Home | History | Annotate | Download | only in test
      1 # 2010 July 16
      2 #
      3 # The author disclaims copyright to this source code.  In place of
      4 # a legal notice, here is a blessing:
      5 #
      6 #    May you do good and not evil.
      7 #    May you find forgiveness for yourself and forgive others.
      8 #    May you share freely, never taking more than you give.
      9 #
     10 #***********************************************************************
     11 #
     12 # This file implements tests to verify that the "testable statements" in 
     13 # the lang_select.html document are correct.
     14 #
     15 
     16 set testdir [file dirname $argv0]
     17 source $testdir/tester.tcl
     18 
     19 do_execsql_test e_select-1.0 {
     20   CREATE TABLE t1(a, b);
     21   INSERT INTO t1 VALUES('a', 'one');
     22   INSERT INTO t1 VALUES('b', 'two');
     23   INSERT INTO t1 VALUES('c', 'three');
     24 
     25   CREATE TABLE t2(a, b);
     26   INSERT INTO t2 VALUES('a', 'I');
     27   INSERT INTO t2 VALUES('b', 'II');
     28   INSERT INTO t2 VALUES('c', 'III');
     29 
     30   CREATE TABLE t3(a, c);
     31   INSERT INTO t3 VALUES('a', 1);
     32   INSERT INTO t3 VALUES('b', 2);
     33 
     34   CREATE TABLE t4(a, c);
     35   INSERT INTO t4 VALUES('a', NULL);
     36   INSERT INTO t4 VALUES('b', 2);
     37 } {}
     38 set t1_cross_t2 [list                \
     39    a one   a I      a one   b II     \
     40    a one   c III    b two   a I      \
     41    b two   b II     b two   c III    \
     42    c three a I      c three b II     \
     43    c three c III                     \
     44 ]
     45 set t1_cross_t1 [list                  \
     46    a one   a one      a one   b two    \
     47    a one   c three    b two   a one    \
     48    b two   b two      b two   c three  \
     49    c three a one      c three b two    \
     50    c three c three                     \
     51 ]
     52 
     53 
     54 # This proc is a specialized version of [do_execsql_test].
     55 #
     56 # The second argument to this proc must be a SELECT statement that 
     57 # features a cross join of some time. Instead of the usual ",", 
     58 # "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 
     59 # substituted.
     60 #
     61 # This test runs the SELECT three times - once with:
     62 #
     63 #   * s/%JOIN%/,/
     64 #   * s/%JOIN%/JOIN/
     65 #   * s/%JOIN%/INNER JOIN/
     66 #   * s/%JOIN%/CROSS JOIN/
     67 #
     68 # and checks that each time the results of the SELECT are $res.
     69 #
     70 proc do_join_test {tn select res} {
     71   foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
     72     set S [string map [list %JOIN% $joinop] $select]
     73     uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
     74   }
     75 }
     76 
     77 #-------------------------------------------------------------------------
     78 # The following tests check that all paths on the syntax diagrams on
     79 # the lang_select.html page may be taken.
     80 #
     81 # EVIDENCE-OF: R-18428-22111 -- syntax diagram join-constraint
     82 #
     83 do_join_test e_select-0.1.1 {
     84   SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
     85 } {3}
     86 do_join_test e_select-0.1.2 {
     87   SELECT count(*) FROM t1 %JOIN% t2 USING (a)
     88 } {3}
     89 do_join_test e_select-0.1.3 {
     90   SELECT count(*) FROM t1 %JOIN% t2
     91 } {9}
     92 do_catchsql_test e_select-0.1.4 {
     93   SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
     94 } {1 {cannot have both ON and USING clauses in the same join}}
     95 do_catchsql_test e_select-0.1.5 {
     96   SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
     97 } {1 {near "ON": syntax error}}
     98 
     99 # EVIDENCE-OF: R-44854-11739 -- syntax diagram select-core
    100 #
    101 #   0: SELECT ...
    102 #   1: SELECT DISTINCT ...
    103 #   2: SELECT ALL ...
    104 #
    105 #   0: No FROM clause
    106 #   1: Has FROM clause
    107 #
    108 #   0: No WHERE clause
    109 #   1: Has WHERE clause
    110 #
    111 #   0: No GROUP BY clause
    112 #   1: Has GROUP BY clause
    113 #   2: Has GROUP BY and HAVING clauses
    114 #
    115 do_select_tests e_select-0.2 {
    116   0000.1  "SELECT 1, 2, 3 " {1 2 3}
    117   1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
    118   2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
    119   
    120   0100.1  "SELECT a, b, a||b FROM t1 " {
    121     a one aone b two btwo c three cthree
    122   }
    123   1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
    124     a one aone b two btwo c three cthree
    125   }
    126   1200.1  "SELECT ALL a, b, a||b FROM t1 " {
    127     a one aone b two btwo c three cthree
    128   }
    129 
    130   0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
    131   0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
    132   0010.3  "SELECT 1, 2, 3 WHERE NULL " {}
    133 
    134   1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
    135 
    136   2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
    137 
    138   0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
    139     a one aone b two btwo c three cthree
    140   }
    141   0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
    142 
    143   1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
    144     a one aone b two btwo c three cthree
    145   }
    146 
    147   2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
    148 
    149   0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
    150   0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
    151   0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
    152 
    153   1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
    154   1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
    155   1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
    156 
    157   2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
    158   2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
    159   2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
    160 
    161   0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
    162   0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
    163     1 a 1 c 1 b
    164   }
    165   0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { }
    166 
    167   1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
    168   1102.1  "SELECT DISTINCT count(*), max(a) FROM t1 
    169            GROUP BY b HAVING count(*)=1" {
    170     1 a 1 c 1 b
    171   }
    172   1102.2  "SELECT DISTINCT count(*), max(a) FROM t1 
    173            GROUP BY b HAVING count(*)=2" { 
    174   }
    175 
    176   2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
    177   2102.1  "SELECT ALL count(*), max(a) FROM t1 
    178            GROUP BY b HAVING count(*)=1" {
    179     1 a 1 c 1 b
    180   }
    181   2102.2  "SELECT ALL count(*), max(a) FROM t1 
    182            GROUP BY b HAVING count(*)=2" { 
    183   }
    184 
    185   0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
    186   0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
    187   0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
    188 
    189   1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
    190   1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 
    191           {1 2 3}
    192   1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
    193 
    194   2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
    195   2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
    196   2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
    197 
    198   0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
    199   0112.1  "SELECT count(*), max(a) FROM t1 
    200            WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
    201   0112.2  "SELECT count(*), max(a) FROM t1 
    202            WHERE 0 GROUP BY b HAVING count(*)=2" { }
    203   1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 
    204           {1 a 1 b}
    205   1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
    206            GROUP BY b HAVING count(*)=1" {
    207     1 c 1 b
    208   }
    209   1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
    210            GROUP BY b HAVING count(*)=2" { 
    211   }
    212 
    213   2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 
    214           {1 c 1 b}
    215   2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
    216            GROUP BY b HAVING count(*)=1" {
    217     1 a 1 c
    218   }
    219   2112.2  "SELECT ALL count(*), max(a) FROM t1 
    220            WHERE 0 GROUP BY b HAVING count(*)=2" { }
    221 }
    222 
    223 
    224 # EVIDENCE-OF: R-23316-20169 -- syntax diagram result-column
    225 #
    226 do_select_tests e_select-0.3 {
    227   1  "SELECT * FROM t1" {a one b two c three}
    228   2  "SELECT t1.* FROM t1" {a one b two c three}
    229   3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
    230   4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
    231   5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
    232 }
    233 
    234 # EVIDENCE-OF: R-41233-21397 -- syntax diagram join-source
    235 #
    236 # EVIDENCE-OF: R-45040-11121 -- syntax diagram join-op
    237 #
    238 do_select_tests e_select-0.4 {
    239   1  "SELECT t1.rowid FROM t1" {1 2 3}
    240   2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
    241   3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
    242 
    243   4  "SELECT t1.rowid FROM t1" {1 2 3}
    244   5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
    245   6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 
    246      {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
    247 
    248   7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
    249   8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
    250   9  "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3}
    251   10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
    252   11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
    253 
    254   12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
    255   13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
    256   14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
    257   15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
    258   16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
    259 }
    260 
    261 # EVIDENCE-OF: R-56911-63533 -- syntax diagram compound-operator
    262 #
    263 do_select_tests e_select-0.5 {
    264   1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
    265   2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
    266   3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
    267   4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
    268 }
    269 
    270 # EVIDENCE-OF: R-60388-27458 -- syntax diagram ordering-term
    271 #
    272 do_select_tests e_select-0.6 {
    273   1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
    274   2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
    275   3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
    276   4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
    277 }
    278 
    279 # EVIDENCE-OF: R-36494-33519 -- syntax diagram select-stmt
    280 #
    281 do_select_tests e_select-0.7 {
    282   1  "SELECT * FROM t1" {a one b two c three}
    283   2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
    284   3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
    285 
    286   4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
    287   5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
    288   6  "SELECT * FROM t1 LIMIT 10, 5" {}
    289 
    290   7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
    291   8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
    292   9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
    293 
    294   10  "SELECT * FROM t1 UNION SELECT b, a FROM t1" 
    295      {a one b two c three one a three c two b}
    296   11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 
    297      {one a two b three c a one c three b two}
    298   12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 
    299      {one a two b three c a one c three b two}
    300   13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 
    301      {a one b two c three one a three c two b}
    302   14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 
    303      {two b}
    304   15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 
    305      {}
    306   16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 
    307      {a one b two c three one a three c two b}
    308   17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 
    309      {b two}
    310   18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 
    311      {}
    312 }
    313 
    314 #-------------------------------------------------------------------------
    315 # The following tests focus on FROM clause (join) processing.
