Home | History | Annotate | Download | only in mips
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if V8_TARGET_ARCH_MIPS
     31 
     32 // Note on Mips implementation:
     33 //
     34 // The result_register() for mips is the 'v0' register, which is defined
     35 // by the ABI to contain function return values. However, the first
     36 // parameter to a function is defined to be 'a0'. So there are many
     37 // places where we have to move a previous result in v0 to a0 for the
     38 // next call: mov(a0, v0). This is not needed on the other architectures.
     39 
     40 #include "code-stubs.h"
     41 #include "codegen.h"
     42 #include "compiler.h"
     43 #include "debug.h"
     44 #include "full-codegen.h"
     45 #include "isolate-inl.h"
     46 #include "parser.h"
     47 #include "scopes.h"
     48 #include "stub-cache.h"
     49 
     50 #include "mips/code-stubs-mips.h"
     51 #include "mips/macro-assembler-mips.h"
     52 
     53 namespace v8 {
     54 namespace internal {
     55 
     56 #define __ ACCESS_MASM(masm_)
     57 
     58 
     59 // A patch site is a location in the code which it is possible to patch. This
     60 // class has a number of methods to emit the code which is patchable and the
     61 // method EmitPatchInfo to record a marker back to the patchable code. This
     62 // marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy
     63 // (raw 16 bit immediate value is used) is the delta from the pc to the first
     64 // instruction of the patchable code.
     65 // The marker instruction is effectively a NOP (dest is zero_reg) and will
     66 // never be emitted by normal code.
     67 class JumpPatchSite BASE_EMBEDDED {
     68  public:
     69   explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
     70 #ifdef DEBUG
     71     info_emitted_ = false;
     72 #endif
     73   }
     74 
     75   ~JumpPatchSite() {
     76     ASSERT(patch_site_.is_bound() == info_emitted_);
     77   }
     78 
     79   // When initially emitting this ensure that a jump is always generated to skip
     80   // the inlined smi code.
     81   void EmitJumpIfNotSmi(Register reg, Label* target) {
     82     ASSERT(!patch_site_.is_bound() && !info_emitted_);
     83     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
     84     __ bind(&patch_site_);
     85     __ andi(at, reg, 0);
     86     // Always taken before patched.
     87     __ Branch(target, eq, at, Operand(zero_reg));
     88   }
     89 
     90   // When initially emitting this ensure that a jump is never generated to skip
     91   // the inlined smi code.
     92   void EmitJumpIfSmi(Register reg, Label* target) {
     93     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
     94     ASSERT(!patch_site_.is_bound() && !info_emitted_);
     95     __ bind(&patch_site_);
     96     __ andi(at, reg, 0);
     97     // Never taken before patched.
     98     __ Branch(target, ne, at, Operand(zero_reg));
     99   }
    100 
    101   void EmitPatchInfo() {
    102     if (patch_site_.is_bound()) {
    103       int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
    104       Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
    105       __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask);
    106 #ifdef DEBUG
    107       info_emitted_ = true;
    108 #endif
    109     } else {
    110       __ nop();  // Signals no inlined code.
    111     }
    112   }
    113 
    114  private:
    115   MacroAssembler* masm_;
    116   Label patch_site_;
    117 #ifdef DEBUG
    118   bool info_emitted_;
    119 #endif
    120 };
    121 
    122 
    123 // Generate code for a JS function.  On entry to the function the receiver
    124 // and arguments have been pushed on the stack left to right.  The actual
    125 // argument count matches the formal parameter count expected by the
    126 // function.
    127 //
    128 // The live registers are:
    129 //   o a1: the JS function object being called (i.e. ourselves)
    130 //   o cp: our context
    131 //   o fp: our caller's frame pointer
    132 //   o sp: stack pointer
    133 //   o ra: return address
    134 //
    135 // The function builds a JS frame.  Please see JavaScriptFrameConstants in
    136 // frames-mips.h for its layout.
    137 void FullCodeGenerator::Generate() {
    138   CompilationInfo* info = info_;
    139   handler_table_ =
    140       isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
    141   profiling_counter_ = isolate()->factory()->NewCell(
    142       Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
    143   SetFunctionPosition(function());
    144   Comment cmnt(masm_, "[ function compiled by full code generator");
    145 
    146   ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    147 
    148 #ifdef DEBUG
    149   if (strlen(FLAG_stop_at) > 0 &&
    150       info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
    151     __ stop("stop-at");
    152   }
    153 #endif
    154 
    155   // Strict mode functions and builtins need to replace the receiver
    156   // with undefined when called as functions (without an explicit
    157   // receiver object). t1 is zero for method calls and non-zero for
    158   // function calls.
    159   if (!info->is_classic_mode() || info->is_native()) {
    160     Label ok;
    161     __ Branch(&ok, eq, t1, Operand(zero_reg));
    162     int receiver_offset = info->scope()->num_parameters() * kPointerSize;
    163     __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
    164     __ sw(a2, MemOperand(sp, receiver_offset));
    165     __ bind(&ok);
    166   }
    167 
    168   // Open a frame scope to indicate that there is a frame on the stack.  The
    169   // MANUAL indicates that the scope shouldn't actually generate code to set up
    170   // the frame (that is done below).
    171   FrameScope frame_scope(masm_, StackFrame::MANUAL);
    172 
    173   info->set_prologue_offset(masm_->pc_offset());
    174   // The following three instructions must remain together and unmodified for
    175   // code aging to work properly.
