Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_HEAP_INL_H_
     29 #define V8_HEAP_INL_H_
     30 
     31 #include "heap.h"
     32 #include "isolate.h"
     33 #include "list-inl.h"
     34 #include "objects.h"
     35 #include "platform.h"
     36 #include "v8-counters.h"
     37 #include "store-buffer.h"
     38 #include "store-buffer-inl.h"
     39 
     40 namespace v8 {
     41 namespace internal {
     42 
     43 void PromotionQueue::insert(HeapObject* target, int size) {
     44   if (emergency_stack_ != NULL) {
     45     emergency_stack_->Add(Entry(target, size));
     46     return;
     47   }
     48 
     49   if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
     50     NewSpacePage* rear_page =
     51         NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
     52     ASSERT(!rear_page->prev_page()->is_anchor());
     53     rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
     54     ActivateGuardIfOnTheSamePage();
     55   }
     56 
     57   if (guard_) {
     58     ASSERT(GetHeadPage() ==
     59            Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
     60 
     61     if ((rear_ - 2) < limit_) {
     62       RelocateQueueHead();
     63       emergency_stack_->Add(Entry(target, size));
     64       return;
     65     }
     66   }
     67 
     68   *(--rear_) = reinterpret_cast<intptr_t>(target);
     69   *(--rear_) = size;
     70   // Assert no overflow into live objects.
     71 #ifdef DEBUG
     72   SemiSpace::AssertValidRange(HEAP->new_space()->top(),
     73                               reinterpret_cast<Address>(rear_));
     74 #endif
     75 }
     76 
     77 
     78 void PromotionQueue::ActivateGuardIfOnTheSamePage() {
     79   guard_ = guard_ ||
     80       heap_->new_space()->active_space()->current_page()->address() ==
     81       GetHeadPage()->address();
     82 }
     83 
     84 
     85 MaybeObject* Heap::AllocateStringFromUtf8(Vector<const char> str,
     86                                           PretenureFlag pretenure) {
     87   // Check for ASCII first since this is the common case.
     88   const char* start = str.start();
     89   int length = str.length();
     90   int non_ascii_start = String::NonAsciiStart(start, length);
     91   if (non_ascii_start >= length) {
     92     // If the string is ASCII, we do not need to convert the characters
     93     // since UTF8 is backwards compatible with ASCII.
     94     return AllocateStringFromOneByte(str, pretenure);
     95   }
     96   // Non-ASCII and we need to decode.
     97   return AllocateStringFromUtf8Slow(str, non_ascii_start, pretenure);
     98 }
     99 
    100 
    101 template<>
    102 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
    103   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
    104   // ASCII only check.
    105   return chars == str.length();
    106 }
    107 
    108 
    109 template<>
    110 bool inline Heap::IsOneByte(String* str, int chars) {
    111   return str->IsOneByteRepresentation();
    112 }
    113 
    114 
    115 MaybeObject* Heap::AllocateInternalizedStringFromUtf8(
    116     Vector<const char> str, int chars, uint32_t hash_field) {
    117   if (IsOneByte(str, chars)) {
    118     return AllocateOneByteInternalizedString(
    119         Vector<const uint8_t>::cast(str), hash_field);
    120   }
    121   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
    122 }
    123 
    124 
    125 template<typename T>
    126 MaybeObject* Heap::AllocateInternalizedStringImpl(
    127     T t, int chars, uint32_t hash_field) {
    128   if (IsOneByte(t, chars)) {
    129     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
    130   }
    131   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
    132 }
    133 
    134 
    135 MaybeObject* Heap::AllocateOneByteInternalizedString(Vector<const uint8_t> str,
    136                                                      uint32_t hash_field) {
    137   if (str.length() > SeqOneByteString::kMaxLength) {
    138     return Failure::OutOfMemoryException(0x2);
    139   }
    140   // Compute map and object size.
    141   Map* map = ascii_internalized_string_map();
    142   int size = SeqOneByteString::SizeFor(str.length());
    143 
    144   // Allocate string.