    316 #
    317 
    318 # EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
    319 # SELECT statement, then the input data is implicitly a single row zero
    320 # columns wide
    321 #
    322 do_select_tests e_select-1.1 {
    323   1 "SELECT 'abc'"            {abc}
    324   2 "SELECT 'abc' WHERE NULL" {}
    325   3 "SELECT NULL"             {{}}
    326   4 "SELECT count(*)"         {1}
    327   5 "SELECT count(*) WHERE 0" {0}
    328   6 "SELECT count(*) WHERE 1" {1}
    329 }
    330 
    331 # EVIDENCE-OF: R-48114-33255 If there is only a single table in the
    332 # join-source following the FROM clause, then the input data used by the
    333 # SELECT statement is the contents of the named table.
    334 #
    335 #   The results of the SELECT queries suggest that they are operating on the
    336 #   contents of the table 'xx'.
    337 #
    338 do_execsql_test e_select-1.2.0 {
    339   CREATE TABLE xx(x, y);
    340   INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
    341   INSERT INTO xx VALUES(NULL, -16.87);
    342   INSERT INTO xx VALUES(-17.89, 'linguistically');
    343 } {}
    344 do_select_tests e_select-1.2 {
    345   1  "SELECT quote(x), quote(y) FROM xx" {
    346      'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 
    347      NULL             -16.87                          
    348      -17.89           'linguistically'                
    349   }
    350 
    351   2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
    352   3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
    353 }
    354 
    355 # EVIDENCE-OF: R-23593-12456 If there is more than one table specified
    356 # as part of the join-source following the FROM keyword, then the
    357 # contents of each named table are joined into a single dataset for the
    358 # simple SELECT statement to operate on.
    359 #
    360 #   There are more detailed tests for subsequent requirements that add 
    361 #   more detail to this idea. We just add a single test that shows that
    362 #   data is coming from each of the three tables following the FROM clause
    363 #   here to show that the statement, vague as it is, is not incorrect.
    364 #
    365 do_select_tests e_select-1.3 {
    366   1 "SELECT * FROM t1, t2, t3" {
    367       a one a I a 1 a one a I b 2 a one b II a 1 
    368       a one b II b 2 a one c III a 1 a one c III b 2 
    369       b two a I a 1 b two a I b 2 b two b II a 1 
    370       b two b II b 2 b two c III a 1 b two c III b 2 
    371       c three a I a 1 c three a I b 2 c three b II a 1 
    372       c three b II b 2 c three c III a 1 c three c III b 2
    373   }
    374 }
    375 
    376 #
    377 # The following block of tests - e_select-1.4.* - test that the description
    378 # of cartesian joins in the SELECT documentation is consistent with SQLite.
    379 # In doing so, we test the following three requirements as a side-effect:
    380 #
    381 # EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER
    382 # JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
    383 # then the result of the join is simply the cartesian product of the
    384 # left and right-hand datasets.
    385 #
    386 #    The tests are built on this assertion. Really, they test that the output
    387 #    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
    388 #    of calculating the cartesian product of the left and right-hand datasets. 
    389 #
    390 # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
    391 # JOIN", "JOIN" and "," join operators.
    392 #
    393 # EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
    394 # same data as the "INNER JOIN", "JOIN" and "," operators
    395 #
    396 #    All tests are run 4 times, with the only difference in each run being
    397 #    which of the 4 equivalent cartesian product join operators are used.
    398 #    Since the output data is the same in all cases, we consider that this
    399 #    qualifies as testing the two statements above.
    400 #
    401 do_execsql_test e_select-1.4.0 {
    402   CREATE TABLE x1(a, b);
    403   CREATE TABLE x2(c, d, e);
    404   CREATE TABLE x3(f, g, h, i);
    405 
    406   -- x1: 3 rows, 2 columns
    407   INSERT INTO x1 VALUES(24, 'converging');
    408   INSERT INTO x1 VALUES(NULL, X'CB71');
    409   INSERT INTO x1 VALUES('blonds', 'proprietary');
    410 
    411   -- x2: 2 rows, 3 columns
    412   INSERT INTO x2 VALUES(-60.06, NULL, NULL);
    413   INSERT INTO x2 VALUES(-58, NULL, 1.21);
    414 
    415   -- x3: 5 rows, 4 columns
    416   INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
    417   INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
    418   INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
    419   INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
    420   INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
    421 } {}
    422 
    423 # EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
    424 # dataset are, in order, all the columns of the left-hand dataset
    425 # followed by all the columns of the right-hand dataset.
    426 #
    427 do_join_test e_select-1.4.1.1 {
    428   SELECT * FROM x1 %JOIN% x2 LIMIT 1
    429 } [concat {24 converging} {-60.06 {} {}}]
    430 
    431 do_join_test e_select-1.4.1.2 {
    432   SELECT * FROM x2 %JOIN% x1 LIMIT 1
    433 } [concat {-60.06 {} {}} {24 converging}]
    434 
    435 do_join_test e_select-1.4.1.3 {
    436   SELECT * FROM x3 %JOIN% x2 LIMIT 1
    437 } [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
    438 
    439 do_join_test e_select-1.4.1.4 {
    440   SELECT * FROM x2 %JOIN% x3 LIMIT 1
    441 } [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
    442 
    443 # EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
    444 # dataset formed by combining each unique combination of a row from the
    445 # left-hand and right-hand datasets.
    446 #
    447 do_join_test e_select-1.4.2.1 {
    448   SELECT * FROM x2 %JOIN% x3
    449 } [list -60.06 {} {}      -39.24 {} encompass -1                 \
    450         -60.06 {} {}      presenting 51 reformation dignified    \
    451         -60.06 {} {}      conducting -87.24 37.56 {}             \
    452         -60.06 {} {}      coldest -96 dramatists 82.3            \
    453         -60.06 {} {}      alerting {} -93.79 {}                  \
    454         -58 {} 1.21       -39.24 {} encompass -1                 \
    455         -58 {} 1.21       presenting 51 reformation dignified    \
    456         -58 {} 1.21       conducting -87.24 37.56 {}             \
    457         -58 {} 1.21       coldest -96 dramatists 82.3            \
    458         -58 {} 1.21       alerting {} -93.79 {}                  \
    459 ]
    460 # TODO: Come back and add a few more like the above.
    461 
    462 # EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset
    463 # consists of Nlhs rows of Mlhs columns, and the right-hand dataset of
    464 # Nrhs rows of Mrhs columns, then the cartesian product is a dataset of
    465 # Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns.
    466 #
    467 # x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
    468 do_join_test e_select-1.4.3.1 { 
    469   SELECT count(*) FROM x1 %JOIN% x2 
    470 } [expr 3*2]
    471 do_test e_select-1.4.3.2 { 
    472   expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
    473 } [expr 2+3]
    474 
    475 # x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
    476 do_join_test e_select-1.4.3.3 { 
    477   SELECT count(*) FROM x2 %JOIN% x3 
    478 } [expr 2*5]
    479 do_test e_select-1.4.3.4 { 
    480   expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
    481 } [expr 3+4]
    482 
    483 # x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
    484 do_join_test e_select-1.4.3.5 { 
    485   SELECT count(*) FROM x3 %JOIN% x1 
    486 } [expr 5*3]
    487 do_test e_select-1.4.3.6 { 
    488   expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
    489 } [expr 4+2]
    490 
    491 # x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
    492 do_join_test e_select-1.4.3.7 { 
    493   SELECT count(*) FROM x3 %JOIN% x3 
    494 } [expr 5*5]
    495 do_test e_select-1.4.3.8 { 
    496   expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
    497 } [expr 4+4]
    498 
    499 # Some extra cartesian product tests using tables t1 and t2.
    500 #
    501 do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
    502 do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
    503 
    504 do_select_tests e_select-1.4.5 [list                                   \
    505     1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
    506     2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
    507     3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
    508     4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
    509 ]
    510 
    511 
    512 # EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then
    513 # the ON expression is evaluated for each row of the cartesian product
    514 # as a boolean expression. All rows for which the expression evaluates
    515 # to false are excluded from the dataset.
    516 #
    517 foreach {tn select res} [list                                              \
    518     1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
    519     2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
    520     3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
    521     4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
    522     5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
    523     6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
    524     7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
    525     8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
    526                                                                            \
    527     9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
    528       {one I two II three III}                                             \
    529    10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
    530       {one I one II one III}                                               \
    531    11 { SELECT t1.b, t2.b 
    532         FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
    533       {two I two II two III three I three II three III}                    \
    534 ] {
    535   do_join_test e_select-1.3.$tn $select $res
    536 }
    537 
    538 # EVIDENCE-OF: R-63358-54862 If there is a USING clause specified as
    539 # part of the join-constraint, then each of the column names specified
    540 # must exist in the datasets to both the left and right of the join-op.
    541 #
    542 do_select_tests e_select-1.4 -error {
    543   cannot join using column %s - column not present in both tables
    544 } {
    545   1 { SELECT * FROM t1, t3 USING (b) }   "b"
    546   2 { SELECT * FROM t3, t1 USING (c) }   "c"
    547   3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
    548 } 
    549 
    550 # EVIDENCE-OF: R-55987-04584 For each pair of namesake columns, the
    551 # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
    552 # product as a boolean expression. All rows for which one or more of the
    553 # expressions evaluates to false are excluded from the result set.
    554 #
    555 do_select_tests e_select-1.5 {
    556   1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
    557   2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
    558 } 
    559 
    560 # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
    561 # USING clause, the normal rules for handling affinities, collation
    562 # sequences and NULL values in comparisons apply.
