Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "codegen.h"
     31 #include "deoptimizer.h"
     32 #include "full-codegen.h"
     33 #include "safepoint-table.h"
     34 
     35 namespace v8 {
     36 namespace internal {
     37 
     38 const int Deoptimizer::table_entry_size_ = 12;
     39 
     40 
     41 int Deoptimizer::patch_size() {
     42   const int kCallInstructionSizeInWords = 3;
     43   return kCallInstructionSizeInWords * Assembler::kInstrSize;
     44 }
     45 
     46 
     47 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
     48   Address code_start_address = code->instruction_start();
     49   // Invalidate the relocation information, as it will become invalid by the
     50   // code patching below, and is not needed any more.
     51   code->InvalidateRelocation();
     52 
     53   // For each LLazyBailout instruction insert a call to the corresponding
     54   // deoptimization entry.
     55   DeoptimizationInputData* deopt_data =
     56       DeoptimizationInputData::cast(code->deoptimization_data());
     57 #ifdef DEBUG
     58   Address prev_call_address = NULL;
     59 #endif
     60   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
     61     if (deopt_data->Pc(i)->value() == -1) continue;
     62     Address call_address = code_start_address + deopt_data->Pc(i)->value();
     63     Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
     64     // We need calls to have a predictable size in the unoptimized code, but
     65     // this is optimized code, so we don't have to have a predictable size.
     66     int call_size_in_bytes =
     67         MacroAssembler::CallSizeNotPredictableCodeSize(deopt_entry,
     68                                                        RelocInfo::NONE32);
     69     int call_size_in_words = call_size_in_bytes / Assembler::kInstrSize;
     70     ASSERT(call_size_in_bytes % Assembler::kInstrSize == 0);
     71     ASSERT(call_size_in_bytes <= patch_size());
     72     CodePatcher patcher(call_address, call_size_in_words);
     73     patcher.masm()->Call(deopt_entry, RelocInfo::NONE32);
     74     ASSERT(prev_call_address == NULL ||
     75            call_address >= prev_call_address + patch_size());
     76     ASSERT(call_address + patch_size() <= code->instruction_end());
     77 #ifdef DEBUG
     78     prev_call_address = call_address;
     79 #endif
     80   }
     81 }
     82 
     83 
     84 static const int32_t kBranchBeforeInterrupt =  0x5a000004;
     85 
     86 // The back edge bookkeeping code matches the pattern:
     87 //
     88 //  <decrement profiling counter>
     89 //  2a 00 00 01       bpl ok
     90 //  e5 9f c? ??       ldr ip, [pc, <interrupt stub address>]
     91 //  e1 2f ff 3c       blx ip
     92 //  ok-label
     93 //
     94 // We patch the code to the following form:
     95 //
     96 //  <decrement profiling counter>
     97 //  e1 a0 00 00       mov r0, r0 (NOP)
     98 //  e5 9f c? ??       ldr ip, [pc, <on-stack replacement address>]
     99 //  e1 2f ff 3c       blx ip
    100 //  ok-label
    101 
    102 void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code,
    103                                        Address pc_after,
    104                                        Code* interrupt_code,
    105                                        Code* replacement_code) {
    106   ASSERT(!InterruptCodeIsPatched(unoptimized_code,
    107                                  pc_after,
    108                                  interrupt_code,
    109                                  replacement_code));
    110   static const int kInstrSize = Assembler::kInstrSize;
    111   // Turn the jump into nops.
    112   CodePatcher patcher(pc_after - 3 * kInstrSize, 1);
    113   patcher.masm()->nop();
    114   // Replace the call address.
    115   uint32_t interrupt_address_offset = Memory::uint16_at(pc_after -
    116       2 * kInstrSize) & 0xfff;
    117   Address interrupt_address_pointer = pc_after + interrupt_address_offset;
    118   Memory::uint32_at(interrupt_address_pointer) =
    119       reinterpret_cast<uint32_t>(replacement_code->entry());
    120 
    121   unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
    122       unoptimized_code, pc_after - 2 * kInstrSize, replacement_code);
    123 }
    124 
    125 
    126 void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code,
    127                                         Address pc_after,
    128                                         Code* interrupt_code,
    129                                         Code* replacement_code) {
    130   ASSERT(InterruptCodeIsPatched(unoptimized_code,
    131                                 pc_after,
    132                                 interrupt_code,
    133                                 replacement_code));
    134   static const int kInstrSize = Assembler::kInstrSize;
    135   // Restore the original jump.
