159     }
    160     if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
    161       return SQLITE_NOMEM;
    162     }
    163 
    164     memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
    165     pMem->n += pMem->u.nZero;
    166     pMem->flags &= ~(MEM_Zero|MEM_Term);
    167   }
    168   return SQLITE_OK;
    169 }
    170 #endif
    171 
    172 
    173 /*
    174 ** Make sure the given Mem is \u0000 terminated.
    175 */
    176 int sqlite3VdbeMemNulTerminate(Mem *pMem){
    177   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    178   if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
    179     return SQLITE_OK;   /* Nothing to do */
    180   }
    181   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
    182     return SQLITE_NOMEM;
    183   }
    184   pMem->z[pMem->n] = 0;
    185   pMem->z[pMem->n+1] = 0;
    186   pMem->flags |= MEM_Term;
    187   return SQLITE_OK;
    188 }
    189 
    190 /*
    191 ** Add MEM_Str to the set of representations for the given Mem.  Numbers
    192 ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
    193 ** is a no-op.
    194 **
    195 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
    196 **
    197 ** A MEM_Null value will never be passed to this function. This function is
    198 ** used for converting values to text for returning to the user (i.e. via
    199 ** sqlite3_value_text()), or for ensuring that values to be used as btree
    200 ** keys are strings. In the former case a NULL pointer is returned the
    201 ** user and the later is an internal programming error.
    202 */
    203 int sqlite3VdbeMemStringify(Mem *pMem, int enc){
    204   int rc = SQLITE_OK;
    205   int fg = pMem->flags;
    206   const int nByte = 32;
    207 
    208   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    209   assert( !(fg&MEM_Zero) );
    210   assert( !(fg&(MEM_Str|MEM_Blob)) );
    211   assert( fg&(MEM_Int|MEM_Real) );
    212   assert( (pMem->flags&MEM_RowSet)==0 );
    213   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
    214 
    215 
    216   if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
    217     return SQLITE_NOMEM;
    218   }
    219 
    220   /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
    221   ** string representation of the value. Then, if the required encoding
    222   ** is UTF-16le or UTF-16be do a translation.
    223   **
    224   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
    225   */
    226   if( fg & MEM_Int ){
    227     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
    228   }else{
    229     assert( fg & MEM_Real );
    230     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
    231   }
    232   pMem->n = sqlite3Strlen30(pMem->z);
    233   pMem->enc = SQLITE_UTF8;
    234   pMem->flags |= MEM_Str|MEM_Term;
    235   sqlite3VdbeChangeEncoding(pMem, enc);
    236   return rc;
    237 }
    238 
    239 /*
    240 ** Memory cell pMem contains the context of an aggregate function.
    241 ** This routine calls the finalize method for that function.  The
    242 ** result of the aggregate is stored back into pMem.
    243 **
    244 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
    245 ** otherwise.
    246 */
    247 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
    248   int rc = SQLITE_OK;
    249   if( ALWAYS(pFunc && pFunc->xFinalize) ){
    250     sqlite3_context ctx;
    251     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
    252     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    253     memset(&ctx, 0, sizeof(ctx));
    254     ctx.s.flags = MEM_Null;
    255     ctx.s.db = pMem->db;
    256     ctx.pMem = pMem;
    257     ctx.pFunc = pFunc;
    258     pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    259     assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
    260     sqlite3DbFree(pMem->db, pMem->zMalloc);
    261     memcpy(pMem, &ctx.s, sizeof(ctx.s));
    262     rc = ctx.isError;
    263   }
    264   return rc;
    265 }
    266 
    267 /*
    268 ** If the memory cell contains a string value that must be freed by
    269 ** invoking an external callback, free it now. Calling this function
    270 ** does not free any Mem.zMalloc buffer.
    271 */
    272 void sqlite3VdbeMemReleaseExternal(Mem *p){
    273   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
    274   testcase( p->flags & MEM_Agg );
    275   testcase( p->flags & MEM_Dyn );
    276   testcase( p->flags & MEM_RowSet );
    277   testcase( p->flags & MEM_Frame );
    278   if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
    279     if( p->flags&MEM_Agg ){
    280       sqlite3VdbeMemFinalize(p, p->u.pDef);
    281       assert( (p->flags & MEM_Agg)==0 );
    282       sqlite3VdbeMemRelease(p);
    283     }else if( p->flags&MEM_Dyn && p->xDel ){
    284       assert( (p->flags&MEM_RowSet)==0 );
    285       p->xDel((void *)p->z);
    286       p->xDel = 0;
    287     }else if( p->flags&MEM_RowSet ){
    288       sqlite3RowSetClear(p->u.pRowSet);
    289     }else if( p->flags&MEM_Frame ){
    290       sqlite3VdbeMemSetNull(p);
    291     }
    292   }
    293 }
    294 
    295 /*
    296 ** Release any memory held by the Mem. This may leave the Mem in an
    297 ** inconsistent state, for example with (Mem.z==0) and
    298 ** (Mem.type==SQLITE_TEXT).