    176   __ Push(ra, fp, cp, a1);
    177   __ nop(Assembler::CODE_AGE_SEQUENCE_NOP);
    178   // Adjust fp to point to caller's fp.
    179   __ Addu(fp, sp, Operand(2 * kPointerSize));
    180   info->AddNoFrameRange(0, masm_->pc_offset());
    181 
    182   { Comment cmnt(masm_, "[ Allocate locals");
    183     int locals_count = info->scope()->num_stack_slots();
    184     // Generators allocate locals, if any, in context slots.
    185     ASSERT(!info->function()->is_generator() || locals_count == 0);
    186     if (locals_count > 0) {
    187       __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    188       for (int i = 0; i < locals_count; i++) {
    189         __ push(at);
    190       }
    191     }
    192   }
    193 
    194   bool function_in_register = true;
    195 
    196   // Possibly allocate a local context.
    197   int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    198   if (heap_slots > 0) {
    199     Comment cmnt(masm_, "[ Allocate context");
    200     // Argument to NewContext is the function, which is still in a1.
    201     __ push(a1);
    202     if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
    203       __ Push(info->scope()->GetScopeInfo());
    204       __ CallRuntime(Runtime::kNewGlobalContext, 2);
    205     } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    206       FastNewContextStub stub(heap_slots);
    207       __ CallStub(&stub);
    208     } else {
    209       __ CallRuntime(Runtime::kNewFunctionContext, 1);
    210     }
    211     function_in_register = false;
    212     // Context is returned in both v0 and cp.  It replaces the context
    213     // passed to us.  It's saved in the stack and kept live in cp.
    214     __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
    215     // Copy any necessary parameters into the context.
    216     int num_parameters = info->scope()->num_parameters();
    217     for (int i = 0; i < num_parameters; i++) {
    218       Variable* var = scope()->parameter(i);
    219       if (var->IsContextSlot()) {
    220         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    221                                  (num_parameters - 1 - i) * kPointerSize;
    222         // Load parameter from stack.
    223         __ lw(a0, MemOperand(fp, parameter_offset));
    224         // Store it in the context.
    225         MemOperand target = ContextOperand(cp, var->index());
    226         __ sw(a0, target);
    227 
    228         // Update the write barrier.
    229         __ RecordWriteContextSlot(
    230             cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs);
    231       }
    232     }
    233   }
    234 
    235   Variable* arguments = scope()->arguments();
    236   if (arguments != NULL) {
    237     // Function uses arguments object.
    238     Comment cmnt(masm_, "[ Allocate arguments object");
    239     if (!function_in_register) {
    240       // Load this again, if it's used by the local context below.
    241       __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
    242     } else {
    243       __ mov(a3, a1);
    244     }
    245     // Receiver is just before the parameters on the caller's stack.
    246     int num_parameters = info->scope()->num_parameters();
    247     int offset = num_parameters * kPointerSize;
    248     __ Addu(a2, fp,
    249            Operand(StandardFrameConstants::kCallerSPOffset + offset));
    250     __ li(a1, Operand(Smi::FromInt(num_parameters)));
    251     __ Push(a3, a2, a1);
    252 
    253     // Arguments to ArgumentsAccessStub:
    254     //   function, receiver address, parameter count.
    255     // The stub will rewrite receiever and parameter count if the previous
    256     // stack frame was an arguments adapter frame.
    257     ArgumentsAccessStub::Type type;
    258     if (!is_classic_mode()) {
    259       type = ArgumentsAccessStub::NEW_STRICT;
    260     } else if (function()->has_duplicate_parameters()) {
    261       type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW;
    262     } else {
    263       type = ArgumentsAccessStub::NEW_NON_STRICT_FAST;
    264     }
    265     ArgumentsAccessStub stub(type);
    266     __ CallStub(&stub);
    267 
    268     SetVar(arguments, v0, a1, a2);
    269   }
    270 
    271   if (FLAG_trace) {
    272     __ CallRuntime(Runtime::kTraceEnter, 0);
    273   }
    274 
    275   // Visit the declarations and body unless there is an illegal
    276   // redeclaration.
    277   if (scope()->HasIllegalRedeclaration()) {
    278     Comment cmnt(masm_, "[ Declarations");
    279     scope()->VisitIllegalRedeclaration(this);
    280 
    281   } else {
    282     PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
    283     { Comment cmnt(masm_, "[ Declarations");
    284       // For named function expressions, declare the function name as a
    285       // constant.
    286       if (scope()->is_function_scope() && scope()->function() != NULL) {
    287         VariableDeclaration* function = scope()->function();
    288         ASSERT(function->proxy()->var()->mode() == CONST ||
    289                function->proxy()->var()->mode() == CONST_HARMONY);
    290         ASSERT(function->proxy()->var()->location() != Variable::UNALLOCATED);
    291         VisitVariableDeclaration(function);
    292       }
    293       VisitDeclarations(scope()->declarations());
    294     }
    295 
    296     { Comment cmnt(masm_, "[ Stack check");
    297       PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
    298       Label ok;
    299       __ LoadRoot(t0, Heap::kStackLimitRootIndex);
    300       __ Branch(&ok, hs, sp, Operand(t0));
    301       StackCheckStub stub;
    302       __ CallStub(&stub);
    303       __ bind(&ok);
    304     }
    305 
    306     { Comment cmnt(masm_, "[ Body");
    307       ASSERT(loop_depth() == 0);
    308       VisitStatements(function()->body());
    309       ASSERT(loop_depth() == 0);
    310     }
    311   }
    312 
    313   // Always emit a 'return undefined' in case control fell off the end of
    314   // the body.