    563 #
    564 # EVIDENCE-OF: R-35466-18578 The column from the dataset on the
    565 # left-hand side of the join operator is considered to be on the
    566 # left-hand side of the comparison operator (=) for the purposes of
    567 # collation sequence and affinity precedence.
    568 #
    569 do_execsql_test e_select-1.6.0 {
    570   CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
    571   INSERT INTO t5 VALUES('AA', 'cc');
    572   INSERT INTO t5 VALUES('BB', 'dd');
    573   INSERT INTO t5 VALUES(NULL, NULL);
    574   CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
    575   INSERT INTO t6 VALUES('aa', 'cc');
    576   INSERT INTO t6 VALUES('bb', 'DD');
    577   INSERT INTO t6 VALUES(NULL, NULL);
    578 } {}
    579 foreach {tn select res} {
    580   1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
    581   2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
    582   3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 
    583     {aa cc cc bb DD dd}
    584   4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
    585   5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
    586 } {
    587   do_join_test e_select-1.6.$tn $select $res
    588 }
    589 
    590 # EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
    591 # USING clause, the column from the right-hand dataset is omitted from
    592 # the joined dataset.
    593 #
    594 # EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
    595 # clause and its equivalent ON constraint.
    596 #
    597 foreach {tn select res} {
    598   1a { SELECT * FROM t1 %JOIN% t2 USING (a)      } 
    599      {a one I b two II c three III}
    600   1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
    601      {a one a I b two b II c three c III}
    602 
    603   2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }  
    604      {a 1 {} b 2 2}
    605   2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 
    606      {a 1 a {} b 2 b 2}
    607 
    608   3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
    609   3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
    610 
    611   4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 
    612        %JOIN% t5 USING (a) } 
    613      {aa cc cc bb DD dd}
    614   4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
    615        %JOIN% t5 ON (x.a=t5.a) } 
    616      {aa cc AA cc bb DD BB dd}
    617 } {
    618   do_join_test e_select-1.7.$tn $select $res
    619 }
    620 
    621 # EVIDENCE-OF: R-41434-12448 If the join-op is a "LEFT JOIN" or "LEFT
    622 # OUTER JOIN", then after the ON or USING filtering clauses have been
    623 # applied, an extra row is added to the output for each row in the
    624 # original left-hand input dataset that corresponds to no rows at all in
    625 # the composite dataset (if any).
    626 #
    627 do_execsql_test e_select-1.8.0 {
    628   CREATE TABLE t7(a, b, c);
    629   CREATE TABLE t8(a, d, e);
    630 
    631   INSERT INTO t7 VALUES('x', 'ex',  24);
    632   INSERT INTO t7 VALUES('y', 'why', 25);
    633 
    634   INSERT INTO t8 VALUES('x', 'abc', 24);
    635   INSERT INTO t8 VALUES('z', 'ghi', 26);
    636 } {}
    637 
    638 do_select_tests e_select-1.8 {
    639   1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
    640   1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
    641   2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
    642   2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
    643 }
    644 
    645 
    646 # EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
    647 # columns that would normally contain values copied from the right-hand
    648 # input dataset.
    649 #
    650 do_select_tests e_select-1.9 {
    651   1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
    652   1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 
    653      {x ex 24 x abc 24 y why 25 {} {} {}}
    654   2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
    655   2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
    656 }
    657 
    658 # EVIDENCE-OF: R-01809-52134 If the NATURAL keyword is added to any of
    659 # the join-ops, then an implicit USING clause is added to the
    660 # join-constraints. The implicit USING clause contains each of the
    661 # column names that appear in both the left and right-hand input
    662 # datasets.
    663 #
    664 do_select_tests e_select-1-10 {
    665   1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
    666   1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}
    667 
    668   2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
    669   2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}
    670 
    671   3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
    672   3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}
    673 
    674   4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
    675   4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}
    676 
    677   5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
    678   5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}
    679 
    680   6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
    681   6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
    682 } 
    683 
    684 # EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
    685 # feature no common column names, then the NATURAL keyword has no effect
    686 # on the results of the join.
    687 #
    688 do_execsql_test e_select-1.11.0 {
    689   CREATE TABLE t10(x, y);
    690   INSERT INTO t10 VALUES(1, 'true');
    691   INSERT INTO t10 VALUES(0, 'false');
    692 } {}
    693 do_select_tests e_select-1-11 {
    694   1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
    695   1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
    696 }
    697 
    698 # EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
    699 # join that specifies the NATURAL keyword.
    700 #
    701 foreach {tn sql} {
    702   1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
    703   2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
    704   3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
    705 } {
    706   do_catchsql_test e_select-1.12.$tn "
    707     $sql
    708   " {1 {a NATURAL join may not have an ON or USING clause}}
    709 }
    710 
    711 #-------------------------------------------------------------------------
    712 # The next block of tests - e_select-3.* - concentrate on verifying 
    713 # statements made regarding WHERE clause processing.
    714 #
    715 drop_all_tables
    716 do_execsql_test e_select-3.0 {
    717   CREATE TABLE x1(k, x, y, z);
    718   INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
    719   INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
    720   INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
    721   INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
    722   INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
    723   INSERT INTO x1 VALUES(6, 0,              1,         2);
    724 
    725   CREATE TABLE x2(k, x, y2);
    726   INSERT INTO x2 VALUES(1, 50, X'B82838');
    727   INSERT INTO x2 VALUES(5, 84.79, 65.88);
    728   INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
    729   INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
    730 } {}
    731 
    732 # EVIDENCE-OF: R-06999-14330 If a WHERE clause is specified, the WHERE
    733 # expression is evaluated for each row in the input data as a boolean
    734 # expression. All rows for which the WHERE clause expression evaluates
    735 # to false are excluded from the dataset before continuing.
    736 #
    737 do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
    738 do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
    739 do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
    740 do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
    741 do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
    742 do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
    743 
    744 do_execsql_test e_select-3.2.1a {
    745   SELECT k FROM x1 LEFT JOIN x2 USING(k)
    746 } {1 2 3 4 5 6}
    747 do_execsql_test e_select-3.2.1b {
    748   SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k
    749 } {1 3 5}
    750 do_execsql_test e_select-3.2.2 {
    751   SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
    752 } {2 4 6}
    753 
    754 do_execsql_test e_select-3.2.3 {
    755   SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
    756 } {3}
    757 do_execsql_test e_select-3.2.4 {
    758   SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
    759 } {}
    760 
    761 #-------------------------------------------------------------------------
    762 # Tests below this point are focused on verifying the testable statements
    763 # related to caculating the result rows of a simple SELECT statement.
    764 #
    765 
    766 drop_all_tables
    767 do_execsql_test e_select-4.0 {
    768   CREATE TABLE z1(a, b, c);
    769   CREATE TABLE z2(d, e);
    770   CREATE TABLE z3(a, b);
    771 
    772   INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
    773   INSERT INTO z1 VALUES(-5, NULL, 75);
    774   INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
    775   INSERT INTO z1 VALUES(NULL, 67, 'quartets');
    776   INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
    777   INSERT INTO z1 VALUES(63, 'born', -26);
    778 
    779   INSERT INTO z2 VALUES(NULL, 21);
    780   INSERT INTO z2 VALUES(36, 6);
    781 
    782   INSERT INTO z3 VALUES('subsistence', 'gauze');
    783   INSERT INTO z3 VALUES(49.17, -67);
    784 } {}
    785 
    786 # EVIDENCE-OF: R-36327-17224 If a result expression is the special
    787 # expression "*" then all columns in the input data are substituted for
    788 # that one expression.
    789 #
    790 # EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
    791 # or subquery in the FROM clause followed by ".*" then all columns from
    792 # the named table or subquery are substituted for the single expression.
    793 #
    794 do_select_tests e_select-4.1 {
    795   1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
    796   2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
    797   3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
    798   4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
    799   5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
    800 
    801   6  "SELECT count(*), * FROM z1"           {6 63 born -26}
    802   7  "SELECT max(a), * FROM z1"             {63 63 born -26}
    803   8  "SELECT *, min(a) FROM z1"             {63 born -26 -5}
    804 
    805   9  "SELECT *,* FROM z1,z2 LIMIT 1" {        
    806      51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
    807   }
    808   10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {        
    809      51.65 -59.58 belfries 51.65 -59.58 belfries
    810   }
    811 }
    812 
    813 # EVIDENCE-OF: R-61869-22578 It is an error to use a "*" or "alias.*"
    814 # expression in any context other than than a result expression list.
    815 #
    816 # EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
    817 # "alias.*" expression in a simple SELECT query that does not have a
    818 # FROM clause.
    819 #
    820 foreach {tn select err} {
    821   1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
    822   1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
    823   1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
    824   1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}
    825 
    826   2.1 "SELECT *" {no tables specified}
    827   2.2 "SELECT * WHERE 1" {no tables specified}
    828   2.3 "SELECT * WHERE 0" {no tables specified}
    829   2.4 "SELECT count(*), *" {no tables specified}
    830 } {
    831   do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
    832 }
    833 
    834 # EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
    835 # by a simple SELECT statement is equal to the number of expressions in
    836 # the result expression list after substitution of * and alias.*
    837 # expressions.
    838 #
    839 foreach {tn select nCol} {
    840   1   "SELECT * FROM z1"   3
    841   2   "SELECT * FROM z1 NATURAL JOIN z3"            3
    842   3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
    843   4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
    844   5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
    845   6   "SELECT 1, 2, z1.* FROM z1"                   5
    846   7   "SELECT a, *, b, c FROM z1"                   6
    847 } {
    848   set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
    849   do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
    850   sqlite3_finalize $::stmt
    851 }
    852 
    853 
    854 
    855 # In lang_select.html, a non-aggregate query is defined as any simple SELECT
    856 # that has no GROUP BY clause and no aggregate expressions in the result
    857 # expression list. Other queries are aggregate queries. Test cases
    858 # e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
    859 # simple SELECT that is different for aggregate and non-aggregate queries
    860 # verify (in a way) that these definitions are consistent:
    861 #
    862 # EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
    863 # query if it contains either a GROUP BY clause or one or more aggregate
    864 # functions in the result-set.