    299 */
    300 void sqlite3VdbeMemRelease(Mem *p){
    301   sqlite3VdbeMemReleaseExternal(p);
    302   sqlite3DbFree(p->db, p->zMalloc);
    303   p->z = 0;
    304   p->zMalloc = 0;
    305   p->xDel = 0;
    306 }
    307 
    308 /*
    309 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
    310 ** If the double is too large, return 0x8000000000000000.
    311 **
    312 ** Most systems appear to do this simply by assigning
    313 ** variables and without the extra range tests.  But
    314 ** there are reports that windows throws an expection
    315 ** if the floating point value is out of range. (See ticket #2880.)
    316 ** Because we do not completely understand the problem, we will
    317 ** take the conservative approach and always do range tests
    318 ** before attempting the conversion.
    319 */
    320 static i64 doubleToInt64(double r){
    321 #ifdef SQLITE_OMIT_FLOATING_POINT
    322   /* When floating-point is omitted, double and int64 are the same thing */
    323   return r;
    324 #else
    325   /*
    326   ** Many compilers we encounter do not define constants for the
    327   ** minimum and maximum 64-bit integers, or they define them
    328   ** inconsistently.  And many do not understand the "LL" notation.
    329   ** So we define our own static constants here using nothing
    330   ** larger than a 32-bit integer constant.
    331   */
    332   static const i64 maxInt = LARGEST_INT64;
    333   static const i64 minInt = SMALLEST_INT64;
    334 
    335   if( r<(double)minInt ){
    336     return minInt;
    337   }else if( r>(double)maxInt ){
    338     /* minInt is correct here - not maxInt.  It turns out that assigning
    339     ** a very large positive number to an integer results in a very large
    340     ** negative integer.  This makes no sense, but it is what x86 hardware
    341     ** does so for compatibility we will do the same in software. */
    342     return minInt;
    343   }else{
    344     return (i64)r;
    345   }
    346 #endif
    347 }
    348 
    349 /*
    350 ** Return some kind of integer value which is the best we can do
    351 ** at representing the value that *pMem describes as an integer.
    352 ** If pMem is an integer, then the value is exact.  If pMem is
    353 ** a floating-point then the value returned is the integer part.
    354 ** If pMem is a string or blob, then we make an attempt to convert
    355 ** it into a integer and return that.  If pMem represents an
    356 ** an SQL-NULL value, return 0.
    357 **
    358 ** If pMem represents a string value, its encoding might be changed.
    359 */
    360 i64 sqlite3VdbeIntValue(Mem *pMem){
    361   int flags;
    362   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    363   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
    364   flags = pMem->flags;
    365   if( flags & MEM_Int ){
    366     return pMem->u.i;
    367   }else if( flags & MEM_Real ){
    368     return doubleToInt64(pMem->r);
    369   }else if( flags & (MEM_Str|MEM_Blob) ){
    370     i64 value = 0;
    371     assert( pMem->z || pMem->n==0 );
    372     testcase( pMem->z==0 );
    373     sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
    374     return value;
    375   }else{
    376     return 0;
    377   }
    378 }
    379 
    380 /*
    381 ** Return the best representation of pMem that we can get into a
    382 ** double.  If pMem is already a double or an integer, return its
    383 ** value.  If it is a string or blob, try to convert it to a double.
    384 ** If it is a NULL, return 0.0.
    385 */
    386 double sqlite3VdbeRealValue(Mem *pMem){
    387   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    388   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
    389   if( pMem->flags & MEM_Real ){
    390     return pMem->r;
    391   }else if( pMem->flags & MEM_Int ){
    392     return (double)pMem->u.i;
    393   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    394     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    395     double val = (double)0;
    396     sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
    397     return val;
    398   }else{
    399     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    400     return (double)0;
    401   }
    402 }
    403 
    404 /*
    405 ** The MEM structure is already a MEM_Real.  Try to also make it a
    406 ** MEM_Int if we can.