    136   CodePatcher patcher(pc_after - 3 * kInstrSize, 1);
    137   patcher.masm()->b(4 * kInstrSize, pl);  // ok-label is 4 instructions later.
    138   ASSERT_EQ(kBranchBeforeInterrupt,
    139             Memory::int32_at(pc_after - 3 * kInstrSize));
    140   // Restore the original call address.
    141   uint32_t interrupt_address_offset = Memory::uint16_at(pc_after -
    142       2 * kInstrSize) & 0xfff;
    143   Address interrupt_address_pointer = pc_after + interrupt_address_offset;
    144   Memory::uint32_at(interrupt_address_pointer) =
    145       reinterpret_cast<uint32_t>(interrupt_code->entry());
    146 
    147   interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
    148       unoptimized_code, pc_after - 2 * kInstrSize, interrupt_code);
    149 }
    150 
    151 
    152 #ifdef DEBUG
    153 bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code,
    154                                          Address pc_after,
    155                                          Code* interrupt_code,
    156                                          Code* replacement_code) {
    157   static const int kInstrSize = Assembler::kInstrSize;
    158   ASSERT(Memory::int32_at(pc_after - kInstrSize) == kBlxIp);
    159 
    160   uint32_t interrupt_address_offset =
    161       Memory::uint16_at(pc_after - 2 * kInstrSize) & 0xfff;
    162   Address interrupt_address_pointer = pc_after + interrupt_address_offset;
    163 
    164   if (Assembler::IsNop(Assembler::instr_at(pc_after - 3 * kInstrSize))) {
    165     ASSERT(Assembler::IsLdrPcImmediateOffset(
    166         Assembler::instr_at(pc_after - 2 * kInstrSize)));
    167     ASSERT(reinterpret_cast<uint32_t>(replacement_code->entry()) ==
    168            Memory::uint32_at(interrupt_address_pointer));
    169     return true;
    170   } else {
    171     ASSERT(Assembler::IsLdrPcImmediateOffset(
    172         Assembler::instr_at(pc_after - 2 * kInstrSize)));
    173     ASSERT_EQ(kBranchBeforeInterrupt,
    174               Memory::int32_at(pc_after - 3 * kInstrSize));
    175     ASSERT(reinterpret_cast<uint32_t>(interrupt_code->entry()) ==
    176            Memory::uint32_at(interrupt_address_pointer));
    177     return false;
    178   }
    179 }
    180 #endif  // DEBUG
    181 
    182 
    183 static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) {
    184   ByteArray* translations = data->TranslationByteArray();
    185   int length = data->DeoptCount();
    186   for (int i = 0; i < length; i++) {
    187     if (data->AstId(i) == ast_id) {
    188       TranslationIterator it(translations,  data->TranslationIndex(i)->value());
    189       int value = it.Next();
    190       ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
    191       // Read the number of frames.
    192       value = it.Next();
    193       if (value == 1) return i;
    194     }
    195   }
    196   UNREACHABLE();
    197   return -1;
    198 }
    199 
    200 
    201 void Deoptimizer::DoComputeOsrOutputFrame() {
    202   DeoptimizationInputData* data = DeoptimizationInputData::cast(
    203       compiled_code_->deoptimization_data());
    204   unsigned ast_id = data->OsrAstId()->value();
    205 
    206   int bailout_id = LookupBailoutId(data, BailoutId(ast_id));
    207   unsigned translation_index = data->TranslationIndex(bailout_id)->value();
    208   ByteArray* translations = data->TranslationByteArray();
    209 
    210   TranslationIterator iterator(translations, translation_index);
    211   Translation::Opcode opcode =
    212       static_cast<Translation::Opcode>(iterator.Next());
    213   ASSERT(Translation::BEGIN == opcode);
    214   USE(opcode);
    215   int count = iterator.Next();
    216   iterator.Skip(1);  // Drop JS frame count.