    145   Object* result;
    146   { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
    147                    ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
    148                    : old_data_space_->AllocateRaw(size);
    149     if (!maybe_result->ToObject(&result)) return maybe_result;
    150   }
    151 
    152   // String maps are all immortal immovable objects.
    153   reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
    154   // Set length and hash fields of the allocated string.
    155   String* answer = String::cast(result);
    156   answer->set_length(str.length());
    157   answer->set_hash_field(hash_field);
    158 
    159   ASSERT_EQ(size, answer->Size());
    160 
    161   // Fill in the characters.
    162   OS::MemCopy(answer->address() + SeqOneByteString::kHeaderSize,
    163               str.start(), str.length());
    164 
    165   return answer;
    166 }
    167 
    168 
    169 MaybeObject* Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
    170                                                      uint32_t hash_field) {
    171   if (str.length() > SeqTwoByteString::kMaxLength) {
    172     return Failure::OutOfMemoryException(0x3);
    173   }
    174   // Compute map and object size.
    175   Map* map = internalized_string_map();
    176   int size = SeqTwoByteString::SizeFor(str.length());
    177 
    178   // Allocate string.
    179   Object* result;
    180   { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
    181                    ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
    182                    : old_data_space_->AllocateRaw(size);
    183     if (!maybe_result->ToObject(&result)) return maybe_result;
    184   }
    185 
    186   reinterpret_cast<HeapObject*>(result)->set_map(map);
    187   // Set length and hash fields of the allocated string.
    188   String* answer = String::cast(result);
    189   answer->set_length(str.length());
    190   answer->set_hash_field(hash_field);
    191 
    192   ASSERT_EQ(size, answer->Size());
    193 
    194   // Fill in the characters.
    195   OS::MemCopy(answer->address() + SeqTwoByteString::kHeaderSize,
    196               str.start(), str.length() * kUC16Size);
    197 
    198   return answer;
    199 }
    200 
    201 MaybeObject* Heap::CopyFixedArray(FixedArray* src) {
    202   return CopyFixedArrayWithMap(src, src->map());
    203 }
    204 
    205 
    206 MaybeObject* Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
    207   return CopyFixedDoubleArrayWithMap(src, src->map());
    208 }
    209 
    210 
    211 MaybeObject* Heap::AllocateRaw(int size_in_bytes,
    212                                AllocationSpace space,
    213                                AllocationSpace retry_space) {
    214   ASSERT(AllowHandleAllocation::IsAllowed() && gc_state_ == NOT_IN_GC);
    215   ASSERT(space != NEW_SPACE ||
    216          retry_space == OLD_POINTER_SPACE ||
    217          retry_space == OLD_DATA_SPACE ||
    218          retry_space == LO_SPACE);
    219 #ifdef DEBUG
    220   if (FLAG_gc_interval >= 0 &&
    221       !disallow_allocation_failure_ &&
    222       Heap::allocation_timeout_-- <= 0) {
    223     return Failure::RetryAfterGC(space);
    224   }
    225   isolate_->counters()->objs_since_last_full()->Increment();
    226   isolate_->counters()->objs_since_last_young()->Increment();
    227 #endif
    228   MaybeObject* result;
    229   if (NEW_SPACE == space) {
    230     result = new_space_.AllocateRaw(size_in_bytes);
    231     if (always_allocate() && result->IsFailure()) {
    232       space = retry_space;
    233     } else {
    234       return result;
    235     }
    236   }
    237 
    238   if (OLD_POINTER_SPACE == space) {
    239     result = old_pointer_space_->AllocateRaw(size_in_bytes);
    240   } else if (OLD_DATA_SPACE == space) {
    241     result = old_data_space_->AllocateRaw(size_in_bytes);
    242   } else if (CODE_SPACE == space) {
    243     result = code_space_->AllocateRaw(size_in_bytes);
    244   } else if (LO_SPACE == space) {
    245     result = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
    246   } else if (CELL_SPACE == space) {
    247     result = cell_space_->AllocateRaw(size_in_bytes);
    248   } else if (PROPERTY_CELL_SPACE == space) {
    249     result = property_cell_space_->AllocateRaw(size_in_bytes);
    250   } else {
    251     ASSERT(MAP_SPACE == space);
    252     result = map_space_->AllocateRaw(size_in_bytes);
    253   }
    254   if (result->IsFailure()) old_gen_exhausted_ = true;
    255   return result;
    256 }
    257 
    258 
    259 MaybeObject* Heap::NumberFromInt32(
    260     int32_t value, PretenureFlag pretenure) {
    261   if (Smi::IsValid(value)) return Smi::FromInt(value);
    262   // Bypass NumberFromDouble to avoid various redundant checks.