    407 */
    408 void sqlite3VdbeIntegerAffinity(Mem *pMem){
    409   assert( pMem->flags & MEM_Real );
    410   assert( (pMem->flags & MEM_RowSet)==0 );
    411   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    412   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
    413 
    414   pMem->u.i = doubleToInt64(pMem->r);
    415 
    416   /* Only mark the value as an integer if
    417   **
    418   **    (1) the round-trip conversion real->int->real is a no-op, and
    419   **    (2) The integer is neither the largest nor the smallest
    420   **        possible integer (ticket #3922)
    421   **
    422   ** The second and third terms in the following conditional enforces
    423   ** the second condition under the assumption that addition overflow causes
    424   ** values to wrap around.  On x86 hardware, the third term is always
    425   ** true and could be omitted.  But we leave it in because other
    426   ** architectures might behave differently.
    427   */
    428   if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64
    429       && ALWAYS(pMem->u.i<LARGEST_INT64) ){
    430     pMem->flags |= MEM_Int;
    431   }
    432 }
    433 
    434 /*
    435 ** Convert pMem to type integer.  Invalidate any prior representations.
    436 */
    437 int sqlite3VdbeMemIntegerify(Mem *pMem){
    438   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    439   assert( (pMem->flags & MEM_RowSet)==0 );
    440   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
    441 
    442   pMem->u.i = sqlite3VdbeIntValue(pMem);
    443   MemSetTypeFlag(pMem, MEM_Int);
    444   return SQLITE_OK;
    445 }
    446 
    447 /*
    448 ** Convert pMem so that it is of type MEM_Real.
    449 ** Invalidate any prior representations.
    450 */
    451 int sqlite3VdbeMemRealify(Mem *pMem){
    452   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    453   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
    454 
    455   pMem->r = sqlite3VdbeRealValue(pMem);
    456   MemSetTypeFlag(pMem, MEM_Real);
    457   return SQLITE_OK;
    458 }
    459 
    460 /*
    461 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
    462 ** Invalidate any prior representations.
    463 **
    464 ** Every effort is made to force the conversion, even if the input
    465 ** is a string that does not look completely like a number.  Convert
    466 ** as much of the string as we can and ignore the rest.
    467 */
    468 int sqlite3VdbeMemNumerify(Mem *pMem){
    469   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
    470     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
    471     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    472     if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
    473       MemSetTypeFlag(pMem, MEM_Int);
    474     }else{
    475       pMem->r = sqlite3VdbeRealValue(pMem);
    476       MemSetTypeFlag(pMem, MEM_Real);
    477       sqlite3VdbeIntegerAffinity(pMem);
    478     }
    479   }
    480   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
    481   pMem->flags &= ~(MEM_Str|MEM_Blob);
    482   return SQLITE_OK;
    483 }
    484 
    485 /*
    486 ** Delete any previous value and set the value stored in *pMem to NULL.
    487 */
    488 void sqlite3VdbeMemSetNull(Mem *pMem){
    489   if( pMem->flags & MEM_Frame ){
    490     VdbeFrame *pFrame = pMem->u.pFrame;
    491     pFrame->pParent = pFrame->v->pDelFrame;
    492     pFrame->v->pDelFrame = pFrame;
    493   }
    494   if( pMem->flags & MEM_RowSet ){
    495     sqlite3RowSetClear(pMem->u.pRowSet);
    496   }
    497   MemSetTypeFlag(pMem, MEM_Null);
    498   pMem->type = SQLITE_NULL;
    499 }
    500 
    501 /*
    502 ** Delete any previous value and set the value to be a BLOB of length
    503 ** n containing all zeros.
    504 */
    505 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
    506   sqlite3VdbeMemRelease(pMem);
    507   pMem->flags = MEM_Blob|MEM_Zero;
    508   pMem->type = SQLITE_BLOB;
    509   pMem->n = 0;
    510   if( n<0 ) n = 0;
    511   pMem->u.nZero = n;
    512   pMem->enc = SQLITE_UTF8;
    513 
    514 #ifdef SQLITE_OMIT_INCRBLOB
    515   sqlite3VdbeMemGrow(pMem, n, 0);
    516   if( pMem->z ){
    517     pMem->n = n;
    518     memset(pMem->z, 0, n);
    519   }
    520 #endif
    521 }
    522 
    523 /*
    524 ** Delete any previous value and set the value stored in *pMem to val,
    525 ** manifest type INTEGER.