    865 #
    866 # EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
    867 # aggregate functions or a GROUP BY clause, it is a non-aggregate query.
    868 #
    869 
    870 # EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
    871 # query, then each expression in the result expression list is evaluated
    872 # for each row in the dataset filtered by the WHERE clause.
    873 #
    874 do_select_tests e_select-4.4 {
    875   1 "SELECT a, b FROM z1"
    876     {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
    877 
    878   2 "SELECT a IS NULL, b+1, * FROM z1" {
    879         0 -58.58   51.65 -59.58 belfries
    880         0 {}       -5 {} 75            
    881         0 -22.18   -2.2 -23.18 suiters
    882         1 68       {} 67 quartets    
    883         0 -31.3    -1.04 -32.3 aspen
    884         0 1        63 born -26
    885   }
    886 
    887   3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
    888 }
    889 
    890 
    891 # Test cases e_select-4.5.* and e_select-4.6.* together show that:
    892 #
    893 # EVIDENCE-OF: R-51988-01124 The single row of result-set data created
    894 # by evaluating the aggregate and non-aggregate expressions in the
    895 # result-set forms the result of an aggregate query without a GROUP BY
    896 # clause.
    897 #
    898 
    899 # EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
    900 # query without a GROUP BY clause, then each aggregate expression in the
    901 # result-set is evaluated once across the entire dataset.
    902 #
    903 do_select_tests e_select-4.5 {
    904   1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
    905   2 "SELECT count(*), max(1)"                                {1 1}
    906 
    907   3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
    908   4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
    909   5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
    910 }
    911 
    912 # EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
    913 # result-set is evaluated once for an arbitrarily selected row of the
    914 # dataset.
    915 #
    916 # EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
    917 # for each non-aggregate expression.
    918 #
    919 #   Note: The results of many of the queries in this block of tests are
    920 #   technically undefined, as the documentation does not specify which row
    921 #   SQLite will arbitrarily select to use for the evaluation of the
    922 #   non-aggregate expressions.
    923 #
    924 drop_all_tables
    925 do_execsql_test e_select-4.6.0 {
    926   CREATE TABLE a1(one PRIMARY KEY, two);
    927   INSERT INTO a1 VALUES(1, 1);
    928   INSERT INTO a1 VALUES(2, 3);
    929   INSERT INTO a1 VALUES(3, 6);
    930   INSERT INTO a1 VALUES(4, 10);
    931 
    932   CREATE TABLE a2(one PRIMARY KEY, three);
    933   INSERT INTO a2 VALUES(1, 1);
    934   INSERT INTO a2 VALUES(3, 2);
    935   INSERT INTO a2 VALUES(6, 3);
    936   INSERT INTO a2 VALUES(10, 4);
    937 } {}
    938 do_select_tests e_select-4.6 {
    939   1 "SELECT one, two, count(*) FROM a1"                        {4 10 4} 
    940   2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {2 3 2} 
    941   3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1} 
    942   4 "SELECT *, count(*) FROM a1 JOIN a2"                       {4 10 10 4 16} 
    943   5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
    944   6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
    945   7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6}
    946 }
    947 
    948 # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
    949 # each non-aggregate expression is evaluated against a row consisting
    950 # entirely of NULL values.
    951 #
    952 do_select_tests e_select-4.7 {
    953   1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
    954   2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
    955   3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
    956     1 1 1
    957   }
    958 } 
    959 
    960 # EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
    961 # clause always returns exactly one row of data, even if there are zero
    962 # rows of input data.
    963 #
    964 foreach {tn select} {
    965   8.1  "SELECT count(*) FROM a1"
    966   8.2  "SELECT count(*) FROM a1 WHERE 0"
    967   8.3  "SELECT count(*) FROM a1 WHERE 1"
    968   8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
    969   8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
    970 } {
    971   # Set $nRow to the number of rows returned by $select:
    972   set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
    973   set nRow 0
    974   while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
    975   set rc [sqlite3_finalize $::stmt]
    976 
    977   # Test that $nRow==1 and that statement execution was successful 
    978   # (rc==SQLITE_OK).
    979   do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
    980 }
    981 
    982 drop_all_tables
    983 do_execsql_test e_select-4.9.0 {
    984   CREATE TABLE b1(one PRIMARY KEY, two);
    985   INSERT INTO b1 VALUES(1, 'o');
    986   INSERT INTO b1 VALUES(4, 'f');
    987   INSERT INTO b1 VALUES(3, 't');
    988   INSERT INTO b1 VALUES(2, 't');
    989   INSERT INTO b1 VALUES(5, 'f');
    990   INSERT INTO b1 VALUES(7, 's');
    991   INSERT INTO b1 VALUES(6, 's');
    992 
    993   CREATE TABLE b2(x, y);
    994   INSERT INTO b2 VALUES(NULL, 0);
    995   INSERT INTO b2 VALUES(NULL, 1);
    996   INSERT INTO b2 VALUES('xyz', 2);
    997   INSERT INTO b2 VALUES('abc', 3);
    998   INSERT INTO b2 VALUES('xyz', 4);
    999 
   1000   CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
   1001   INSERT INTO b3 VALUES('abc', 'abc');
   1002   INSERT INTO b3 VALUES('aBC', 'aBC');
   1003   INSERT INTO b3 VALUES('Def', 'Def');
   1004   INSERT INTO b3 VALUES('dEF', 'dEF');
   1005 } {}
   1006 
   1007 # EVIDENCE-OF: R-57754-57109 If the SELECT statement is an aggregate
   1008 # query with a GROUP BY clause, then each of the expressions specified
   1009 # as part of the GROUP BY clause is evaluated for each row of the
   1010 # dataset. Each row is then assigned to a "group" based on the results;
   1011 # rows for which the results of evaluating the GROUP BY expressions are
   1012 # the same are assigned to the same group.
   1013 #
   1014 #   These tests also show that the following is not untrue:
   1015 #
   1016 # EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
   1017 # not have to be expressions that appear in the result.
   1018 #
   1019 do_select_tests e_select-4.9 {
   1020   1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
   1021     4,5 f   1 o   7,6   s 3,2 t
   1022   }
   1023   2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
   1024     1,4,3,2 10    5,7,6 18
   1025   }
   1026   3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
   1027     4  1,5    2,6   3,7
   1028   }
   1029   4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
   1030     4,3,5,7,6    1,2
   1031   }
   1032 }
   1033 
   1034 # EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
   1035 # values are considered equal.
   1036 #
   1037 do_select_tests e_select-4.10 {
   1038   1  "SELECT group_concat(y) FROM b2 GROUP BY x" {0,1   3   2,4}
   1039   2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
   1040 } 
   1041 
   1042 # EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
   1043 # sequence with which to compare text values apply when evaluating
   1044 # expressions in a GROUP BY clause.
   1045 #
   1046 do_select_tests e_select-4.11 {
   1047   1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
   1048   2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
   1049   3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
   1050   4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
   1051   5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
   1052   6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
   1053 }
   1054 
   1055 # EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
   1056 # not be aggregate expressions.
   1057 #
   1058 foreach {tn select} {
   1059   12.1  "SELECT * FROM b3 GROUP BY count(*)"
   1060   12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
   1061   12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
   1062 } {
   1063   set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
   1064   do_catchsql_test e_select-4.$tn $select $res
   1065 }
   1066 
   1067 # EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
   1068 # evaluated once for each group of rows as a boolean expression. If the
   1069 # result of evaluating the HAVING clause is false, the group is
   1070 # discarded.
   1071 #
   1072 #   This requirement is tested by all e_select-4.13.* tests.
   1073 #
   1074 # EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
   1075 # expression, it is evaluated across all rows in the group.
   1076 #
   1077 #   Tested by e_select-4.13.1.*
   1078 #
   1079 # EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
   1080 # expression, it is evaluated with respect to an arbitrarily selected
   1081 # row from the group.
   1082 #
   1083 #   Tested by e_select-4.13.2.*
   1084 #
   1085 #   Tests in this block also show that this is not untrue:
   1086 #
   1087 # EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
   1088 # even aggregate functions, that are not in the result.
   1089 #
   1090 do_execsql_test e_select-4.13.0 {
   1091   CREATE TABLE c1(up, down);
   1092   INSERT INTO c1 VALUES('x', 1);
   1093   INSERT INTO c1 VALUES('x', 2);
   1094   INSERT INTO c1 VALUES('x', 4);
   1095   INSERT INTO c1 VALUES('x', 8);
   1096   INSERT INTO c1 VALUES('y', 16);
   1097   INSERT INTO c1 VALUES('y', 32);
   1098 
   1099   CREATE TABLE c2(i, j);
   1100   INSERT INTO c2 VALUES(1, 0);
   1101   INSERT INTO c2 VALUES(2, 1);
   1102   INSERT INTO c2 VALUES(3, 3);
   1103   INSERT INTO c2 VALUES(4, 6);
   1104   INSERT INTO c2 VALUES(5, 10);
   1105   INSERT INTO c2 VALUES(6, 15);
   1106   INSERT INTO c2 VALUES(7, 21);
   1107   INSERT INTO c2 VALUES(8, 28);
   1108   INSERT INTO c2 VALUES(9, 36);
   1109 
   1110   CREATE TABLE c3(i PRIMARY KEY, k TEXT);
   1111   INSERT INTO c3 VALUES(1,  'hydrogen');
   1112   INSERT INTO c3 VALUES(2,  'helium');
   1113   INSERT INTO c3 VALUES(3,  'lithium');
   1114   INSERT INTO c3 VALUES(4,  'beryllium');
   1115   INSERT INTO c3 VALUES(5,  'boron');
   1116   INSERT INTO c3 VALUES(94, 'plutonium');
   1117 } {}
   1118 
   1119 do_select_tests e_select-4.13 {
   1120   1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
   1121   1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
   1122   1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
   1123   1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
   1124 
   1125   2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
   1126   2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}
   1127 
   1128   2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6"  {9 36}
   1129 }
   1130 
   1131 # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
   1132 # evaluated once for each group of rows.