    217   ASSERT(count == 1);
    218   USE(count);
    219 
    220   opcode = static_cast<Translation::Opcode>(iterator.Next());
    221   USE(opcode);
    222   ASSERT(Translation::JS_FRAME == opcode);
    223   unsigned node_id = iterator.Next();
    224   USE(node_id);
    225   ASSERT(node_id == ast_id);
    226   int closure_id = iterator.Next();
    227   USE(closure_id);
    228   ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
    229   unsigned height = iterator.Next();
    230   unsigned height_in_bytes = height * kPointerSize;
    231   USE(height_in_bytes);
    232 
    233   unsigned fixed_size = ComputeFixedSize(function_);
    234   unsigned input_frame_size = input_->GetFrameSize();
    235   ASSERT(fixed_size + height_in_bytes == input_frame_size);
    236 
    237   unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize;
    238   unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
    239   unsigned outgoing_size = outgoing_height * kPointerSize;
    240   unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
    241   ASSERT(outgoing_size == 0);  // OSR does not happen in the middle of a call.
    242 
    243   if (FLAG_trace_osr) {
    244     PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
    245            reinterpret_cast<intptr_t>(function_));
    246     PrintFunctionName();
    247     PrintF(" => node=%u, frame=%d->%d]\n",
    248            ast_id,
    249            input_frame_size,
    250            output_frame_size);
    251   }
    252 
    253   // There's only one output frame in the OSR case.
    254   output_count_ = 1;
    255   output_ = new FrameDescription*[1];
    256   output_[0] = new(output_frame_size) FrameDescription(
    257       output_frame_size, function_);
    258   output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);
    259 
    260   // Clear the incoming parameters in the optimized frame to avoid
    261   // confusing the garbage collector.
    262   unsigned output_offset = output_frame_size - kPointerSize;
    263   int parameter_count = function_->shared()->formal_parameter_count() + 1;
    264   for (int i = 0; i < parameter_count; ++i) {
    265     output_[0]->SetFrameSlot(output_offset, 0);
    266     output_offset -= kPointerSize;
    267   }
    268 
    269   // Translate the incoming parameters. This may overwrite some of the
    270   // incoming argument slots we've just cleared.
    271   int input_offset = input_frame_size - kPointerSize;
    272   bool ok = true;
    273   int limit = input_offset - (parameter_count * kPointerSize);
    274   while (ok && input_offset > limit) {
    275     ok = DoOsrTranslateCommand(&iterator, &input_offset);
    276   }
    277 
    278   // There are no translation commands for the caller's pc and fp, the
    279   // context, and the function.  Set them up explicitly.
    280   for (int i =  StandardFrameConstants::kCallerPCOffset;
    281        ok && i >=  StandardFrameConstants::kMarkerOffset;
    282        i -= kPointerSize) {
    283     uint32_t input_value = input_->GetFrameSlot(input_offset);
    284     if (FLAG_trace_osr) {
    285       const char* name = "UNKNOWN";
    286       switch (i) {
    287         case StandardFrameConstants::kCallerPCOffset:
    288           name = "caller's pc";
    289           break;
    290         case StandardFrameConstants::kCallerFPOffset:
    291           name = "fp";
    292           break;
    293         case StandardFrameConstants::kContextOffset:
    294           name = "context";
    295           break;
    296         case StandardFrameConstants::kMarkerOffset:
    297           name = "function";
    298           break;
    299       }
    300       PrintF("    [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n",
    301              output_offset,
    302              input_value,
    303              input_offset,
    304              name);
    305     }
    306 
    307     output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
    308     input_offset -= kPointerSize;
    309     output_offset -= kPointerSize;
    310   }
    311 
    312   // Translate the rest of the frame.
    313   while (ok && input_offset >= 0) {
    314     ok = DoOsrTranslateCommand(&iterator, &input_offset);
    315   }
    316 
    317   // If translation of any command failed, continue using the input frame.
    318   if (!ok) {
    319     delete output_[0];
    320     output_[0] = input_;
    321     output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
    322   } else {
    323     // Set up the frame pointer and the context pointer.