    263   return AllocateHeapNumber(FastI2D(value), pretenure);
    264 }
    265 
    266 
    267 MaybeObject* Heap::NumberFromUint32(
    268     uint32_t value, PretenureFlag pretenure) {
    269   if (static_cast<int32_t>(value) >= 0 &&
    270       Smi::IsValid(static_cast<int32_t>(value))) {
    271     return Smi::FromInt(static_cast<int32_t>(value));
    272   }
    273   // Bypass NumberFromDouble to avoid various redundant checks.
    274   return AllocateHeapNumber(FastUI2D(value), pretenure);
    275 }
    276 
    277 
    278 void Heap::FinalizeExternalString(String* string) {
    279   ASSERT(string->IsExternalString());
    280   v8::String::ExternalStringResourceBase** resource_addr =
    281       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
    282           reinterpret_cast<byte*>(string) +
    283           ExternalString::kResourceOffset -
    284           kHeapObjectTag);
    285 
    286   // Dispose of the C++ object if it has not already been disposed.
    287   if (*resource_addr != NULL) {
    288     (*resource_addr)->Dispose();
    289     *resource_addr = NULL;
    290   }
    291 }
    292 
    293 
    294 MaybeObject* Heap::AllocateRawMap() {
    295 #ifdef DEBUG
    296   isolate_->counters()->objs_since_last_full()->Increment();
    297   isolate_->counters()->objs_since_last_young()->Increment();
    298 #endif
    299   MaybeObject* result = map_space_->AllocateRaw(Map::kSize);
    300   if (result->IsFailure()) old_gen_exhausted_ = true;
    301   return result;
    302 }
    303 
    304 
    305 MaybeObject* Heap::AllocateRawCell() {
    306 #ifdef DEBUG
    307   isolate_->counters()->objs_since_last_full()->Increment();
    308   isolate_->counters()->objs_since_last_young()->Increment();
    309 #endif
    310   MaybeObject* result = cell_space_->AllocateRaw(Cell::kSize);
    311   if (result->IsFailure()) old_gen_exhausted_ = true;
    312   return result;
    313 }
    314 
    315 
    316 MaybeObject* Heap::AllocateRawPropertyCell() {
    317 #ifdef DEBUG
    318   isolate_->counters()->objs_since_last_full()->Increment();
    319   isolate_->counters()->objs_since_last_young()->Increment();
    320 #endif
    321   MaybeObject* result =
    322       property_cell_space_->AllocateRaw(PropertyCell::kSize);
    323   if (result->IsFailure()) old_gen_exhausted_ = true;
    324   return result;
    325 }
    326 
    327 
    328 bool Heap::InNewSpace(Object* object) {
    329   bool result = new_space_.Contains(object);
    330   ASSERT(!result ||                  // Either not in new space
    331          gc_state_ != NOT_IN_GC ||   // ... or in the middle of GC
    332          InToSpace(object));         // ... or in to-space (where we allocate).
    333   return result;
    334 }
    335 
    336 
    337 bool Heap::InNewSpace(Address address) {
    338   return new_space_.Contains(address);
    339 }
    340 
    341 
    342 bool Heap::InFromSpace(Object* object) {
    343   return new_space_.FromSpaceContains(object);
    344 }
    345 
    346 
    347 bool Heap::InToSpace(Object* object) {
    348   return new_space_.ToSpaceContains(object);
    349 }
    350 
    351 
    352 bool Heap::InOldPointerSpace(Address address) {
    353   return old_pointer_space_->Contains(address);
    354 }
    355 
    356 
    357 bool Heap::InOldPointerSpace(Object* object) {
    358   return InOldPointerSpace(reinterpret_cast<Address>(object));
    359 }
    360 
    361 
    362 bool Heap::InOldDataSpace(Address address) {
    363   return old_data_space_->Contains(address);
    364 }
    365 
    366 
    367 bool Heap::InOldDataSpace(Object* object) {
    368   return InOldDataSpace(reinterpret_cast<Address>(object));
    369 }
    370 
    371 
    372 bool Heap::OldGenerationAllocationLimitReached() {
    373   if (!incremental_marking()->IsStopped()) return false;
    374   return OldGenerationSpaceAvailable() < 0;
    375 }
    376 
    377 
    378 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
    379   // An object should be promoted if:
    380   // - the object has survived a scavenge operation or
    381   // - to space is already 25% full.