   1133 #
   1134 # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
   1135 # expression, it is evaluated across all rows in the group.
   1136 #
   1137 do_select_tests e_select-4.15 {
   1138   1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
   1139   2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
   1140   3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
   1141   4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
   1142   5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
   1143         {3 4.33 1 2.0}
   1144 } 
   1145 
   1146 # EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
   1147 # arbitrarily chosen row from within the group.
   1148 #
   1149 # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
   1150 # expression in the result-set, then all such expressions are evaluated
   1151 # for the same row.
   1152 #
   1153 do_select_tests e_select-4.15 {
   1154   1  "SELECT i, j FROM c2 GROUP BY i%2"             {8 28   9 36}
   1155   2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28}
   1156   3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
   1157   4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
   1158   5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
   1159         {2 5 boron   2 2 helium   1 3 lithium}
   1160 } 
   1161 
   1162 # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
   1163 # contributes a single row to the set of result rows.
   1164 #
   1165 # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
   1166 # DISTINCT keyword, the number of rows returned by an aggregate query
   1167 # with a GROUP BY clause is the same as the number of groups of rows
   1168 # produced by applying the GROUP BY and HAVING clauses to the filtered
   1169 # input dataset.
   1170 #
   1171 do_select_tests e_select.4.16 -count {
   1172   1  "SELECT i, j FROM c2 GROUP BY i%2"          2
   1173   2  "SELECT i, j FROM c2 GROUP BY i"            9
   1174   3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
   1175 } 
   1176 
   1177 #-------------------------------------------------------------------------
   1178 # The following tests attempt to verify statements made regarding the ALL
   1179 # and DISTINCT keywords.
   1180 #
   1181 drop_all_tables
   1182 do_execsql_test e_select-5.1.0 {
   1183   CREATE TABLE h1(a, b);
   1184   INSERT INTO h1 VALUES(1, 'one');
   1185   INSERT INTO h1 VALUES(1, 'I');
   1186   INSERT INTO h1 VALUES(1, 'i');
   1187   INSERT INTO h1 VALUES(4, 'four');
   1188   INSERT INTO h1 VALUES(4, 'IV');
   1189   INSERT INTO h1 VALUES(4, 'iv');
   1190 
   1191   CREATE TABLE h2(x COLLATE nocase);
   1192   INSERT INTO h2 VALUES('One');
   1193   INSERT INTO h2 VALUES('Two');
   1194   INSERT INTO h2 VALUES('Three');
   1195   INSERT INTO h2 VALUES('Four');
   1196   INSERT INTO h2 VALUES('one');
   1197   INSERT INTO h2 VALUES('two');
   1198   INSERT INTO h2 VALUES('three');
   1199   INSERT INTO h2 VALUES('four');
   1200 
   1201   CREATE TABLE h3(c, d);
   1202   INSERT INTO h3 VALUES(1, NULL);
   1203   INSERT INTO h3 VALUES(2, NULL);
   1204   INSERT INTO h3 VALUES(3, NULL);
   1205   INSERT INTO h3 VALUES(4, '2');
   1206   INSERT INTO h3 VALUES(5, NULL);
   1207   INSERT INTO h3 VALUES(6, '2,3');
   1208   INSERT INTO h3 VALUES(7, NULL);
   1209   INSERT INTO h3 VALUES(8, '2,4');
   1210   INSERT INTO h3 VALUES(9, '3');
   1211 } {}
   1212 
   1213 # EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
   1214 # follow the SELECT keyword in a simple SELECT statement.
   1215 #
   1216 do_select_tests e_select-5.1 {
   1217   1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
   1218   2   "SELECT DISTINCT a FROM h1" {1 4}
   1219 }
   1220 
   1221 # EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
   1222 # the entire set of result rows are returned by the SELECT.
   1223 #
   1224 # EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present,
   1225 # then the behaviour is as if ALL were specified.
   1226 #
   1227 # EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
   1228 # then duplicate rows are removed from the set of result rows before it
   1229 # is returned.
   1230 #
   1231 #   The three testable statements above are tested by e_select-5.2.*,
   1232 #   5.3.* and 5.4.* respectively.
   1233 #
   1234 do_select_tests e_select-5 {
   1235   3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
   1236   3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
   1237 
   1238   3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
   1239   3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
   1240 
   1241   4.1 "SELECT DISTINCT x FROM h2" {four one three two}
   1242   4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {four one}
   1243 } 
   1244 
   1245 # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
   1246 # rows, two NULL values are considered to be equal.
   1247 #
   1248 do_select_tests e_select-5.5 {
   1249   1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
   1250 }
   1251 
   1252 # EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation
   1253 # sequence to compare text values with apply.
   1254 #
   1255 do_select_tests e_select-5.6 {
   1256   1  "SELECT DISTINCT b FROM h1"                  {I IV four i iv one}
   1257   2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {four i iv one}
   1258   3  "SELECT DISTINCT x FROM h2"                  {four one three two}
   1259   4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
   1260     Four One Three Two four one three two
   1261   }
   1262 }
   1263 
   1264 #-------------------------------------------------------------------------
   1265 # The following tests - e_select-7.* - test that statements made to do
   1266 # with compound SELECT statements are correct.
   1267 #
   1268 
   1269 # EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
   1270 # SELECTs must return the same number of result columns.
   1271 #
   1272 #   All the other tests in this section use compound SELECTs created
   1273 #   using component SELECTs that do return the same number of columns.
   1274 #   So the tests here just show that it is an error to attempt otherwise.
   1275 #
   1276 drop_all_tables
   1277 do_execsql_test e_select-7.1.0 {
   1278   CREATE TABLE j1(a, b, c);
   1279   CREATE TABLE j2(e, f);
   1280   CREATE TABLE j3(g);
   1281 } {}
   1282 do_select_tests e_select-7.1 -error {
   1283   SELECTs to the left and right of %s do not have the same number of result columns
   1284 } {
   1285   1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
   1286   2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
   1287   3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
   1288   4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
   1289   5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
   1290 
   1291   6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
   1292   7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
   1293   8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
   1294   9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
   1295   10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}
   1296 
   1297   11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
   1298   12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
   1299   13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
   1300   14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
   1301   15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
   1302 
   1303   16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
   1304   17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
   1305   18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
   1306   19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
   1307   20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
   1308 } 
   1309 
   1310 # EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
   1311 # be simple SELECT statements, they may not contain ORDER BY or LIMIT
   1312 # clauses.
   1313 # 
   1314 foreach {tn select op1 op2} {
   1315   1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 
   1316       {ORDER BY} {UNION ALL}
   1317   2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
   1318       {ORDER BY} {UNION ALL}
   1319   3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
   1320       {ORDER BY} {UNION ALL}
   1321   4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 
   1322       LIMIT {UNION ALL}
   1323   5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 
   1324       LIMIT {UNION ALL}
   1325   6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 
   1326       LIMIT {UNION ALL}
   1327 
   1328   7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 
   1329       {ORDER BY} {UNION}
   1330   8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
   1331       {ORDER BY} {UNION}
   1332   9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
   1333       {ORDER BY} {UNION}
   1334   10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 
   1335       LIMIT {UNION}
   1336   11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 
   1337       LIMIT {UNION}
   1338   12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 
   1339       LIMIT {UNION}
   1340 
   1341   13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 
   1342       {ORDER BY} {EXCEPT}
   1343   14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
   1344       {ORDER BY} {EXCEPT}
   1345   15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
   1346       {ORDER BY} {EXCEPT}
   1347   16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 
   1348       LIMIT {EXCEPT}
   1349   17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 
   1350       LIMIT {EXCEPT}
   1351   18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 
   1352       LIMIT {EXCEPT}
   1353 
   1354   19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 
   1355       {ORDER BY} {INTERSECT}
   1356   20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
   1357       {ORDER BY} {INTERSECT}
   1358   21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
   1359       {ORDER BY} {INTERSECT}
   1360   22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 
   1361       LIMIT {INTERSECT}
   1362   23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 
   1363       LIMIT {INTERSECT}
   1364   24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 
   1365       LIMIT {INTERSECT}
   1366 } {
   1367   set err "$op1 clause should come after $op2 not before"
   1368   do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
   1369 }
   1370 
   1371 # EVIDENCE-OF: R-22874-32655 ORDER BY and LIMIT clauses may only occur
   1372 # at the end of the entire compound SELECT.
   1373 #
   1374 foreach {tn select} {
   1375   1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
   1376   2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
   1377   3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
   1378   4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 
   1379   5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
   1380   6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
   1381 
   1382   7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
   1383   8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
   1384   9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
   1385   10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 
   1386   11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
   1387   12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
   1388 
   1389   13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
   1390   14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
   1391   15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
   1392   16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 
   1393   17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
   1394   18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
   1395 
   1396   19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
   1397   20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
   1398   21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
   1399   22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 
   1400   23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
   1401   24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
   1402 } {
   1403   do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
   1404 }
   1405 
   1406 # EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
   1407 # operator returns all the rows from the SELECT to the left of the UNION
   1408 # ALL operator, and all the rows from the SELECT to the right of it.