    526 */
    527 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
    528   sqlite3VdbeMemRelease(pMem);
    529   pMem->u.i = val;
    530   pMem->flags = MEM_Int;
    531   pMem->type = SQLITE_INTEGER;
    532 }
    533 
    534 #ifndef SQLITE_OMIT_FLOATING_POINT
    535 /*
    536 ** Delete any previous value and set the value stored in *pMem to val,
    537 ** manifest type REAL.
    538 */
    539 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
    540   if( sqlite3IsNaN(val) ){
    541     sqlite3VdbeMemSetNull(pMem);
    542   }else{
    543     sqlite3VdbeMemRelease(pMem);
    544     pMem->r = val;
    545     pMem->flags = MEM_Real;
    546     pMem->type = SQLITE_FLOAT;
    547   }
    548 }
    549 #endif
    550 
    551 /*
    552 ** Delete any previous value and set the value of pMem to be an
    553 ** empty boolean index.
    554 */
    555 void sqlite3VdbeMemSetRowSet(Mem *pMem){
    556   sqlite3 *db = pMem->db;
    557   assert( db!=0 );
    558   assert( (pMem->flags & MEM_RowSet)==0 );
    559   sqlite3VdbeMemRelease(pMem);
    560   pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
    561   if( db->mallocFailed ){
    562     pMem->flags = MEM_Null;
    563   }else{
    564     assert( pMem->zMalloc );
    565     pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
    566                                        sqlite3DbMallocSize(db, pMem->zMalloc));
    567     assert( pMem->u.pRowSet!=0 );
    568     pMem->flags = MEM_RowSet;
    569   }
    570 }
    571 
    572 /*
    573 ** Return true if the Mem object contains a TEXT or BLOB that is
    574 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
    575 */
    576 int sqlite3VdbeMemTooBig(Mem *p){
    577   assert( p->db!=0 );
    578   if( p->flags & (MEM_Str|MEM_Blob) ){
    579     int n = p->n;
    580     if( p->flags & MEM_Zero ){
    581       n += p->u.nZero;
    582     }
    583     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
    584   }
    585   return 0;
    586 }
    587 
    588 #ifdef SQLITE_DEBUG
    589 /*
    590 ** This routine prepares a memory cell for modication by breaking
    591 ** its link to a shallow copy and by marking any current shallow
    592 ** copies of this cell as invalid.
    593 **
    594 ** This is used for testing and debugging only - to make sure shallow
    595 ** copies are not misused.
    596 */
    597 void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){
    598   int i;
    599   Mem *pX;
    600   for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
    601     if( pX->pScopyFrom==pMem ){
    602       pX->flags |= MEM_Invalid;
    603       pX->pScopyFrom = 0;
    604     }
    605   }
    606   pMem->pScopyFrom = 0;
    607 }
    608 #endif /* SQLITE_DEBUG */
    609 
    610 /*
    611 ** Size of struct Mem not including the Mem.zMalloc member.
    612 */
    613 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
    614 
    615 /*
    616 ** Make an shallow copy of pFrom into pTo.  Prior contents of
    617 ** pTo are freed.  The pFrom->z field is not duplicated.  If
    618 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
    619 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
    620 */
    621 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
    622   assert( (pFrom->flags & MEM_RowSet)==0 );
    623   sqlite3VdbeMemReleaseExternal(pTo);
    624   memcpy(pTo, pFrom, MEMCELLSIZE);
    625   pTo->xDel = 0;
    626   if( (pFrom->flags&MEM_Static)==0 ){
    627     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    628     assert( srcType==MEM_Ephem || srcType==MEM_Static );
    629     pTo->flags |= srcType;
    630   }
    631 }
    632 
    633 /*
    634 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
    635 ** freed before the copy is made.
    636 */
    637 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
    638   int rc = SQLITE_OK;
    639 
    640   assert( (pFrom->flags & MEM_RowSet)==0 );
    641   sqlite3VdbeMemReleaseExternal(pTo);
    642   memcpy(pTo, pFrom, MEMCELLSIZE);
    643   pTo->flags &= ~MEM_Dyn;
    644 
    645   if( pTo->flags&(MEM_Str|MEM_Blob) ){
    646     if( 0==(pFrom->flags&MEM_Static) ){
    647       pTo->flags |= MEM_Ephem;
    648       rc = sqlite3VdbeMemMakeWriteable(pTo);
    649     }
    650   }
    651 
    652   return rc;
    653 }
    654 
    655 /*
    656 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
    657 ** freed. If pFrom contains ephemeral data, a copy is made.