    324     output_[0]->SetRegister(fp.code(), input_->GetRegister(fp.code()));
    325     output_[0]->SetRegister(cp.code(), input_->GetRegister(cp.code()));
    326 
    327     unsigned pc_offset = data->OsrPcOffset()->value();
    328     uint32_t pc = reinterpret_cast<uint32_t>(
    329         compiled_code_->entry() + pc_offset);
    330     output_[0]->SetPc(pc);
    331   }
    332   Code* continuation = isolate_->builtins()->builtin(Builtins::kNotifyOSR);
    333   output_[0]->SetContinuation(
    334       reinterpret_cast<uint32_t>(continuation->entry()));
    335 
    336   if (FLAG_trace_osr) {
    337     PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
    338            ok ? "finished" : "aborted",
    339            reinterpret_cast<intptr_t>(function_));
    340     PrintFunctionName();
    341     PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
    342   }
    343 }
    344 
    345 
    346 void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
    347   // Set the register values. The values are not important as there are no
    348   // callee saved registers in JavaScript frames, so all registers are
    349   // spilled. Registers fp and sp are set to the correct values though.
    350 
    351   for (int i = 0; i < Register::kNumRegisters; i++) {
    352     input_->SetRegister(i, i * 4);
    353   }
    354   input_->SetRegister(sp.code(), reinterpret_cast<intptr_t>(frame->sp()));
    355   input_->SetRegister(fp.code(), reinterpret_cast<intptr_t>(frame->fp()));
    356   for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
    357     input_->SetDoubleRegister(i, 0.0);
    358   }
    359 
    360   // Fill the frame content from the actual data on the frame.
    361   for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
    362     input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
    363   }
    364 }
    365 
    366 
    367 void Deoptimizer::SetPlatformCompiledStubRegisters(
    368     FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) {
    369   ApiFunction function(descriptor->deoptimization_handler_);
    370   ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_);
    371   intptr_t handler = reinterpret_cast<intptr_t>(xref.address());
    372   int params = descriptor->register_param_count_;
    373   if (descriptor->stack_parameter_count_ != NULL) {
    374     params++;
    375   }
    376   output_frame->SetRegister(r0.code(), params);
    377   output_frame->SetRegister(r1.code(), handler);
    378 }
    379 
    380 
    381 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
    382   for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; ++i) {
    383     double double_value = input_->GetDoubleRegister(i);
    384     output_frame->SetDoubleRegister(i, double_value);
    385   }
    386 }
    387 
    388 
    389 bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
    390   // There is no dynamic alignment padding on ARM in the input frame.
    391   return false;
    392 }
    393 
    394 
    395 #define __ masm()->
    396 
    397 // This code tries to be close to ia32 code so that any changes can be
    398 // easily ported.
    399 void Deoptimizer::EntryGenerator::Generate() {
    400   GeneratePrologue();
    401 
    402   // Save all general purpose registers before messing with them.
    403   const int kNumberOfRegisters = Register::kNumRegisters;
    404 
    405   // Everything but pc, lr and ip which will be saved but not restored.
    406   RegList restored_regs = kJSCallerSaved | kCalleeSaved | ip.bit();
    407 
    408   const int kDoubleRegsSize =
    409       kDoubleSize * DwVfpRegister::kMaxNumAllocatableRegisters;
    410 
    411   // Save all allocatable VFP registers before messing with them.
    412   ASSERT(kDoubleRegZero.code() == 14);
    413   ASSERT(kScratchDoubleReg.code() == 15);
    414 
    415   // Check CPU flags for number of registers, setting the Z condition flag.
    416   __ CheckFor32DRegs(ip);
    417 
    418   // Push registers d0-d13, and possibly d16-d31, on the stack.
    419   // If d16-d31 are not pushed, decrease the stack pointer instead.
    420   __ vstm(db_w, sp, d16, d31, ne);
    421   __ sub(sp, sp, Operand(16 * kDoubleSize), LeaveCC, eq);
    422   __ vstm(db_w, sp, d0, d13);
    423 
    424   // Push all 16 registers (needed to populate FrameDescription::registers_).
    425   // TODO(1588) Note that using pc with stm is deprecated, so we should perhaps
    426   // handle this a bit differently.