    315   { Comment cmnt(masm_, "[ return <undefined>;");
    316     __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
    317   }
    318   EmitReturnSequence();
    319 }
    320 
    321 
    322 void FullCodeGenerator::ClearAccumulator() {
    323   ASSERT(Smi::FromInt(0) == 0);
    324   __ mov(v0, zero_reg);
    325 }
    326 
    327 
    328 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
    329   __ li(a2, Operand(profiling_counter_));
    330   __ lw(a3, FieldMemOperand(a2, Cell::kValueOffset));
    331   __ Subu(a3, a3, Operand(Smi::FromInt(delta)));
    332   __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset));
    333 }
    334 
    335 
    336 void FullCodeGenerator::EmitProfilingCounterReset() {
    337   int reset_value = FLAG_interrupt_budget;
    338   if (info_->ShouldSelfOptimize() && !FLAG_retry_self_opt) {
    339     // Self-optimization is a one-off thing: if it fails, don't try again.
    340     reset_value = Smi::kMaxValue;
    341   }
    342   if (isolate()->IsDebuggerActive()) {
    343     // Detect debug break requests as soon as possible.
    344     reset_value = FLAG_interrupt_budget >> 4;
    345   }
    346   __ li(a2, Operand(profiling_counter_));
    347   __ li(a3, Operand(Smi::FromInt(reset_value)));
    348   __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset));
    349 }
    350 
    351 
    352 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
    353                                                 Label* back_edge_target) {
    354   // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need
    355   // to make sure it is constant. Branch may emit a skip-or-jump sequence
    356   // instead of the normal Branch. It seems that the "skip" part of that
    357   // sequence is about as long as this Branch would be so it is safe to ignore
    358   // that.
    359   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    360   Comment cmnt(masm_, "[ Back edge bookkeeping");
    361   Label ok;
    362   int weight = 1;
    363   if (FLAG_weighted_back_edges) {
    364     ASSERT(back_edge_target->is_bound());
    365     int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
    366     weight = Min(kMaxBackEdgeWeight,
    367                  Max(1, distance / kCodeSizeMultiplier));
    368   }
    369   EmitProfilingCounterDecrement(weight);
    370   __ slt(at, a3, zero_reg);
    371   __ beq(at, zero_reg, &ok);
    372   // CallStub will emit a li t9 first, so it is safe to use the delay slot.
    373   InterruptStub stub;
    374   __ CallStub(&stub);
    375   // Record a mapping of this PC offset to the OSR id.  This is used to find
    376   // the AST id from the unoptimized code in order to use it as a key into
    377   // the deoptimization input data found in the optimized code.
    378   RecordBackEdge(stmt->OsrEntryId());
    379   EmitProfilingCounterReset();
    380 
    381   __ bind(&ok);
    382   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
    383   // Record a mapping of the OSR id to this PC.  This is used if the OSR
    384   // entry becomes the target of a bailout.  We don't expect it to be, but
    385   // we want it to work if it is.
    386   PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
    387 }
    388 
    389 
    390 void FullCodeGenerator::EmitReturnSequence() {
    391   Comment cmnt(masm_, "[ Return sequence");
    392   if (return_label_.is_bound()) {
    393     __ Branch(&return_label_);
    394   } else {
    395     __ bind(&return_label_);
    396     if (FLAG_trace) {
    397       // Push the return value on the stack as the parameter.
    398       // Runtime::TraceExit returns its parameter in v0.
    399       __ push(v0);
    400       __ CallRuntime(Runtime::kTraceExit, 1);
    401     }
    402     if (FLAG_interrupt_at_exit || FLAG_self_optimization) {
    403       // Pretend that the exit is a backwards jump to the entry.
    404       int weight = 1;
    405       if (info_->ShouldSelfOptimize()) {
    406         weight = FLAG_interrupt_budget / FLAG_self_opt_count;
    407       } else if (FLAG_weighted_back_edges) {
    408         int distance = masm_->pc_offset();
    409         weight = Min(kMaxBackEdgeWeight,
    410                      Max(1, distance / kCodeSizeMultiplier));
    411       }
    412       EmitProfilingCounterDecrement(weight);
    413       Label ok;
    414       __ Branch(&ok, ge, a3, Operand(zero_reg));
    415       __ push(v0);
    416       if (info_->ShouldSelfOptimize() && FLAG_direct_self_opt) {
    417         __ lw(a2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
    418         __ push(a2);
    419         __ CallRuntime(Runtime::kOptimizeFunctionOnNextCall, 1);
    420       } else {
    421         InterruptStub stub;
    422         __ CallStub(&stub);
    423       }
    424       __ pop(v0);
    425       EmitProfilingCounterReset();
    426       __ bind(&ok);
    427     }
    428 
    429 #ifdef DEBUG
    430     // Add a label for checking the size of the code used for returning.
    431     Label check_exit_codesize;
    432     masm_->bind(&check_exit_codesize);
    433 #endif
    434     // Make sure that the constant pool is not emitted inside of the return
    435     // sequence.
    436     { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    437       // Here we use masm_-> instead of the __ macro to avoid the code coverage
    438       // tool from instrumenting as we rely on the code size here.