    382   NewSpacePage* page = NewSpacePage::FromAddress(old_address);
    383   Address age_mark = new_space_.age_mark();
    384   bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
    385       (!page->ContainsLimit(age_mark) || old_address < age_mark);
    386   return below_mark || (new_space_.Size() + object_size) >=
    387                         (new_space_.EffectiveCapacity() >> 2);
    388 }
    389 
    390 
    391 void Heap::RecordWrite(Address address, int offset) {
    392   if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
    393 }
    394 
    395 
    396 void Heap::RecordWrites(Address address, int start, int len) {
    397   if (!InNewSpace(address)) {
    398     for (int i = 0; i < len; i++) {
    399       store_buffer_.Mark(address + start + i * kPointerSize);
    400     }
    401   }
    402 }
    403 
    404 
    405 OldSpace* Heap::TargetSpace(HeapObject* object) {
    406   InstanceType type = object->map()->instance_type();
    407   AllocationSpace space = TargetSpaceId(type);
    408   return (space == OLD_POINTER_SPACE)
    409       ? old_pointer_space_
    410       : old_data_space_;
    411 }
    412 
    413 
    414 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
    415   // Heap numbers and sequential strings are promoted to old data space, all
    416   // other object types are promoted to old pointer space.  We do not use
    417   // object->IsHeapNumber() and object->IsSeqString() because we already
    418   // know that object has the heap object tag.
    419 
    420   // These objects are never allocated in new space.
    421   ASSERT(type != MAP_TYPE);
    422   ASSERT(type != CODE_TYPE);
    423   ASSERT(type != ODDBALL_TYPE);
    424   ASSERT(type != CELL_TYPE);
    425   ASSERT(type != PROPERTY_CELL_TYPE);
    426 
    427   if (type <= LAST_NAME_TYPE) {
    428     if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
    429     ASSERT(type < FIRST_NONSTRING_TYPE);
    430     // There are four string representations: sequential strings, external
    431     // strings, cons strings, and sliced strings.
    432     // Only the latter two contain non-map-word pointers to heap objects.
    433     return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
    434         ? OLD_POINTER_SPACE
    435         : OLD_DATA_SPACE;
    436   } else {
    437     return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
    438   }
    439 }
    440 
    441 
    442 bool Heap::AllowedToBeMigrated(HeapObject* object, AllocationSpace dst) {
    443   // Object migration is governed by the following rules:
    444   //
    445   // 1) Objects in new-space can be migrated to one of the old spaces
    446   //    that matches their target space or they stay in new-space.
    447   // 2) Objects in old-space stay in the same space when migrating.
    448   // 3) Fillers (two or more words) can migrate due to left-trimming of
    449   //    fixed arrays in new-space, old-data-space and old-pointer-space.
    450   // 4) Fillers (one word) can never migrate, they are skipped by
    451   //    incremental marking explicitly to prevent invalid pattern.
    452   //
    453   // Since this function is used for debugging only, we do not place
    454   // asserts here, but check everything explicitly.