    427   __ stm(db_w, sp, restored_regs  | sp.bit() | lr.bit() | pc.bit());
    428 
    429   const int kSavedRegistersAreaSize =
    430       (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize;
    431 
    432   // Get the bailout id from the stack.
    433   __ ldr(r2, MemOperand(sp, kSavedRegistersAreaSize));
    434 
    435   // Get the address of the location in the code object (r3) (return
    436   // address for lazy deoptimization) and compute the fp-to-sp delta in
    437   // register r4.
    438   __ mov(r3, lr);
    439   // Correct one word for bailout id.
    440   __ add(r4, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
    441   __ sub(r4, fp, r4);
    442 
    443   // Allocate a new deoptimizer object.
    444   // Pass four arguments in r0 to r3 and fifth argument on stack.
    445   __ PrepareCallCFunction(6, r5);
    446   __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
    447   __ mov(r1, Operand(type()));  // bailout type,
    448   // r2: bailout id already loaded.
    449   // r3: code address or 0 already loaded.
    450   __ str(r4, MemOperand(sp, 0 * kPointerSize));  // Fp-to-sp delta.
    451   __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
    452   __ str(r5, MemOperand(sp, 1 * kPointerSize));  // Isolate.
    453   // Call Deoptimizer::New().
    454   {
    455     AllowExternalCallThatCantCauseGC scope(masm());
    456     __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
    457   }
    458 
    459   // Preserve "deoptimizer" object in register r0 and get the input
    460   // frame descriptor pointer to r1 (deoptimizer->input_);
    461   __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
    462 
    463   // Copy core registers into FrameDescription::registers_[kNumRegisters].
    464   ASSERT(Register::kNumRegisters == kNumberOfRegisters);
    465   for (int i = 0; i < kNumberOfRegisters; i++) {
    466     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    467     __ ldr(r2, MemOperand(sp, i * kPointerSize));
    468     __ str(r2, MemOperand(r1, offset));
    469   }
    470 
    471   // Copy VFP registers to
    472   // double_registers_[DoubleRegister::kMaxNumAllocatableRegisters]
    473   int double_regs_offset = FrameDescription::double_registers_offset();
    474   for (int i = 0; i < DwVfpRegister::kMaxNumAllocatableRegisters; ++i) {
    475     int dst_offset = i * kDoubleSize + double_regs_offset;
    476     int src_offset = i * kDoubleSize + kNumberOfRegisters * kPointerSize;
    477     __ vldr(d0, sp, src_offset);
    478     __ vstr(d0, r1, dst_offset);
    479   }
    480 
    481   // Remove the bailout id and the saved registers from the stack.
    482   __ add(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
    483 
    484   // Compute a pointer to the unwinding limit in register r2; that is
    485   // the first stack slot not part of the input frame.
    486   __ ldr(r2, MemOperand(r1, FrameDescription::frame_size_offset()));
    487   __ add(r2, r2, sp);
    488 
    489   // Unwind the stack down to - but not including - the unwinding
    490   // limit and copy the contents of the activation frame to the input
    491   // frame description.
    492   __ add(r3,  r1, Operand(FrameDescription::frame_content_offset()));
    493   Label pop_loop;
    494   Label pop_loop_header;
    495   __ b(&pop_loop_header);
    496   __ bind(&pop_loop);
    497   __ pop(r4);
    498   __ str(r4, MemOperand(r3, 0));
    499   __ add(r3, r3, Operand(sizeof(uint32_t)));
    500   __ bind(&pop_loop_header);
    501   __ cmp(r2, sp);
    502   __ b(ne, &pop_loop);
    503 
    504   // Compute the output frame in the deoptimizer.
    505   __ push(r0);  // Preserve deoptimizer object across call.
    506   // r0: deoptimizer object; r1: scratch.
    507   __ PrepareCallCFunction(1, r1);
    508   // Call Deoptimizer::ComputeOutputFrames().
    509   {
    510     AllowExternalCallThatCantCauseGC scope(masm());
    511     __ CallCFunction(
    512         ExternalReference::compute_output_frames_function(isolate()), 1);
    513   }
    514   __ pop(r0);  // Restore deoptimizer object (class Deoptimizer).