    439       int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
    440       CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
    441       __ RecordJSReturn();
    442       masm_->mov(sp, fp);
    443       int no_frame_start = masm_->pc_offset();
    444       masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
    445       masm_->Addu(sp, sp, Operand(sp_delta));
    446       masm_->Jump(ra);
    447       info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
    448     }
    449 
    450 #ifdef DEBUG
    451     // Check that the size of the code used for returning is large enough
    452     // for the debugger's requirements.
    453     ASSERT(Assembler::kJSReturnSequenceInstructions <=
    454            masm_->InstructionsGeneratedSince(&check_exit_codesize));
    455 #endif
    456   }
    457 }
    458 
    459 
    460 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
    461   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    462 }
    463 
    464 
    465 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
    466   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    467   codegen()->GetVar(result_register(), var);
    468 }
    469 
    470 
    471 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
    472   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    473   codegen()->GetVar(result_register(), var);
    474   __ push(result_register());
    475 }
    476 
    477 
    478 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
    479   // For simplicity we always test the accumulator register.
    480   codegen()->GetVar(result_register(), var);
    481   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    482   codegen()->DoTest(this);
    483 }
    484 
    485 
    486 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
    487 }
    488 
    489 
    490 void FullCodeGenerator::AccumulatorValueContext::Plug(
    491     Heap::RootListIndex index) const {
    492   __ LoadRoot(result_register(), index);
    493 }
    494 
    495 
    496 void FullCodeGenerator::StackValueContext::Plug(
    497     Heap::RootListIndex index) const {
    498   __ LoadRoot(result_register(), index);
    499   __ push(result_register());
    500 }
    501 
    502 
    503 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
    504   codegen()->PrepareForBailoutBeforeSplit(condition(),
    505                                           true,
    506                                           true_label_,
    507                                           false_label_);
    508   if (index == Heap::kUndefinedValueRootIndex ||
    509       index == Heap::kNullValueRootIndex ||
    510       index == Heap::kFalseValueRootIndex) {
    511     if (false_label_ != fall_through_) __ Branch(false_label_);
    512   } else if (index == Heap::kTrueValueRootIndex) {
    513     if (true_label_ != fall_through_) __ Branch(true_label_);
    514   } else {
    515     __ LoadRoot(result_register(), index);
    516     codegen()->DoTest(this);
    517   }
    518 }
    519 
    520 
    521 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
    522 }
    523 
    524 
    525 void FullCodeGenerator::AccumulatorValueContext::Plug(
    526     Handle<Object> lit) const {
    527   __ li(result_register(), Operand(lit));
    528 }
    529 
    530 
    531 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
    532   // Immediates cannot be pushed directly.
    533   __ li(result_register(), Operand(lit));
    534   __ push(result_register());
    535 }
    536 
    537 
    538 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
    539   codegen()->PrepareForBailoutBeforeSplit(condition(),
    540                                           true,
    541                                           true_label_,
    542                                           false_label_);
    543   ASSERT(!lit->IsUndetectableObject());  // There are no undetectable literals.
    544   if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
    545     if (false_label_ != fall_through_) __ Branch(false_label_);
    546   } else if (lit->IsTrue() || lit->IsJSObject()) {
    547     if (true_label_ != fall_through_) __ Branch(true_label_);
    548   } else if (lit->IsString()) {
    549     if (String::cast(*lit)->length() == 0) {
    550       if (false_label_ != fall_through_) __ Branch(false_label_);
    551     } else {
    552       if (true_label_ != fall_through_) __ Branch(true_label_);
    553     }
    554   } else if (lit->IsSmi()) {
    555     if (Smi::cast(*lit)->value() == 0) {
    556       if (false_label_ != fall_through_) __ Branch(false_label_);
    557     } else {
    558       if (true_label_ != fall_through_) __ Branch(true_label_);
    559     }
    560   } else {
    561     // For simplicity we always test the accumulator register.
    562     __ li(result_register(), Operand(lit));
    563     codegen()->DoTest(this);
    564   }
    565 }
    566 
    567 
    568 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
    569                                                    Register reg) const {
    570   ASSERT(count > 0);
    571   __ Drop(count);
    572 }
    573 
    574 
    575 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
    576     int count,
    577     Register reg) const {
    578   ASSERT(count > 0);
    579   __ Drop(count);
    580   __ Move(result_register(), reg);
    581 }
    582 
    583 
    584 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
    585                                                        Register reg) const {
    586   ASSERT(count > 0);
    587   if (count > 1) __ Drop(count - 1);
    588   __ sw(reg, MemOperand(sp, 0));
    589 }
    590 
    591 
    592 void FullCodeGenerator::TestContext::DropAndPlug(int count,
    593                                                  Register reg) const {
    594   ASSERT(count > 0);
    595   // For simplicity we always test the accumulator register.