    455   if (object->map() == one_pointer_filler_map()) return false;
    456   InstanceType type = object->map()->instance_type();
    457   MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
    458   AllocationSpace src = chunk->owner()->identity();
    459   switch (src) {
    460     case NEW_SPACE:
    461       return dst == src || dst == TargetSpaceId(type);
    462     case OLD_POINTER_SPACE:
    463       return dst == src && (dst == TargetSpaceId(type) || object->IsFiller());
    464     case OLD_DATA_SPACE:
    465       return dst == src && dst == TargetSpaceId(type);
    466     case CODE_SPACE:
    467       return dst == src && type == CODE_TYPE;
    468     case MAP_SPACE:
    469     case CELL_SPACE:
    470     case PROPERTY_CELL_SPACE:
    471     case LO_SPACE:
    472       return false;
    473   }
    474   UNREACHABLE();
    475   return false;
    476 }
    477 
    478 
    479 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
    480   CopyWords(reinterpret_cast<Object**>(dst),
    481             reinterpret_cast<Object**>(src),
    482             static_cast<size_t>(byte_size / kPointerSize));
    483 }
    484 
    485 
    486 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
    487   ASSERT(IsAligned(byte_size, kPointerSize));
    488 
    489   int size_in_words = byte_size / kPointerSize;
    490 
    491   if ((dst < src) || (dst >= (src + byte_size))) {
    492     Object** src_slot = reinterpret_cast<Object**>(src);
    493     Object** dst_slot = reinterpret_cast<Object**>(dst);
    494     Object** end_slot = src_slot + size_in_words;
    495 
    496     while (src_slot != end_slot) {
    497       *dst_slot++ = *src_slot++;
    498     }
    499   } else {
    500     OS::MemMove(dst, src, static_cast<size_t>(byte_size));
    501   }
    502 }
    503 
    504 
    505 void Heap::ScavengePointer(HeapObject** p) {
    506   ScavengeObject(p, *p);
    507 }
    508 
    509 
    510 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
    511   ASSERT(HEAP->InFromSpace(object));
    512 
    513   // We use the first word (where the map pointer usually is) of a heap
    514   // object to record the forwarding pointer.  A forwarding pointer can
    515   // point to an old space, the code space, or the to space of the new
    516   // generation.
    517   MapWord first_word = object->map_word();
    518 
    519   // If the first word is a forwarding address, the object has already been
    520   // copied.
    521   if (first_word.IsForwardingAddress()) {
    522     HeapObject* dest = first_word.ToForwardingAddress();
    523     ASSERT(HEAP->InFromSpace(*p));
    524     *p = dest;
    525     return;
    526   }
    527 
    528   // Call the slow part of scavenge object.
    529   return ScavengeObjectSlow(p, object);
    530 }
    531 
    532 
    533 MaybeObject* Heap::AllocateEmptyJSArrayWithAllocationSite(
    534       ElementsKind elements_kind,
    535       Handle<AllocationSite> allocation_site) {
    536   return AllocateJSArrayAndStorageWithAllocationSite(elements_kind, 0, 0,
    537       allocation_site, DONT_INITIALIZE_ARRAY_ELEMENTS);
    538 }
    539 
    540 
    541 bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason) {
    542   const char* collector_reason = NULL;
    543   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
    544   return CollectGarbage(space, collector, gc_reason, collector_reason);
    545 }
    546 
    547 
    548 MaybeObject* Heap::PrepareForCompare(String* str) {
    549   // Always flatten small strings and force flattening of long strings
    550   // after we have accumulated a certain amount we failed to flatten.
    551   static const int kMaxAlwaysFlattenLength = 32;
    552   static const int kFlattenLongThreshold = 16*KB;
    553 
    554   const int length = str->length();
    555   MaybeObject* obj = str->TryFlatten();
    556   if (length <= kMaxAlwaysFlattenLength ||
    557       unflattened_strings_length_ >= kFlattenLongThreshold) {
    558     return obj;
    559   }
    560   if (obj->IsFailure()) {
    561     unflattened_strings_length_ += length;
    562   }
    563   return str;
    564 }
    565 
    566 
    567 intptr_t Heap::AdjustAmountOfExternalAllocatedMemory(
    568     intptr_t change_in_bytes) {
    569   ASSERT(HasBeenSetUp());
    570   intptr_t amount = amount_of_external_allocated_memory_ + change_in_bytes;
    571   if (change_in_bytes > 0) {
    572     // Avoid overflow.
    573     if (amount > amount_of_external_allocated_memory_) {
    574       amount_of_external_allocated_memory_ = amount;
    575     } else {
    576       // Give up and reset the counters in case of an overflow.