    658 **
    659 ** pFrom contains an SQL NULL when this routine returns.
    660 */
    661 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
    662   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
    663   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
    664   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
    665 
    666   sqlite3VdbeMemRelease(pTo);
    667   memcpy(pTo, pFrom, sizeof(Mem));
    668   pFrom->flags = MEM_Null;
    669   pFrom->xDel = 0;
    670   pFrom->zMalloc = 0;
    671 }
    672 
    673 /*
    674 ** Change the value of a Mem to be a string or a BLOB.
    675 **
    676 ** The memory management strategy depends on the value of the xDel
    677 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
    678 ** string is copied into a (possibly existing) buffer managed by the
    679 ** Mem structure. Otherwise, any existing buffer is freed and the
    680 ** pointer copied.
    681 **
    682 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
    683 ** size limit) then no memory allocation occurs.  If the string can be
    684 ** stored without allocating memory, then it is.  If a memory allocation
    685 ** is required to store the string, then value of pMem is unchanged.  In
    686 ** either case, SQLITE_TOOBIG is returned.
    687 */
    688 int sqlite3VdbeMemSetStr(
    689   Mem *pMem,          /* Memory cell to set to string value */
    690   const char *z,      /* String pointer */
    691   int n,              /* Bytes in string, or negative */
    692   u8 enc,             /* Encoding of z.  0 for BLOBs */
    693   void (*xDel)(void*) /* Destructor function */
    694 ){
    695   int nByte = n;      /* New value for pMem->n */
    696   int iLimit;         /* Maximum allowed string or blob size */
    697   u16 flags = 0;      /* New value for pMem->flags */
    698 
    699   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    700   assert( (pMem->flags & MEM_RowSet)==0 );
    701 
    702   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
    703   if( !z ){
    704     sqlite3VdbeMemSetNull(pMem);
    705     return SQLITE_OK;
    706   }
    707 
    708   if( pMem->db ){
    709     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
    710   }else{
    711     iLimit = SQLITE_MAX_LENGTH;
    712   }
    713   flags = (enc==0?MEM_Blob:MEM_Str);
    714   if( nByte<0 ){
    715     assert( enc!=0 );
    716     if( enc==SQLITE_UTF8 ){
    717       for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
    718     }else{
    719       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
    720     }
    721     flags |= MEM_Term;
    722   }
    723 
    724   /* The following block sets the new values of Mem.z and Mem.xDel. It
    725   ** also sets a flag in local variable "flags" to indicate the memory
    726   ** management (one of MEM_Dyn or MEM_Static).
    727   */
    728   if( xDel==SQLITE_TRANSIENT ){
    729     int nAlloc = nByte;
    730     if( flags&MEM_Term ){
    731       nAlloc += (enc==SQLITE_UTF8?1:2);
    732     }
    733     if( nByte>iLimit ){
    734       return SQLITE_TOOBIG;
    735     }
    736     if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
    737       return SQLITE_NOMEM;
    738     }
    739     memcpy(pMem->z, z, nAlloc);
    740   }else if( xDel==SQLITE_DYNAMIC ){
    741     sqlite3VdbeMemRelease(pMem);
    742     pMem->zMalloc = pMem->z = (char *)z;
    743     pMem->xDel = 0;
    744   }else{
    745     sqlite3VdbeMemRelease(pMem);
    746     pMem->z = (char *)z;
    747     pMem->xDel = xDel;
    748     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
    749   }
    750 
    751   pMem->n = nByte;
    752   pMem->flags = flags;
    753   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
    754   pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
    755 
    756 #ifndef SQLITE_OMIT_UTF16
    757   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
    758     return SQLITE_NOMEM;
    759   }
    760 #endif
    761 
    762   if( nByte>iLimit ){
    763     return SQLITE_TOOBIG;
    764   }
    765 
    766   return SQLITE_OK;
    767 }
    768 
    769 /*
    770 ** Compare the values contained by the two memory cells, returning
    771 ** negative, zero or positive if pMem1 is less than, equal to, or greater
    772 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
    773 ** and reals) sorted numerically, followed by text ordered by the collating
    774 ** sequence pColl and finally blob's ordered by memcmp().
    775 **
    776 ** Two NULL values are considered equal by this function.