   1409 #
   1410 drop_all_tables
   1411 do_execsql_test e_select-7.4.0 {
   1412   CREATE TABLE q1(a TEXT, b INTEGER, c);
   1413   CREATE TABLE q2(d NUMBER, e BLOB);
   1414   CREATE TABLE q3(f REAL, g);
   1415 
   1416   INSERT INTO q1 VALUES(16, -87.66, NULL);
   1417   INSERT INTO q1 VALUES('legible', 94, -42.47);
   1418   INSERT INTO q1 VALUES('beauty', 36, NULL);
   1419 
   1420   INSERT INTO q2 VALUES('legible', 1);
   1421   INSERT INTO q2 VALUES('beauty', 2);
   1422   INSERT INTO q2 VALUES(-65.91, 4);
   1423   INSERT INTO q2 VALUES('emanating', -16.56);
   1424 
   1425   INSERT INTO q3 VALUES('beauty', 2);
   1426   INSERT INTO q3 VALUES('beauty', 2);
   1427 } {}
   1428 do_select_tests e_select-7.4 {
   1429   1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
   1430       {16 legible beauty legible beauty -65.91 emanating}
   1431 
   1432   2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
   1433       {16 -87.66 {} x legible 1}
   1434 
   1435   3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 
   1436       {3 -16.56}
   1437 
   1438   4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 
   1439       {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
   1440 } 
   1441 
   1442 # EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
   1443 # UNION ALL, except that duplicate rows are removed from the final
   1444 # result set.
   1445 #
   1446 do_select_tests e_select-7.5 {
   1447   1   {SELECT a FROM q1 UNION SELECT d FROM q2}
   1448       {-65.91 16 beauty emanating legible}
   1449 
   1450   2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
   1451       {16 -87.66 {} x legible 1}
   1452 
   1453   3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 
   1454       {-16.56 3}
   1455 
   1456   4   {SELECT * FROM q2 UNION SELECT * FROM q3} 
   1457       {-65.91 4 beauty 2 emanating -16.56 legible 1}
   1458 } 
   1459 
   1460 # EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
   1461 # intersection of the results of the left and right SELECTs.
   1462 #
   1463 do_select_tests e_select-7.6 {
   1464   1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
   1465   2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
   1466 }
   1467 
   1468 # EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
   1469 # rows returned by the left SELECT that are not also returned by the
   1470 # right-hand SELECT.
   1471 #
   1472 do_select_tests e_select-7.7 {
   1473   1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
   1474 
   1475   2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 
   1476       {-65.91 4 emanating -16.56 legible 1}
   1477 }
   1478 
   1479 # EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
   1480 # of INTERSECT and EXCEPT operators before the result set is returned.
   1481 #
   1482 do_select_tests e_select-7.8 {
   1483   0   {SELECT * FROM q3} {beauty 2 beauty 2}
   1484 
   1485   1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
   1486   2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
   1487 }
   1488 
   1489 # EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
   1490 # rows for the results of compound SELECT operators, NULL values are
   1491 # considered equal to other NULL values and distinct from all non-NULL
   1492 # values.
   1493 #
   1494 db nullvalue null
   1495 do_select_tests e_select-7.9 {
   1496   1   {SELECT NULL UNION ALL SELECT NULL} {null null}
   1497   2   {SELECT NULL UNION     SELECT NULL} {null}
   1498   3   {SELECT NULL INTERSECT SELECT NULL} {null}
   1499   4   {SELECT NULL EXCEPT    SELECT NULL} {}
   1500 
   1501   5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
   1502   6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
   1503   7   {SELECT NULL INTERSECT SELECT 'ab'} {}
   1504   8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}
   1505 
   1506   9   {SELECT NULL UNION ALL SELECT 0} {null 0}
   1507   10  {SELECT NULL UNION     SELECT 0} {null 0}
   1508   11  {SELECT NULL INTERSECT SELECT 0} {}
   1509   12  {SELECT NULL EXCEPT    SELECT 0} {null}
   1510 
   1511   13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
   1512   14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
   1513   15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
   1514   16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
   1515 }
   1516 db nullvalue {} 
   1517 
   1518 # EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
   1519 # text values is determined as if the columns of the left and right-hand
   1520 # SELECT statements were the left and right-hand operands of the equals
   1521 # (=) operator, except that greater precedence is not assigned to a
   1522 # collation sequence specified with the postfix COLLATE operator.
   1523 #
   1524 drop_all_tables
   1525 do_execsql_test e_select-7.10.0 {
   1526   CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
   1527   INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
   1528 } {}
   1529 do_select_tests e_select-7.10 {
   1530   1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
   1531   2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
   1532   3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
   1533   4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
   1534   5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
   1535 
   1536   6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
   1537   7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
   1538   8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}
   1539 
   1540   9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
   1541 }
   1542 
   1543 # EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
   1544 # any values when comparing rows as part of a compound SELECT.
   1545 #
   1546 drop_all_tables
   1547 do_execsql_test e_select-7.10.0 {
   1548   CREATE TABLE w1(a TEXT, b NUMBER);
   1549   CREATE TABLE w2(a, b TEXT);
   1550 
   1551   INSERT INTO w1 VALUES('1', 4.1);
   1552   INSERT INTO w2 VALUES(1, 4.1);
   1553 } {}
   1554 
   1555 do_select_tests e_select-7.11 {
   1556   1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
   1557   2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
   1558   3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
   1559   4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
   1560 
   1561   5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
   1562   6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
   1563   7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
   1564   8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
   1565 
   1566   9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
   1567   10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
   1568   11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
   1569   12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
   1570 }
   1571 
   1572 
   1573 # EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
   1574 # connected into a compound SELECT, they group from left to right. In
   1575 # other words, if "A", "B" and "C" are all simple SELECT statements, (A
   1576 # op B op C) is processed as ((A op B) op C).
   1577 #
   1578 #   e_select-7.12.1: Precedence of UNION vs. INTERSECT 
   1579 #   e_select-7.12.2: Precedence of UNION vs. UNION ALL 
   1580 #   e_select-7.12.3: Precedence of UNION vs. EXCEPT
   1581 #   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 
   1582 #   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
   1583 #   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
   1584 #   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 
   1585 #                   "(a EXCEPT b) EXCEPT c".
   1586 #
   1587 # The INTERSECT and EXCEPT operations are mutually commutative. So
   1588 # the e_select-7.12.5 test cases do not prove very much.
   1589 #
   1590 drop_all_tables
   1591 do_execsql_test e_select-7.12.0 {
   1592   CREATE TABLE t1(x);
   1593   INSERT INTO t1 VALUES(1);
   1594   INSERT INTO t1 VALUES(2);
   1595   INSERT INTO t1 VALUES(3);
   1596 } {}
   1597 foreach {tn select res} {
   1598   1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
   1599   1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
   1600 
   1601   2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
   1602   2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}
   1603 
   1604   3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
   1605   3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}
   1606 
   1607   4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
   1608   4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
   1609 
   1610   5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
   1611   5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}
   1612 
   1613   6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
   1614   6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}
   1615 
   1616   7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
   1617 } {
   1618   set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
   1619   do_execsql_test e_select-7.12.$tn $select [list {*}$res]
   1620 }
   1621 
   1622 
   1623 #-------------------------------------------------------------------------
   1624 # ORDER BY clauses
   1625 #
   1626 
   1627 drop_all_tables
   1628 do_execsql_test e_select-8.1.0 {
   1629   CREATE TABLE d1(x, y, z);
   1630 
   1631   INSERT INTO d1 VALUES(1, 2, 3);
   1632   INSERT INTO d1 VALUES(2, 5, -1);
   1633   INSERT INTO d1 VALUES(1, 2, 8);
   1634   INSERT INTO d1 VALUES(1, 2, 7);
   1635   INSERT INTO d1 VALUES(2, 4, 93);
   1636   INSERT INTO d1 VALUES(1, 2, -20);
   1637   INSERT INTO d1 VALUES(1, 4, 93);
   1638   INSERT INTO d1 VALUES(1, 5, -1);
   1639 
   1640   CREATE TABLE d2(a, b);
   1641   INSERT INTO d2 VALUES('gently', 'failings');
   1642   INSERT INTO d2 VALUES('commercials', 'bathrobe');
   1643   INSERT INTO d2 VALUES('iterate', 'sexton');
   1644   INSERT INTO d2 VALUES('babied', 'charitableness');
   1645   INSERT INTO d2 VALUES('solemnness', 'annexed');
   1646   INSERT INTO d2 VALUES('rejoicing', 'liabilities');
   1647   INSERT INTO d2 VALUES('pragmatist', 'guarded');
   1648   INSERT INTO d2 VALUES('barked', 'interrupted');
   1649   INSERT INTO d2 VALUES('reemphasizes', 'reply');
   1650   INSERT INTO d2 VALUES('lad', 'relenting');
   1651 } {}
   1652 
   1653 # EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
   1654 # of evaluating the left-most expression in the ORDER BY list, then ties
   1655 # are broken by evaluating the second left-most expression and so on.
   1656 #
   1657 do_select_tests e_select-8.1 {
   1658   1  "SELECT * FROM d1 ORDER BY x, y, z" {
   1659      1 2 -20    1 2 3    1 2 7    1 2 8    
   1660      1 4  93    1 5 -1   2 4 93   2 5 -1
   1661   }
   1662 }
   1663 
   1664 # EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
   1665 # followed by one of the keywords ASC (smaller values are returned
   1666 # first) or DESC (larger values are returned first).