    577       amount_of_external_allocated_memory_ = 0;
    578       amount_of_external_allocated_memory_at_last_global_gc_ = 0;
    579     }
    580     intptr_t amount_since_last_global_gc = PromotedExternalMemorySize();
    581     if (amount_since_last_global_gc > external_allocation_limit_) {
    582       CollectAllGarbage(kNoGCFlags, "external memory allocation limit reached");
    583     }
    584   } else {
    585     // Avoid underflow.
    586     if (amount >= 0) {
    587       amount_of_external_allocated_memory_ = amount;
    588     } else {
    589       // Give up and reset the counters in case of an underflow.
    590       amount_of_external_allocated_memory_ = 0;
    591       amount_of_external_allocated_memory_at_last_global_gc_ = 0;
    592     }
    593   }
    594   if (FLAG_trace_external_memory) {
    595     PrintPID("%8.0f ms: ", isolate()->time_millis_since_init());
    596     PrintF("Adjust amount of external memory: delta=%6" V8_PTR_PREFIX "d KB, "
    597            "amount=%6" V8_PTR_PREFIX "d KB, since_gc=%6" V8_PTR_PREFIX "d KB, "
    598            "isolate=0x%08" V8PRIxPTR ".\n",
    599            change_in_bytes / KB,
    600            amount_of_external_allocated_memory_ / KB,
    601            PromotedExternalMemorySize() / KB,
    602            reinterpret_cast<intptr_t>(isolate()));
    603   }
    604   ASSERT(amount_of_external_allocated_memory_ >= 0);
    605   return amount_of_external_allocated_memory_;
    606 }
    607 
    608 
    609 Isolate* Heap::isolate() {
    610   return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
    611       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
    612 }
    613 
    614 
    615 #ifdef DEBUG
    616 #define GC_GREEDY_CHECK() \
    617   if (FLAG_gc_greedy) HEAP->GarbageCollectionGreedyCheck()
    618 #else
    619 #define GC_GREEDY_CHECK() { }
    620 #endif
    621 
    622 // Calls the FUNCTION_CALL function and retries it up to three times
    623 // to guarantee that any allocations performed during the call will
    624 // succeed if there's enough memory.
    625 
    626 // Warning: Do not use the identifiers __object__, __maybe_object__ or
    627 // __scope__ in a call to this macro.
    628 
    629 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY, OOM)\
    630   do {                                                                         \
    631     GC_GREEDY_CHECK();                                                         \
    632     MaybeObject* __maybe_object__ = FUNCTION_CALL;                             \
    633     Object* __object__ = NULL;                                                 \
    634     if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE;                 \
    635     if (__maybe_object__->IsOutOfMemory()) {                                   \
    636       OOM;                                                                     \
    637     }                                                                          \
    638     if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY;                     \
    639     ISOLATE->heap()->CollectGarbage(Failure::cast(__maybe_object__)->          \
    640                                     allocation_space(),                        \
    641                                     "allocation failure");                     \
    642     __maybe_object__ = FUNCTION_CALL;                                          \
    643     if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE;                 \
    644     if (__maybe_object__->IsOutOfMemory()) {                                   \
    645       OOM;                                                                     \
    646     }                                                                          \
    647     if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY;                     \
    648     ISOLATE->counters()->gc_last_resort_from_handles()->Increment();           \
    649     ISOLATE->heap()->CollectAllAvailableGarbage("last resort gc");             \
    650     {                                                                          \
    651       AlwaysAllocateScope __scope__;                                           \
    652       __maybe_object__ = FUNCTION_CALL;                                        \
    653     }                                                                          \
    654     if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE;                 \
    655     if (__maybe_object__->IsOutOfMemory()) {                                   \
    656       OOM;                                                                     \
    657     }                                                                          \
    658     if (__maybe_object__->IsRetryAfterGC()) {                                  \
    659       /* TODO(1181417): Fix this. */                                           \
    660       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true);  \
    661     }                                                                          \
    662     RETURN_EMPTY;                                                              \
    663   } while (false)
    664 