    777 */
    778 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
    779   int rc;
    780   int f1, f2;
    781   int combined_flags;
    782 
    783   f1 = pMem1->flags;
    784   f2 = pMem2->flags;
    785   combined_flags = f1|f2;
    786   assert( (combined_flags & MEM_RowSet)==0 );
    787 
    788   /* If one value is NULL, it is less than the other. If both values
    789   ** are NULL, return 0.
    790   */
    791   if( combined_flags&MEM_Null ){
    792     return (f2&MEM_Null) - (f1&MEM_Null);
    793   }
    794 
    795   /* If one value is a number and the other is not, the number is less.
    796   ** If both are numbers, compare as reals if one is a real, or as integers
    797   ** if both values are integers.
    798   */
    799   if( combined_flags&(MEM_Int|MEM_Real) ){
    800     if( !(f1&(MEM_Int|MEM_Real)) ){
    801       return 1;
    802     }
    803     if( !(f2&(MEM_Int|MEM_Real)) ){
    804       return -1;
    805     }
    806     if( (f1 & f2 & MEM_Int)==0 ){
    807       double r1, r2;
    808       if( (f1&MEM_Real)==0 ){
    809         r1 = (double)pMem1->u.i;
    810       }else{
    811         r1 = pMem1->r;
    812       }
    813       if( (f2&MEM_Real)==0 ){
    814         r2 = (double)pMem2->u.i;
    815       }else{
    816         r2 = pMem2->r;
    817       }
    818       if( r1<r2 ) return -1;
    819       if( r1>r2 ) return 1;
    820       return 0;
    821     }else{
    822       assert( f1&MEM_Int );
    823       assert( f2&MEM_Int );
    824       if( pMem1->u.i < pMem2->u.i ) return -1;
    825       if( pMem1->u.i > pMem2->u.i ) return 1;
    826       return 0;
    827     }
    828   }
    829 
    830   /* If one value is a string and the other is a blob, the string is less.
    831   ** If both are strings, compare using the collating functions.
    832   */
    833   if( combined_flags&MEM_Str ){
    834     if( (f1 & MEM_Str)==0 ){
    835       return 1;
    836     }
    837     if( (f2 & MEM_Str)==0 ){
    838       return -1;
    839     }
    840 
    841     assert( pMem1->enc==pMem2->enc );
    842     assert( pMem1->enc==SQLITE_UTF8 ||
    843             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
    844 
    845     /* The collation sequence must be defined at this point, even if
    846     ** the user deletes the collation sequence after the vdbe program is
    847     ** compiled (this was not always the case).
    848     */
    849     assert( !pColl || pColl->xCmp );
    850 
    851     if( pColl ){
    852       if( pMem1->enc==pColl->enc ){
    853         /* The strings are already in the correct encoding.  Call the
    854         ** comparison function directly */
    855         return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
    856       }else{
    857         const void *v1, *v2;
    858         int n1, n2;
    859         Mem c1;
    860         Mem c2;
    861         memset(&c1, 0, sizeof(c1));
    862         memset(&c2, 0, sizeof(c2));
    863         sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    864         sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    865         v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    866         n1 = v1==0 ? 0 : c1.n;
    867         v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    868         n2 = v2==0 ? 0 : c2.n;
    869         rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
    870         sqlite3VdbeMemRelease(&c1);
    871         sqlite3VdbeMemRelease(&c2);
    872         return rc;
    873       }
    874     }
    875     /* If a NULL pointer was passed as the collate function, fall through
    876     ** to the blob case and use memcmp().  */
    877   }
    878 
    879   /* Both values must be blobs.  Compare using memcmp().  */
    880   rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
    881   if( rc==0 ){
    882     rc = pMem1->n - pMem2->n;
    883   }
    884   return rc;
    885 }
    886 
    887 /*
    888 ** Move data out of a btree key or data field and into a Mem structure.
    889 ** The data or key is taken from the entry that pCur is currently pointing
    890 ** to.  offset and amt determine what portion of the data or key to retrieve.
    891 ** key is true to get the key or false to get data.  The result is written
    892 ** into the pMem element.
    893 **
    894 ** The pMem structure is assumed to be uninitialized.  Any prior content
    895 ** is overwritten without being freed.
    896 **
    897 ** If this routine fails for any reason (malloc returns NULL or unable
    898 ** to read from the disk) then the pMem is left in an inconsistent state.