   1667 #
   1668 #   Test cases e_select-8.2.* test the above.
   1669 #
   1670 # EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
   1671 # are sorted in ascending (smaller values first) order by default.
   1672 #
   1673 #   Test cases e_select-8.3.* test the above. All 8.3 test cases are
   1674 #   copies of 8.2 test cases with the explicit "ASC" removed.
   1675 #
   1676 do_select_tests e_select-8 {
   1677   2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
   1678      1 2 -20    1 2 3    1 2 7    1 2 8    
   1679      1 4  93    1 5 -1   2 4 93   2 5 -1
   1680   }
   1681   2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
   1682      2 5 -1     2 4 93   1 5 -1   1 4  93    
   1683      1 2 8      1 2 7    1 2 3    1 2 -20    
   1684   }
   1685   2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
   1686      2 4 93   2 5 -1     1 2 8      1 2 7    
   1687      1 2 3    1 2 -20    1 4  93    1 5 -1   
   1688   }
   1689   2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
   1690      2 4 93   2 5 -1     1 2 -20    1 2 3    
   1691      1 2 7    1 2 8      1 4  93    1 5 -1   
   1692   }
   1693 
   1694   3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
   1695      1 2 -20    1 2 3    1 2 7    1 2 8    
   1696      1 4  93    1 5 -1   2 4 93   2 5 -1
   1697   }
   1698   3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
   1699      2 4 93   2 5 -1     1 2 8      1 2 7    
   1700      1 2 3    1 2 -20    1 4  93    1 5 -1   
   1701   }
   1702   3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
   1703      2 4 93   2 5 -1     1 2 -20    1 2 3    
   1704      1 2 7    1 2 8      1 4  93    1 5 -1   
   1705   }
   1706 }
   1707 
   1708 # EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
   1709 # integer K then the expression is considered an alias for the K-th
   1710 # column of the result set (columns are numbered from left to right
   1711 # starting with 1).
   1712 #
   1713 do_select_tests e_select-8.4 {
   1714   1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
   1715      1 2 -20    1 2 3    1 2 7    1 2 8    
   1716      1 4  93    1 5 -1   2 4 93   2 5 -1
   1717   }
   1718   2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
   1719      2 5 -1     2 4 93   1 5 -1   1 4  93    
   1720      1 2 8      1 2 7    1 2 3    1 2 -20    
   1721   }
   1722   3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
   1723      2 4 93   2 5 -1     1 2 8      1 2 7    
   1724      1 2 3    1 2 -20    1 4  93    1 5 -1   
   1725   }
   1726   4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
   1727      2 4 93   2 5 -1     1 2 -20    1 2 3    
   1728      1 2 7    1 2 8      1 4  93    1 5 -1   
   1729   }
   1730   5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
   1731      1 2 -20    1 2 3    1 2 7    1 2 8    
   1732      1 4  93    1 5 -1   2 4 93   2 5 -1
   1733   }
   1734   6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
   1735      2 4 93   2 5 -1     1 2 8      1 2 7    
   1736      1 2 3    1 2 -20    1 4  93    1 5 -1   
   1737   }
   1738   7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
   1739      2 4 93   2 5 -1     1 2 -20    1 2 3    
   1740      1 2 7    1 2 8      1 4  93    1 5 -1   
   1741   }
   1742   8  "SELECT z, x FROM d1 ORDER BY 2" {
   1743      3 1     8 1    7 1   -20 1 
   1744      93 1   -1 1   -1 2   93 2
   1745   }
   1746   9  "SELECT z, x FROM d1 ORDER BY 1" {
   1747      -20 1  -1 2   -1 1   3 1     
   1748      7 1     8 1   93 2   93 1   
   1749   }
   1750 }
   1751 
   1752 # EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
   1753 # that corresponds to the alias of one of the output columns, then the
   1754 # expression is considered an alias for that column.
   1755 #
   1756 do_select_tests e_select-8.5 {
   1757   1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
   1758     -19 0 0 4 8 9 94 94
   1759   }
   1760   2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
   1761     94 94 9 8 4 0 0 -19
   1762   }
   1763   3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
   1764     3 1    8 1    7 1    -20 1    93 1    -1 1    -1 2    93 2
   1765   }
   1766   4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
   1767     -20 1    -1 2    -1 1    3 1    7 1    8 1    93 2    93 1
   1768   }
   1769 }
   1770 
   1771 # EVIDENCE-OF: R-27923-38747 Otherwise, if the ORDER BY expression is
   1772 # any other expression, it is evaluated and the the returned value used
   1773 # to order the output rows.
   1774 #
   1775 # EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
   1776 # then an ORDER BY may contain any arbitrary expressions.
   1777 #
   1778 do_select_tests e_select-8.6 {
   1779   1   "SELECT * FROM d1 ORDER BY x+y+z" {
   1780     1 2 -20    1 5 -1    1 2 3    2 5 -1 
   1781     1 2 7      1 2 8     1 4 93   2 4 93
   1782   }
   1783   2   "SELECT * FROM d1 ORDER BY x*z" {
   1784     1 2 -20    2 5 -1    1 5 -1    1 2 3 
   1785     1 2 7      1 2 8     1 4 93    2 4 93
   1786   }
   1787   3   "SELECT * FROM d1 ORDER BY y*z" {
   1788     1 2 -20    2 5 -1    1 5 -1    1 2 3 
   1789     1 2 7      1 2 8     2 4 93    1 4 93
   1790   }
   1791 }
   1792 
   1793 # EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
   1794 # SELECT, then ORDER BY expressions that are not aliases to output
   1795 # columns must be exactly the same as an expression used as an output
   1796 # column.
   1797 #
   1798 do_select_tests e_select-8.7.1 -error {
   1799   %s ORDER BY term does not match any column in the result set
   1800 } {
   1801   1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
   1802   2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
   1803 } 
   1804 
   1805 do_select_tests e_select-8.7.2 {
   1806   1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
   1807     -20 -2 -1 3 7 8 93 186 babied barked commercials gently 
   1808     iterate lad pragmatist reemphasizes rejoicing solemnness
   1809   }
   1810   2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
   1811     1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 
   1812     babied charitableness barked interrupted commercials bathrobe gently
   1813     failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
   1814     rejoicing liabilities solemnness annexed
   1815   }
   1816 } 
   1817 
   1818 do_execsql_test e_select-8.8.0 {
   1819   CREATE TABLE d3(a);
   1820   INSERT INTO d3 VALUES('text');
   1821   INSERT INTO d3 VALUES(14.1);
   1822   INSERT INTO d3 VALUES(13);
   1823   INSERT INTO d3 VALUES(X'78787878');
   1824   INSERT INTO d3 VALUES(15);
   1825   INSERT INTO d3 VALUES(12.9);
   1826   INSERT INTO d3 VALUES(null);
   1827 
   1828   CREATE TABLE d4(x COLLATE nocase);
   1829   INSERT INTO d4 VALUES('abc');
   1830   INSERT INTO d4 VALUES('ghi');
   1831   INSERT INTO d4 VALUES('DEF');
   1832   INSERT INTO d4 VALUES('JKL');
   1833 } {}
   1834 
   1835 # EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
   1836 # are compared in the same way as for comparison expressions.
   1837 #
   1838 #   The following tests verify that values of different types are sorted
   1839 #   correctly, and that mixed real and integer values are compared properly.
   1840 #
   1841 do_execsql_test e_select-8.8.1 {
   1842   SELECT a FROM d3 ORDER BY a
   1843 } {{} 12.9 13 14.1 15 text xxxx}
   1844 do_execsql_test e_select-8.8.2 {
   1845   SELECT a FROM d3 ORDER BY a DESC
   1846 } {xxxx text 15 14.1 13 12.9 {}}
   1847 
   1848 
   1849 # EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
   1850 # collation sequence using the postfix COLLATE operator, then the
   1851 # specified collation sequence is used.
   1852 #
   1853 do_execsql_test e_select-8.9.1 {
   1854   SELECT x FROM d4 ORDER BY 1 COLLATE binary
   1855 } {DEF JKL abc ghi}
   1856 do_execsql_test e_select-8.9.2 {
   1857   SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
   1858 } {abc DEF ghi JKL}
   1859 
   1860 # EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 
   1861 # an alias to an expression that has been assigned a collation sequence 
   1862 # using the postfix COLLATE operator, then the collation sequence 
   1863 # assigned to the aliased expression is used.
   1864 #
   1865 #   In the test 8.10.2, the only result-column expression has no alias. So the
   1866 #   ORDER BY expression is not a reference to it and therefore does not inherit
   1867 #   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
   1868 #   column name), so the ORDER BY expression is interpreted as an alias and the
   1869 #   collation sequence attached to the result column is used for sorting.
   1870 #
   1871 do_execsql_test e_select-8.10.1 {
   1872   SELECT x COLLATE binary FROM d4 ORDER BY 1
   1873 } {DEF JKL abc ghi}
   1874 do_execsql_test e_select-8.10.2 {
   1875   SELECT x COLLATE binary FROM d4 ORDER BY x
   1876 } {abc DEF ghi JKL}
   1877 do_execsql_test e_select-8.10.3 {
   1878   SELECT x COLLATE binary AS x FROM d4 ORDER BY x
   1879 } {DEF JKL abc ghi}
   1880 
   1881 # EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
   1882 # column or an alias of an expression that is a column, then the default
   1883 # collation sequence for the column is used.
   1884 #
   1885 do_execsql_test e_select-8.11.1 {
   1886   SELECT x AS y FROM d4 ORDER BY y
   1887 } {abc DEF ghi JKL}
   1888 do_execsql_test e_select-8.11.2 {
   1889   SELECT x||'' FROM d4 ORDER BY x
   1890 } {abc DEF ghi JKL}
   1891 
   1892 # EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
   1893 # used.