    665 #define CALL_AND_RETRY_OR_DIE(                                             \
    666      ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)                   \
    667   CALL_AND_RETRY(                                                          \
    668       ISOLATE,                                                             \
    669       FUNCTION_CALL,                                                       \
    670       RETURN_VALUE,                                                        \
    671       RETURN_EMPTY,                                                        \
    672       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY", true))
    673 
    674 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
    675   CALL_AND_RETRY_OR_DIE(ISOLATE,                                              \
    676                         FUNCTION_CALL,                                        \
    677                         return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
    678                         return Handle<TYPE>())                                \
    679 
    680 
    681 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL)  \
    682   CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
    683 
    684 
    685 #define CALL_HEAP_FUNCTION_PASS_EXCEPTION(ISOLATE, FUNCTION_CALL) \
    686   CALL_AND_RETRY(ISOLATE,                                         \
    687                  FUNCTION_CALL,                                   \
    688                  return __object__,                               \
    689                  return __maybe_object__,                         \
    690                  return __maybe_object__)
    691 
    692 
    693 void ExternalStringTable::AddString(String* string) {
    694   ASSERT(string->IsExternalString());
    695   if (heap_->InNewSpace(string)) {
    696     new_space_strings_.Add(string);
    697   } else {
    698     old_space_strings_.Add(string);
    699   }
    700 }
    701 
    702 
    703 void ExternalStringTable::Iterate(ObjectVisitor* v) {
    704   if (!new_space_strings_.is_empty()) {
    705     Object** start = &new_space_strings_[0];
    706     v->VisitPointers(start, start + new_space_strings_.length());
    707   }
    708   if (!old_space_strings_.is_empty()) {
    709     Object** start = &old_space_strings_[0];
    710     v->VisitPointers(start, start + old_space_strings_.length());
    711   }
    712 }
    713 
    714 
    715 // Verify() is inline to avoid ifdef-s around its calls in release
    716 // mode.
    717 void ExternalStringTable::Verify() {
    718 #ifdef DEBUG
    719   for (int i = 0; i < new_space_strings_.length(); ++i) {
    720     Object* obj = Object::cast(new_space_strings_[i]);
    721     // TODO(yangguo): check that the object is indeed an external string.
    722     ASSERT(heap_->InNewSpace(obj));
    723     ASSERT(obj != HEAP->the_hole_value());
    724   }
    725   for (int i = 0; i < old_space_strings_.length(); ++i) {
    726     Object* obj = Object::cast(old_space_strings_[i]);
    727     // TODO(yangguo): check that the object is indeed an external string.
    728     ASSERT(!heap_->InNewSpace(obj));
    729     ASSERT(obj != HEAP->the_hole_value());
    730   }
    731 #endif
    732 }
    733 
    734 
    735 void ExternalStringTable::AddOldString(String* string) {
    736   ASSERT(string->IsExternalString());
    737   ASSERT(!heap_->InNewSpace(string));
    738   old_space_strings_.Add(string);
    739 }
    740 
    741 
    742 void ExternalStringTable::ShrinkNewStrings(int position) {
    743   new_space_strings_.Rewind(position);
    744 #ifdef VERIFY_HEAP
    745   if (FLAG_verify_heap) {
    746     Verify();
    747   }
    748 #endif
    749 }
    750 
    751 
    752 void Heap::ClearInstanceofCache() {
    753   set_instanceof_cache_function(the_hole_value());
    754 }
    755 
    756 
    757 Object* Heap::ToBoolean(bool condition) {
    758   return condition ? true_value() : false_value();
    759 }
    760 
    761 
    762 void Heap::CompletelyClearInstanceofCache() {
    763   set_instanceof_cache_map(the_hole_value());
    764   set_instanceof_cache_function(the_hole_value());
    765 }
    766 
    767 
    768 MaybeObject* TranscendentalCache::Get(Type type, double input) {
    769   SubCache* cache = caches_[type];
    770   if (cache == NULL) {
    771     caches_[type] = cache = new SubCache(type);
    772   }
    773   return cache->Get(input);
    774 }
    775 
    776 
    777 Address TranscendentalCache::cache_array_address() {
    778   return reinterpret_cast<Address>(caches_);
    779 }
    780 
    781 
    782 double TranscendentalCache::SubCache::Calculate(double input) {
    783   switch (type_) {
    784     case ACOS:
    785       return acos(input);
    786     case ASIN:
    787       return asin(input);
    788     case ATAN:
    789       return atan(input);
    790     case COS:
    791       return fast_cos(input);
    792     case EXP:
    793       return exp(input);
    794     case LOG:
    795       return fast_log(input);
    796     case SIN:
    797       return fast_sin(input);
    798     case TAN:
    799       return fast_tan(input);
    800     default:
    801       return 0.0;  // Never happens.