    596   __ Drop(count);
    597   __ Move(result_register(), reg);
    598   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    599   codegen()->DoTest(this);
    600 }
    601 
    602 
    603 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
    604                                             Label* materialize_false) const {
    605   ASSERT(materialize_true == materialize_false);
    606   __ bind(materialize_true);
    607 }
    608 
    609 
    610 void FullCodeGenerator::AccumulatorValueContext::Plug(
    611     Label* materialize_true,
    612     Label* materialize_false) const {
    613   Label done;
    614   __ bind(materialize_true);
    615   __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
    616   __ Branch(&done);
    617   __ bind(materialize_false);
    618   __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
    619   __ bind(&done);
    620 }
    621 
    622 
    623 void FullCodeGenerator::StackValueContext::Plug(
    624     Label* materialize_true,
    625     Label* materialize_false) const {
    626   Label done;
    627   __ bind(materialize_true);
    628   __ LoadRoot(at, Heap::kTrueValueRootIndex);
    629   __ push(at);
    630   __ Branch(&done);
    631   __ bind(materialize_false);
    632   __ LoadRoot(at, Heap::kFalseValueRootIndex);
    633   __ push(at);
    634   __ bind(&done);
    635 }
    636 
    637 
    638 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
    639                                           Label* materialize_false) const {
    640   ASSERT(materialize_true == true_label_);
    641   ASSERT(materialize_false == false_label_);
    642 }
    643 
    644 
    645 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
    646 }
    647 
    648 
    649 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
    650   Heap::RootListIndex value_root_index =
    651       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
    652   __ LoadRoot(result_register(), value_root_index);
    653 }
    654 
    655 
    656 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
    657   Heap::RootListIndex value_root_index =
    658       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
    659   __ LoadRoot(at, value_root_index);
    660   __ push(at);
    661 }
    662 
    663 
    664 void FullCodeGenerator::TestContext::Plug(bool flag) const {
    665   codegen()->PrepareForBailoutBeforeSplit(condition(),
    666                                           true,
    667                                           true_label_,
    668                                           false_label_);
    669   if (flag) {
    670     if (true_label_ != fall_through_) __ Branch(true_label_);
    671   } else {
    672     if (false_label_ != fall_through_) __ Branch(false_label_);
    673   }
    674 }
    675 
    676 
    677 void FullCodeGenerator::DoTest(Expression* condition,
    678                                Label* if_true,
    679                                Label* if_false,
    680                                Label* fall_through) {
    681   __ mov(a0, result_register());
    682   Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
    683   CallIC(ic, RelocInfo::CODE_TARGET, condition->test_id());
    684   __ mov(at, zero_reg);
    685   Split(ne, v0, Operand(at), if_true, if_false, fall_through);
    686 }
    687 
    688 
    689 void FullCodeGenerator::Split(Condition cc,
    690                               Register lhs,
    691                               const Operand&  rhs,
    692                               Label* if_true,
    693                               Label* if_false,
    694                               Label* fall_through) {
    695   if (if_false == fall_through) {
    696     __ Branch(if_true, cc, lhs, rhs);
    697   } else if (if_true == fall_through) {
    698     __ Branch(if_false, NegateCondition(cc), lhs, rhs);
    699   } else {
    700     __ Branch(if_true, cc, lhs, rhs);
    701     __ Branch(if_false);
    702   }
    703 }
    704 
    705 
    706 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
    707   ASSERT(var->IsStackAllocated());
    708   // Offset is negative because higher indexes are at lower addresses.
    709   int offset = -var->index() * kPointerSize;
    710   // Adjust by a (parameter or local) base offset.
    711   if (var->IsParameter()) {
    712     offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
    713   } else {
    714     offset += JavaScriptFrameConstants::kLocal0Offset;
    715   }
    716   return MemOperand(fp, offset);
    717 }
    718 
    719 
    720 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
    721   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    722   if (var->IsContextSlot()) {
    723     int context_chain_length = scope()->ContextChainLength(var->scope());
    724     __ LoadContext(scratch, context_chain_length);
    725     return ContextOperand(scratch, var->index());
    726   } else {
    727     return StackOperand(var);
    728   }
    729 }
    730 
    731 
    732 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
    733   // Use destination as scratch.
    734   MemOperand location = VarOperand(var, dest);
    735   __ lw(dest, location);
    736 }
    737 
    738 
    739 void FullCodeGenerator::SetVar(Variable* var,
    740                                Register src,
    741                                Register scratch0,
    742                                Register scratch1) {
    743   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    744   ASSERT(!scratch0.is(src));
    745   ASSERT(!scratch0.is(scratch1));
    746   ASSERT(!scratch1.is(src));
    747   MemOperand location = VarOperand(var, scratch0);
    748   __ sw(src, location);
    749   // Emit the write barrier code if the location is in the heap.
    750   if (var->IsContextSlot()) {
    751     __ RecordWriteContextSlot(scratch0,
    752                               location.offset(),
    753                               src,
    754                               scratch1,
    755                               kRAHasBeenSaved,
    756                               kDontSaveFPRegs);
    757   }
    758 }
    759 
    760 
    761 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
    762                                                      bool should_normalize,
    763                                                      Label* if_true,
    764                                                      Label* if_false) {
    765   // Only prepare for bailouts before splits if we're in a test
    766   // context. Otherwise, we let the Visit function deal with the
    767   // preparation to avoid preparing with the same AST id twice.
    768   if (!context()->IsTest() || !info_->IsOptimizable()) return;
    769 
    770   Label skip;
    771   if (should_normalize) __ Branch(&skip);
    772   PrepareForBailout(expr, TOS_REG);
    773   if (should_normalize) {
    774     __ LoadRoot(t0, Heap::kTrueValueRootIndex);
    775     Split(eq, a0, Operand(t0), if_true, if_false, NULL);
    776     __ bind(&skip);
    777   }
    778 }
    779 
    780 
    781 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
    782   // The variable in the declaration always resides in the current function
    783   // context.
    784   ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
    785   if (generate_debug_code_) {
    786     // Check that we're not inside a with or catch context.