    899 */
    900 int sqlite3VdbeMemFromBtree(
    901   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
    902   int offset,       /* Offset from the start of data to return bytes from. */
    903   int amt,          /* Number of bytes to return. */
    904   int key,          /* If true, retrieve from the btree key, not data. */
    905   Mem *pMem         /* OUT: Return data in this Mem structure. */
    906 ){
    907   char *zData;        /* Data from the btree layer */
    908   int available = 0;  /* Number of bytes available on the local btree page */
    909   int rc = SQLITE_OK; /* Return code */
    910 
    911   assert( sqlite3BtreeCursorIsValid(pCur) );
    912 
    913   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
    914   ** that both the BtShared and database handle mutexes are held. */
    915   assert( (pMem->flags & MEM_RowSet)==0 );
    916   if( key ){
    917     zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
    918   }else{
    919     zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
    920   }
    921   assert( zData!=0 );
    922 
    923   if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
    924     sqlite3VdbeMemRelease(pMem);
    925     pMem->z = &zData[offset];
    926     pMem->flags = MEM_Blob|MEM_Ephem;
    927   }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
    928     pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
    929     pMem->enc = 0;
    930     pMem->type = SQLITE_BLOB;
    931     if( key ){
    932       rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
    933     }else{
    934       rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
    935     }
    936     pMem->z[amt] = 0;
    937     pMem->z[amt+1] = 0;
    938     if( rc!=SQLITE_OK ){
    939       sqlite3VdbeMemRelease(pMem);
    940     }
    941   }
    942   pMem->n = amt;
    943 
    944   return rc;
    945 }
    946 
    947 /* This function is only available internally, it is not part of the
    948 ** external API. It works in a similar way to sqlite3_value_text(),
    949 ** except the data returned is in the encoding specified by the second
    950 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
    951 ** SQLITE_UTF8.
    952 **
    953 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
    954 ** If that is the case, then the result must be aligned on an even byte
    955 ** boundary.
    956 */
    957 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
    958   if( !pVal ) return 0;
    959 
    960   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
    961   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
    962   assert( (pVal->flags & MEM_RowSet)==0 );
    963 
    964   if( pVal->flags&MEM_Null ){
    965     return 0;
    966   }
    967   assert( (MEM_Blob>>3) == MEM_Str );
    968   pVal->flags |= (pVal->flags & MEM_Blob)>>3;
    969   expandBlob(pVal);
    970   if( pVal->flags&MEM_Str ){
    971     sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
    972     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
    973       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
    974       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
    975         return 0;
    976       }
    977     }
    978     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */
    979   }else{
    980     assert( (pVal->flags&MEM_Blob)==0 );
    981     sqlite3VdbeMemStringify(pVal, enc);
    982     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
    983   }
    984   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
    985               || pVal->db->mallocFailed );
    986   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
    987     return pVal->z;
    988   }else{
    989     return 0;
    990   }
    991 }
    992 
    993 /*
    994 ** Create a new sqlite3_value object.
    995 */
    996 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
    997   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
    998   if( p ){
    999     p->flags = MEM_Null;
   1000     p->type = SQLITE_NULL;
   1001     p->db = db;
   1002   }
   1003   return p;
   1004 }
   1005 
   1006 /*
   1007 ** Create a new sqlite3_value object, containing the value of pExpr.
   1008 **
   1009 ** This only works for very simple expressions that consist of one constant
   1010 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
   1011 ** be converted directly into a value, then the value is allocated and
   1012 ** a pointer written to *ppVal. The caller is responsible for deallocating
   1013 ** the value by passing it to sqlite3ValueFree() later on. If the expression
   1014 ** cannot be converted to a value, then *ppVal is set to NULL.
   1015 */
   1016 int sqlite3ValueFromExpr(
   1017   sqlite3 *db,              /* The database connection */
   1018   Expr *pExpr,              /* The expression to evaluate */
   1019   u8 enc,                   /* Encoding to use */
   1020   u8 affinity,              /* Affinity to use */
   1021   sqlite3_value **ppVal     /* Write the new value here */
   1022 ){
   1023   int op;
   1024   char *zVal = 0;
   1025   sqlite3_value *pVal = 0;
   1026   int negInt = 1;
   1027   const char *zNeg = "";
   1028 
   1029   if( !pExpr ){
   1030     *ppVal = 0;
   1031     return SQLITE_OK;
   1032   }
   1033   op = pExpr->op;
   1034 
   1035   /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2.
   1036   ** The ifdef here is to enable us to achieve 100% branch test coverage even
   1037   ** when SQLITE_ENABLE_STAT2 is omitted.