    802   }
    803 }
    804 
    805 
    806 MaybeObject* TranscendentalCache::SubCache::Get(double input) {
    807   Converter c;
    808   c.dbl = input;
    809   int hash = Hash(c);
    810   Element e = elements_[hash];
    811   if (e.in[0] == c.integers[0] &&
    812       e.in[1] == c.integers[1]) {
    813     ASSERT(e.output != NULL);
    814     isolate_->counters()->transcendental_cache_hit()->Increment();
    815     return e.output;
    816   }
    817   double answer = Calculate(input);
    818   isolate_->counters()->transcendental_cache_miss()->Increment();
    819   Object* heap_number;
    820   { MaybeObject* maybe_heap_number =
    821         isolate_->heap()->AllocateHeapNumber(answer);
    822     if (!maybe_heap_number->ToObject(&heap_number)) return maybe_heap_number;
    823   }
    824   elements_[hash].in[0] = c.integers[0];
    825   elements_[hash].in[1] = c.integers[1];
    826   elements_[hash].output = heap_number;
    827   return heap_number;
    828 }
    829 
    830 
    831 AlwaysAllocateScope::AlwaysAllocateScope() {
    832   // We shouldn't hit any nested scopes, because that requires
    833   // non-handle code to call handle code. The code still works but
    834   // performance will degrade, so we want to catch this situation
    835   // in debug mode.
    836   ASSERT(HEAP->always_allocate_scope_depth_ == 0);
    837   HEAP->always_allocate_scope_depth_++;
    838 }
    839 
    840 
    841 AlwaysAllocateScope::~AlwaysAllocateScope() {
    842   HEAP->always_allocate_scope_depth_--;
    843   ASSERT(HEAP->always_allocate_scope_depth_ == 0);
    844 }
    845 
    846 
    847 #ifdef VERIFY_HEAP
    848 NoWeakEmbeddedMapsVerificationScope::NoWeakEmbeddedMapsVerificationScope() {
    849   HEAP->no_weak_embedded_maps_verification_scope_depth_++;
    850 }
    851 
    852 
    853 NoWeakEmbeddedMapsVerificationScope::~NoWeakEmbeddedMapsVerificationScope() {
    854   HEAP->no_weak_embedded_maps_verification_scope_depth_--;
    855 }
    856 #endif
    857 
    858 
    859 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
    860   for (Object** current = start; current < end; current++) {
    861     if ((*current)->IsHeapObject()) {
    862       HeapObject* object = HeapObject::cast(*current);
    863       CHECK(HEAP->Contains(object));
    864       CHECK(object->map()->IsMap());
    865     }
    866   }
    867 }
    868 
    869 
    870 double GCTracer::SizeOfHeapObjects() {
    871   return (static_cast<double>(HEAP->SizeOfObjects())) / MB;
    872 }
    873 
    874 
    875 DisallowAllocationFailure::DisallowAllocationFailure() {
    876 #ifdef DEBUG
    877   old_state_ = HEAP->disallow_allocation_failure_;
    878   HEAP->disallow_allocation_failure_ = true;
    879 #endif
    880 }
    881 
    882 
    883 DisallowAllocationFailure::~DisallowAllocationFailure() {
    884 #ifdef DEBUG
    885   HEAP->disallow_allocation_failure_ = old_state_;
    886 #endif
    887 }
    888 
    889 
    890 } }  // namespace v8::internal
    891 
    892 #endif  // V8_HEAP_INL_H_
    893