    787     __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset));
    788     __ LoadRoot(t0, Heap::kWithContextMapRootIndex);
    789     __ Check(ne, kDeclarationInWithContext,
    790         a1, Operand(t0));
    791     __ LoadRoot(t0, Heap::kCatchContextMapRootIndex);
    792     __ Check(ne, kDeclarationInCatchContext,
    793         a1, Operand(t0));
    794   }
    795 }
    796 
    797 
    798 void FullCodeGenerator::VisitVariableDeclaration(
    799     VariableDeclaration* declaration) {
    800   // If it was not possible to allocate the variable at compile time, we
    801   // need to "declare" it at runtime to make sure it actually exists in the
    802   // local context.
    803   VariableProxy* proxy = declaration->proxy();
    804   VariableMode mode = declaration->mode();
    805   Variable* variable = proxy->var();
    806   bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
    807   switch (variable->location()) {
    808     case Variable::UNALLOCATED:
    809       globals_->Add(variable->name(), zone());
    810       globals_->Add(variable->binding_needs_init()
    811                         ? isolate()->factory()->the_hole_value()
    812                         : isolate()->factory()->undefined_value(),
    813                     zone());
    814       break;
    815 
    816     case Variable::PARAMETER:
    817     case Variable::LOCAL:
    818       if (hole_init) {
    819         Comment cmnt(masm_, "[ VariableDeclaration");
    820         __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
    821         __ sw(t0, StackOperand(variable));
    822       }
    823       break;
    824 
    825       case Variable::CONTEXT:
    826       if (hole_init) {
    827         Comment cmnt(masm_, "[ VariableDeclaration");
    828         EmitDebugCheckDeclarationContext(variable);
    829           __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
    830           __ sw(at, ContextOperand(cp, variable->index()));
    831           // No write barrier since the_hole_value is in old space.
    832           PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
    833       }
    834       break;
    835 
    836     case Variable::LOOKUP: {
    837       Comment cmnt(masm_, "[ VariableDeclaration");
    838       __ li(a2, Operand(variable->name()));
    839       // Declaration nodes are always introduced in one of four modes.
    840       ASSERT(IsDeclaredVariableMode(mode));
    841       PropertyAttributes attr =
    842           IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
    843       __ li(a1, Operand(Smi::FromInt(attr)));
    844       // Push initial value, if any.
    845       // Note: For variables we must not push an initial value (such as
    846       // 'undefined') because we may have a (legal) redeclaration and we
    847       // must not destroy the current value.
    848       if (hole_init) {
    849         __ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
    850         __ Push(cp, a2, a1, a0);
    851       } else {
    852         ASSERT(Smi::FromInt(0) == 0);
    853         __ mov(a0, zero_reg);  // Smi::FromInt(0) indicates no initial value.
    854         __ Push(cp, a2, a1, a0);
    855       }
    856       __ CallRuntime(Runtime::kDeclareContextSlot, 4);
    857       break;
    858     }
    859   }
    860 }
    861 
    862 
    863 void FullCodeGenerator::VisitFunctionDeclaration(
    864     FunctionDeclaration* declaration) {
    865   VariableProxy* proxy = declaration->proxy();
    866   Variable* variable = proxy->var();
    867   switch (variable->location()) {
    868     case Variable::UNALLOCATED: {
    869       globals_->Add(variable->name(), zone());
    870       Handle<SharedFunctionInfo> function =
    871           Compiler::BuildFunctionInfo(declaration->fun(), script());
    872       // Check for stack-overflow exception.
    873       if (function.is_null()) return SetStackOverflow();
    874       globals_->Add(function, zone());
    875       break;
    876     }
    877 
    878     case Variable::PARAMETER:
    879     case Variable::LOCAL: {
    880       Comment cmnt(masm_, "[ FunctionDeclaration");
    881       VisitForAccumulatorValue(declaration->fun());
    882       __ sw(result_register(), StackOperand(variable));
    883       break;
    884     }
    885 
    886     case Variable::CONTEXT: {
    887       Comment cmnt(masm_, "[ FunctionDeclaration");
    888       EmitDebugCheckDeclarationContext(variable);
    889       VisitForAccumulatorValue(declaration->fun());
    890       __ sw(result_register(), ContextOperand(cp, variable->index()));
    891       int offset = Context::SlotOffset(variable->index());
    892       // We know that we have written a function, which is not a smi.
    893       __ RecordWriteContextSlot(cp,
    894                                 offset,
    895                                 result_register(),
    896                                 a2,
    897                                 kRAHasBeenSaved,
    898                                 kDontSaveFPRegs,
    899                                 EMIT_REMEMBERED_SET,
    900                                 OMIT_SMI_CHECK);
    901       PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
    902       break;
    903     }
    904 
    905     case Variable::LOOKUP: {
    906       Comment cmnt(masm_, "[ FunctionDeclaration");
    907       __ li(a2, Operand(variable->name()));
    908       __ li(a1, Operand(Smi::FromInt(NONE)));
    909       __ Push(cp, a2, a1);
    910       // Push initial value for function declaration.
    911       VisitForStackValue(declaration->fun());
    912       __ CallRuntime(Runtime::kDeclareContextSlot, 4);
    913       break;
    914     }
    915   }
    916 }
    917 
    918 
    919 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
    920   Variable* variable = declaration->proxy()->var();
    921   ASSERT(variable->location() == Variable::CONTEXT);
    922   ASSERT(variable->interface()->IsFrozen());
    923 
    924   Comment cmnt(masm_, "[ ModuleDeclaration");
    925   EmitDebugCheckDeclarationContext(variable);
    926 
    927   // Load instance object.