    515 
    516   // Replace the current (input) frame with the output frames.
    517   Label outer_push_loop, inner_push_loop,
    518       outer_loop_header, inner_loop_header;
    519   // Outer loop state: r4 = current "FrameDescription** output_",
    520   // r1 = one past the last FrameDescription**.
    521   __ ldr(r1, MemOperand(r0, Deoptimizer::output_count_offset()));
    522   __ ldr(r4, MemOperand(r0, Deoptimizer::output_offset()));  // r4 is output_.
    523   __ add(r1, r4, Operand(r1, LSL, 2));
    524   __ jmp(&outer_loop_header);
    525   __ bind(&outer_push_loop);
    526   // Inner loop state: r2 = current FrameDescription*, r3 = loop index.
    527   __ ldr(r2, MemOperand(r4, 0));  // output_[ix]
    528   __ ldr(r3, MemOperand(r2, FrameDescription::frame_size_offset()));
    529   __ jmp(&inner_loop_header);
    530   __ bind(&inner_push_loop);
    531   __ sub(r3, r3, Operand(sizeof(uint32_t)));
    532   __ add(r6, r2, Operand(r3));
    533   __ ldr(r7, MemOperand(r6, FrameDescription::frame_content_offset()));
    534   __ push(r7);
    535   __ bind(&inner_loop_header);
    536   __ cmp(r3, Operand::Zero());
    537   __ b(ne, &inner_push_loop);  // test for gt?
    538   __ add(r4, r4, Operand(kPointerSize));
    539   __ bind(&outer_loop_header);
    540   __ cmp(r4, r1);
    541   __ b(lt, &outer_push_loop);
    542 
    543   // Check CPU flags for number of registers, setting the Z condition flag.
    544   __ CheckFor32DRegs(ip);
    545 
    546   __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
    547   int src_offset = FrameDescription::double_registers_offset();
    548   for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; ++i) {
    549     if (i == kDoubleRegZero.code()) continue;
    550     if (i == kScratchDoubleReg.code()) continue;
    551 
    552     const DwVfpRegister reg = DwVfpRegister::from_code(i);
    553     __ vldr(reg, r1, src_offset, i < 16 ? al : ne);
    554     src_offset += kDoubleSize;
    555   }
    556 
    557   // Push state, pc, and continuation from the last output frame.
    558   if (type() != OSR) {
    559     __ ldr(r6, MemOperand(r2, FrameDescription::state_offset()));
    560     __ push(r6);
    561   }
    562 
    563   __ ldr(r6, MemOperand(r2, FrameDescription::pc_offset()));
    564   __ push(r6);
    565   __ ldr(r6, MemOperand(r2, FrameDescription::continuation_offset()));
    566   __ push(r6);
    567 
    568   // Push the registers from the last output frame.
    569   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    570     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    571     __ ldr(r6, MemOperand(r2, offset));
    572     __ push(r6);
    573   }
    574 
    575   // Restore the registers from the stack.
    576   __ ldm(ia_w, sp, restored_regs);  // all but pc registers.
    577   __ pop(ip);  // remove sp
    578   __ pop(ip);  // remove lr
    579 
    580   __ InitializeRootRegister();
    581 
    582   __ pop(ip);  // remove pc
    583   __ pop(r7);  // get continuation, leave pc on stack
    584   __ pop(lr);
    585   __ Jump(r7);
    586   __ stop("Unreachable.");
    587 }
    588 
    589 
    590 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
    591   // Create a sequence of deoptimization entries.
    592   // Note that registers are still live when jumping to an entry.
    593   Label done;
    594   for (int i = 0; i < count(); i++) {
    595     int start = masm()->pc_offset();
    596     USE(start);
    597     __ mov(ip, Operand(i));
    598     __ push(ip);
    599     __ b(&done);
    600     ASSERT(masm()->pc_offset() - start == table_entry_size_);
    601   }
    602   __ bind(&done);
    603 }
    604 
    605 
    606 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
    607   SetFrameSlot(offset, value);
    608 }
    609 
    610 
    611 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
    612   SetFrameSlot(offset, value);
    613 }
    614 
    615 
    616 #undef __
    617 
    618 } }  // namespace v8::internal
    619