   1038   */
   1039 #ifdef SQLITE_ENABLE_STAT2
   1040   if( op==TK_REGISTER ) op = pExpr->op2;
   1041 #else
   1042   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
   1043 #endif
   1044 
   1045   /* Handle negative integers in a single step.  This is needed in the
   1046   ** case when the value is -9223372036854775808.
   1047   */
   1048   if( op==TK_UMINUS
   1049    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
   1050     pExpr = pExpr->pLeft;
   1051     op = pExpr->op;
   1052     negInt = -1;
   1053     zNeg = "-";
   1054   }
   1055 
   1056   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
   1057     pVal = sqlite3ValueNew(db);
   1058     if( pVal==0 ) goto no_mem;
   1059     if( ExprHasProperty(pExpr, EP_IntValue) ){
   1060       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
   1061     }else{
   1062       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
   1063       if( zVal==0 ) goto no_mem;
   1064       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
   1065       if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
   1066     }
   1067     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
   1068       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
   1069     }else{
   1070       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
   1071     }
   1072     if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
   1073     if( enc!=SQLITE_UTF8 ){
   1074       sqlite3VdbeChangeEncoding(pVal, enc);
   1075     }
   1076   }else if( op==TK_UMINUS ) {
   1077     /* This branch happens for multiple negative signs.  Ex: -(-5) */
   1078     if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
   1079       sqlite3VdbeMemNumerify(pVal);
   1080       if( pVal->u.i==SMALLEST_INT64 ){
   1081         pVal->flags &= MEM_Int;
   1082         pVal->flags |= MEM_Real;
   1083         pVal->r = (double)LARGEST_INT64;
   1084       }else{
   1085         pVal->u.i = -pVal->u.i;
   1086       }
   1087       pVal->r = -pVal->r;
   1088       sqlite3ValueApplyAffinity(pVal, affinity, enc);
   1089     }
   1090   }else if( op==TK_NULL ){
   1091     pVal = sqlite3ValueNew(db);
   1092     if( pVal==0 ) goto no_mem;
   1093   }
   1094 #ifndef SQLITE_OMIT_BLOB_LITERAL
   1095   else if( op==TK_BLOB ){
   1096     int nVal;
   1097     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
   1098     assert( pExpr->u.zToken[1]=='\'' );
   1099     pVal = sqlite3ValueNew(db);
   1100     if( !pVal ) goto no_mem;
   1101     zVal = &pExpr->u.zToken[2];
   1102     nVal = sqlite3Strlen30(zVal)-1;
   1103     assert( zVal[nVal]=='\'' );
   1104     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
   1105                          0, SQLITE_DYNAMIC);
   1106   }
   1107 #endif
   1108 
   1109   if( pVal ){
   1110     sqlite3VdbeMemStoreType(pVal);
   1111   }
   1112   *ppVal = pVal;
   1113   return SQLITE_OK;
   1114 
   1115 no_mem:
   1116   db->mallocFailed = 1;
   1117   sqlite3DbFree(db, zVal);
   1118   sqlite3ValueFree(pVal);
   1119   *ppVal = 0;
   1120   return SQLITE_NOMEM;
   1121 }
   1122 
   1123 /*
   1124 ** Change the string value of an sqlite3_value object
   1125 */
   1126 void sqlite3ValueSetStr(
   1127   sqlite3_value *v,     /* Value to be set */
   1128   int n,                /* Length of string z */
   1129   const void *z,        /* Text of the new string */
   1130   u8 enc,               /* Encoding to use */
   1131   void (*xDel)(void*)   /* Destructor for the string */
   1132 ){
   1133   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
   1134 }
   1135 
   1136 /*
   1137 ** Free an sqlite3_value object
   1138 */
   1139 void sqlite3ValueFree(sqlite3_value *v){
   1140   if( !v ) return;
   1141   sqlite3VdbeMemRelease((Mem *)v);
   1142   sqlite3DbFree(((Mem*)v)->db, v);
   1143 }
   1144 
   1145 /*
   1146 ** Return the number of bytes in the sqlite3_value object assuming
   1147 ** that it uses the encoding "enc"
   1148 */
   1149 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
   1150   Mem *p = (Mem*)pVal;
   1151   if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
   1152     if( p->flags & MEM_Zero ){
   1153       return p->n + p->u.nZero;
   1154     }else{
   1155       return p->n;
   1156     }
   1157   }
   1158   return 0;
   1159 }
   1160