    928   __ LoadContext(a1, scope_->ContextChainLength(scope_->GlobalScope()));
    929   __ lw(a1, ContextOperand(a1, variable->interface()->Index()));
    930   __ lw(a1, ContextOperand(a1, Context::EXTENSION_INDEX));
    931 
    932   // Assign it.
    933   __ sw(a1, ContextOperand(cp, variable->index()));
    934   // We know that we have written a module, which is not a smi.
    935   __ RecordWriteContextSlot(cp,
    936                             Context::SlotOffset(variable->index()),
    937                             a1,
    938                             a3,
    939                             kRAHasBeenSaved,
    940                             kDontSaveFPRegs,
    941                             EMIT_REMEMBERED_SET,
    942                             OMIT_SMI_CHECK);
    943   PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
    944 
    945   // Traverse into body.
    946   Visit(declaration->module());
    947 }
    948 
    949 
    950 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
    951   VariableProxy* proxy = declaration->proxy();
    952   Variable* variable = proxy->var();
    953   switch (variable->location()) {
    954     case Variable::UNALLOCATED:
    955       // TODO(rossberg)
    956       break;
    957 
    958     case Variable::CONTEXT: {
    959       Comment cmnt(masm_, "[ ImportDeclaration");
    960       EmitDebugCheckDeclarationContext(variable);
    961       // TODO(rossberg)
    962       break;
    963     }
    964 
    965     case Variable::PARAMETER:
    966     case Variable::LOCAL:
    967     case Variable::LOOKUP:
    968       UNREACHABLE();
    969   }
    970 }
    971 
    972 
    973 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
    974   // TODO(rossberg)
    975 }
    976 
    977 
    978 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
    979   // Call the runtime to declare the globals.
    980   // The context is the first argument.
    981   __ li(a1, Operand(pairs));
    982   __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
    983   __ Push(cp, a1, a0);
    984   __ CallRuntime(Runtime::kDeclareGlobals, 3);
    985   // Return value is ignored.
    986 }
    987 
    988 
    989 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
    990   // Call the runtime to declare the modules.
    991   __ Push(descriptions);
    992   __ CallRuntime(Runtime::kDeclareModules, 1);
    993   // Return value is ignored.
    994 }
    995 
    996 
    997 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
    998   Comment cmnt(masm_, "[ SwitchStatement");
    999   Breakable nested_statement(this, stmt);
   1000   SetStatementPosition(stmt);
   1001 
   1002   // Keep the switch value on the stack until a case matches.
   1003   VisitForStackValue(stmt->tag());
   1004   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
   1005 
   1006   ZoneList<CaseClause*>* clauses = stmt->cases();
   1007   CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
   1008 
   1009   Label next_test;  // Recycled for each test.
   1010   // Compile all the tests with branches to their bodies.
   1011   for (int i = 0; i < clauses->length(); i++) {
   1012     CaseClause* clause = clauses->at(i);
   1013     clause->body_target()->Unuse();
   1014 
   1015     // The default is not a test, but remember it as final fall through.
   1016     if (clause->is_default()) {
   1017       default_clause = clause;
   1018       continue;
   1019     }
   1020 
   1021     Comment cmnt(masm_, "[ Case comparison");
   1022     __ bind(&next_test);
   1023     next_test.Unuse();
   1024 
   1025     // Compile the label expression.
   1026     VisitForAccumulatorValue(clause->label());
   1027     __ mov(a0, result_register());  // CompareStub requires args in a0, a1.
   1028 
   1029     // Perform the comparison as if via '==='.
   1030     __ lw(a1, MemOperand(sp, 0));  // Switch value.
   1031     bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
   1032     JumpPatchSite patch_site(masm_);
   1033     if (inline_smi_code) {
   1034       Label slow_case;
   1035       __ or_(a2, a1, a0);
   1036       patch_site.EmitJumpIfNotSmi(a2, &slow_case);
   1037 
   1038       __ Branch(&next_test, ne, a1, Operand(a0));
   1039       __ Drop(1);  // Switch value is no longer needed.
   1040       __ Branch(clause->body_target());
   1041 
   1042       __ bind(&slow_case);
   1043     }
   1044 
   1045     // Record position before stub call for type feedback.
   1046     SetSourcePosition(clause->position());
   1047     Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT);
   1048     CallIC(ic, RelocInfo::CODE_TARGET, clause->CompareId());
   1049     patch_site.EmitPatchInfo();
   1050 
   1051     __ Branch(&next_test, ne, v0, Operand(zero_reg));
   1052     __ Drop(1);  // Switch value is no longer needed.
   1053     __ Branch(clause->body_target());
   1054   }
   1055 
   1056   // Discard the test value and jump to the default if present, otherwise to
   1057   // the end of the statement.
   1058   __ bind(&next_test);
   1059   __ Drop(1);  // Switch value is no longer needed.
   1060   if (default_clause == NULL) {
   1061     __ Branch(nested_statement.break_label());
   1062   } else {
   1063     __ Branch(default_clause->body_target());
   1064   }
   1065 
   1066   // Compile all the case bodies.