   1894 #
   1895 do_execsql_test e_select-8.12.1 {
   1896   SELECT x FROM d4 ORDER BY x||''
   1897 } {DEF JKL abc ghi}
   1898 
   1899 # EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
   1900 # alias, then SQLite searches the left-most SELECT in the compound for a
   1901 # result column that matches either the second or third rules above. If
   1902 # a match is found, the search stops and the expression is handled as an
   1903 # alias for the result column that it has been matched against.
   1904 # Otherwise, the next SELECT to the right is tried, and so on.
   1905 #
   1906 do_execsql_test e_select-8.13.0 {
   1907   CREATE TABLE d5(a, b);
   1908   CREATE TABLE d6(c, d);
   1909   CREATE TABLE d7(e, f);
   1910  
   1911   INSERT INTO d5 VALUES(1, 'f');
   1912   INSERT INTO d6 VALUES(2, 'e');
   1913   INSERT INTO d7 VALUES(3, 'd');
   1914   INSERT INTO d5 VALUES(4, 'c');
   1915   INSERT INTO d6 VALUES(5, 'b');
   1916   INSERT INTO d7 VALUES(6, 'a');
   1917 
   1918   CREATE TABLE d8(x COLLATE nocase);
   1919   CREATE TABLE d9(y COLLATE nocase);
   1920 
   1921   INSERT INTO d8 VALUES('a');
   1922   INSERT INTO d9 VALUES('B');
   1923   INSERT INTO d8 VALUES('c');
   1924   INSERT INTO d9 VALUES('D');
   1925 } {}
   1926 do_select_tests e_select-8.13 {
   1927   1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
   1928          ORDER BY a
   1929       } {1 2 3 4 5 6}
   1930   2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
   1931          ORDER BY c
   1932       } {1 2 3 4 5 6}
   1933   3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
   1934          ORDER BY e
   1935       } {1 2 3 4 5 6}
   1936   4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
   1937          ORDER BY 1
   1938       } {1 2 3 4 5 6}
   1939 
   1940   5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 
   1941       {f 1   c 4   4 c   1 f}
   1942   6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 
   1943       {f 1   c 4   4 c   1 f}
   1944 
   1945   7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 
   1946       {1 f   4 c   c 4   f 1}
   1947   8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 
   1948       {1 f   4 c   c 4   f 1}
   1949 
   1950   9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
   1951       {f 2   c 5   4 c   1 f}
   1952   10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 
   1953       {f 2   c 5   4 c   1 f}
   1954 
   1955   11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
   1956       {2 f   5 c   c 5   f 2}
   1957   12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 
   1958       {2 f   5 c   c 5   f 2}
   1959 } 
   1960 
   1961 # EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
   1962 # the result columns of any constituent SELECT, it is an error.
   1963 #
   1964 do_select_tests e_select-8.14 -error {
   1965   %s ORDER BY term does not match any column in the result set
   1966 } {
   1967   1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
   1968   2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
   1969   3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
   1970   4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
   1971   5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
   1972   6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
   1973 } 
   1974 
   1975 # EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
   1976 # processed separately and may be matched against result columns from
   1977 # different SELECT statements in the compound.
   1978 # 
   1979 do_select_tests e_select-8.15 {
   1980   1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
   1981      {1 e   1 f   4 b   4 c}
   1982   2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
   1983      {1 e   1 f   4 b   4 c}
   1984   3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
   1985      {1 e   1 f   4 b   4 c}
   1986 } 
   1987 
   1988 
   1989 #-------------------------------------------------------------------------
   1990 # Tests related to statements made about the LIMIT/OFFSET clause.
   1991 #
   1992 do_execsql_test e_select-9.0 {
   1993   CREATE TABLE f1(a, b);
   1994   INSERT INTO f1 VALUES(26, 'z');
   1995   INSERT INTO f1 VALUES(25, 'y');
   1996   INSERT INTO f1 VALUES(24, 'x');
   1997   INSERT INTO f1 VALUES(23, 'w');
   1998   INSERT INTO f1 VALUES(22, 'v');
   1999   INSERT INTO f1 VALUES(21, 'u');
   2000   INSERT INTO f1 VALUES(20, 't');
   2001   INSERT INTO f1 VALUES(19, 's');
   2002   INSERT INTO f1 VALUES(18, 'r');
   2003   INSERT INTO f1 VALUES(17, 'q');
   2004   INSERT INTO f1 VALUES(16, 'p');
   2005   INSERT INTO f1 VALUES(15, 'o');
   2006   INSERT INTO f1 VALUES(14, 'n');
   2007   INSERT INTO f1 VALUES(13, 'm');
   2008   INSERT INTO f1 VALUES(12, 'l');
   2009   INSERT INTO f1 VALUES(11, 'k');
   2010   INSERT INTO f1 VALUES(10, 'j');
   2011   INSERT INTO f1 VALUES(9, 'i');
   2012   INSERT INTO f1 VALUES(8, 'h');
   2013   INSERT INTO f1 VALUES(7, 'g');
   2014   INSERT INTO f1 VALUES(6, 'f');
   2015   INSERT INTO f1 VALUES(5, 'e');
   2016   INSERT INTO f1 VALUES(4, 'd');
   2017   INSERT INTO f1 VALUES(3, 'c');
   2018   INSERT INTO f1 VALUES(2, 'b');
   2019   INSERT INTO f1 VALUES(1, 'a');
   2020 } {}
   2021 
   2022 # EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
   2023 # LIMIT clause, so long as it evaluates to an integer or a value that
   2024 # can be losslessly converted to an integer.
   2025 #
   2026 do_select_tests e_select-9.1 {
   2027   1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
   2028   2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
   2029   3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 
   2030      {a b c d e}
   2031   4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
   2032   5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
   2033 }
   2034 
   2035 # EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
   2036 # or any other value that cannot be losslessly converted to an integer,
   2037 # an error is returned.
   2038 #
   2039 
   2040 do_select_tests e_select-9.2 -error "datatype mismatch" {
   2041   1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
   2042   2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
   2043   3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
   2044   4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
   2045   5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
   2046 } 
   2047 
   2048 # EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
   2049 # negative value, then there is no upper bound on the number of rows
   2050 # returned.
   2051 #
   2052 do_select_tests e_select-9.4 {
   2053   1  { SELECT b FROM f1 ORDER BY a LIMIT -1 } 
   2054      {a b c d e f g h i j k l m n o p q r s t u v w x y z}
   2055   2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 
   2056      {a b c d e f g h i j k l m n o p q r s t u v w x y z}
   2057   3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
   2058      {a b c d e f g h i j k l m n o p q r s t u v w x y z}
   2059 }
   2060 
   2061 # EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
   2062 # rows of its result set only, where N is the value that the LIMIT
   2063 # expression evaluates to.
   2064 #
   2065 do_select_tests e_select-9.5 {
   2066   1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
   2067   2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
   2068   3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
   2069   4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
   2070 }
   2071 
   2072 # EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
   2073 # less than N rows without a LIMIT clause, then the entire result set is
   2074 # returned.
   2075 #
   2076 do_select_tests e_select-9.6 {
   2077   1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
   2078   2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
   2079 } 
   2080 
   2081 
   2082 # EVIDENCE-OF: R-24188-24349 The expression attached to the optional
   2083 # OFFSET clause that may follow a LIMIT clause must also evaluate to an
   2084 # integer, or a value that can be losslessly converted to an integer.
   2085 #
   2086 foreach {tn select} {
   2087   1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 
   2088   2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 
   2089   3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 
   2090   4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 
   2091   5  { SELECT b FROM f1 ORDER BY a 
   2092        LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 
   2093   } 
   2094 } {
   2095   do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
   2096 }
   2097 
   2098 # EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
   2099 # the first M rows are omitted from the result set returned by the
   2100 # SELECT statement and the next N rows are returned, where M and N are
   2101 # the values that the OFFSET and LIMIT clauses evaluate to,
   2102 # respectively.
   2103 #
   2104 do_select_tests e_select-9.8 {
   2105   1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
   2106   2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
   2107   3  { SELECT b FROM f1 ORDER BY a 
   2108        LIMIT  (SELECT a FROM f1 WHERE b='j') 
   2109        OFFSET (SELECT a FROM f1 WHERE b='b') 
   2110      } {c d e f g h i j k l}
   2111   4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
   2112   5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
   2113   6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
   2114   7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
   2115 }
   2116 
   2117 # EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
   2118 # M+N rows if it did not have a LIMIT clause, then the first M rows are
   2119 # skipped and the remaining rows (if any) are returned.
   2120 #
   2121 do_select_tests e_select-9.9 {
   2122   1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
   2123   2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
   2124 }
   2125 
   2126 
   2127 # EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
   2128 # negative value, the results are the same as if it had evaluated to
   2129 # zero.
   2130 #
   2131 do_select_tests e_select-9.10 {
   2132   1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
   2133   2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
   2134   3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
   2135 } 
   2136 
   2137 # EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
   2138 # LIMIT clause may specify two scalar expressions separated by a comma.
   2139 #
   2140 # EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
   2141 # as the OFFSET expression and the second as the LIMIT expression.
   2142 #
   2143 do_select_tests e_select-9.11 {
   2144   1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
   2145   2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
   2146   3  { SELECT b FROM f1 ORDER BY a 
   2147        LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 
   2148      } {c d e f g h i j k l}
   2149   4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
   2150   5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
   2151   6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
   2152   7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
   2153 
   2154   8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
   2155   9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
   2156 
   2157   10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
   2158   11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
   2159   12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
   2160 }
   2161 
   2162 finish_test
   2163