   1067   for (int i = 0; i < clauses->length(); i++) {
   1068     Comment cmnt(masm_, "[ Case body");
   1069     CaseClause* clause = clauses->at(i);
   1070     __ bind(clause->body_target());
   1071     PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
   1072     VisitStatements(clause->statements());
   1073   }
   1074 
   1075   __ bind(nested_statement.break_label());
   1076   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1077 }
   1078 
   1079 
   1080 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
   1081   Comment cmnt(masm_, "[ ForInStatement");
   1082   SetStatementPosition(stmt);
   1083 
   1084   Label loop, exit;
   1085   ForIn loop_statement(this, stmt);
   1086   increment_loop_depth();
   1087 
   1088   // Get the object to enumerate over. If the object is null or undefined, skip
   1089   // over the loop.  See ECMA-262 version 5, section 12.6.4.
   1090   VisitForAccumulatorValue(stmt->enumerable());
   1091   __ mov(a0, result_register());  // Result as param to InvokeBuiltin below.
   1092   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   1093   __ Branch(&exit, eq, a0, Operand(at));
   1094   Register null_value = t1;
   1095   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
   1096   __ Branch(&exit, eq, a0, Operand(null_value));
   1097   PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
   1098   __ mov(a0, v0);
   1099   // Convert the object to a JS object.
   1100   Label convert, done_convert;
   1101   __ JumpIfSmi(a0, &convert);
   1102   __ GetObjectType(a0, a1, a1);
   1103   __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
   1104   __ bind(&convert);
   1105   __ push(a0);
   1106   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1107   __ mov(a0, v0);
   1108   __ bind(&done_convert);
   1109   __ push(a0);
   1110 
   1111   // Check for proxies.
   1112   Label call_runtime;
   1113   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   1114   __ GetObjectType(a0, a1, a1);
   1115   __ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE));
   1116 
   1117   // Check cache validity in generated code. This is a fast case for
   1118   // the JSObject::IsSimpleEnum cache validity checks. If we cannot
   1119   // guarantee cache validity, call the runtime system to check cache
   1120   // validity or get the property names in a fixed array.
   1121   __ CheckEnumCache(null_value, &call_runtime);
   1122 
   1123   // The enum cache is valid.  Load the map of the object being
   1124   // iterated over and use the cache for the iteration.
   1125   Label use_cache;
   1126   __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
   1127   __ Branch(&use_cache);
   1128 
   1129   // Get the set of properties to enumerate.
   1130   __ bind(&call_runtime);
   1131   __ push(a0);  // Duplicate the enumerable object on the stack.
   1132   __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
   1133 
   1134   // If we got a map from the runtime call, we can do a fast
   1135   // modification check. Otherwise, we got a fixed array, and we have
   1136   // to do a slow check.
   1137   Label fixed_array;
   1138   __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
   1139   __ LoadRoot(at, Heap::kMetaMapRootIndex);
   1140   __ Branch(&fixed_array, ne, a2, Operand(at));
   1141 
   1142   // We got a map in register v0. Get the enumeration cache from it.
   1143   Label no_descriptors;
   1144   __ bind(&use_cache);
   1145 
   1146   __ EnumLength(a1, v0);
   1147   __ Branch(&no_descriptors, eq, a1, Operand(Smi::FromInt(0)));
   1148 
   1149   __ LoadInstanceDescriptors(v0, a2);
   1150   __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheOffset));
   1151   __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheBridgeCacheOffset));
   1152 
   1153   // Set up the four remaining stack slots.
   1154   __ push(v0);  // Map.
   1155   __ li(a0, Operand(Smi::FromInt(0)));
   1156   // Push enumeration cache, enumeration cache length (as smi) and zero.
   1157   __ Push(a2, a1, a0);
   1158   __ jmp(&loop);
   1159 
   1160   __ bind(&no_descriptors);
   1161   __ Drop(1);
   1162   __ jmp(&exit);
   1163 
   1164   // We got a fixed array in register v0. Iterate through that.
   1165   Label non_proxy;
   1166   __ bind(&fixed_array);
   1167 
   1168   Handle<Cell> cell = isolate()->factory()->NewCell(
   1169       Handle<Object>(Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker),
   1170                      isolate()));
   1171   RecordTypeFeedbackCell(stmt->ForInFeedbackId(), cell);
   1172   __ LoadHeapObject(a1, cell);
   1173   __ li(a2, Operand(Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker)));
   1174   __ sw(a2, FieldMemOperand(a1, Cell::kValueOffset));
   1175 
   1176   __ li(a1, Operand(Smi::FromInt(1)));  // Smi indicates slow check
   1177   __ lw(a2, MemOperand(sp, 0 * kPointerSize));  // Get enumerated object
   1178   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   1179   __ GetObjectType(a2, a3, a3);
   1180   __ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE));
   1181   __ li(a1, Operand(Smi::FromInt(0)));  // Zero indicates proxy
   1182   __ bind(&non_proxy);
   1183   __ Push(a1, v0);  // Smi and array
   1184   __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
   1185   __ li(a0, Operand(Smi::FromInt(0)));
   1186   __ Push(a1, a0);  // Fixed array length (as smi) and initial index.
   1187 
   1188   // Generate code for doing the condition check.
   1189   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
   1190   __ bind(&loop);
   1191   // Load the current count to a0, load the length to a1.
   1192   __ lw(a0, MemOperand(sp, 0 * kPointerSize));
   1193   __ lw(a1, MemOperand(sp, 1 * kPointerSize));
   1194   __ Branch(loop_statement.break_label(), hs, a0, Operand(a1));
   1195 
   1196   // Get the current entry of the array into register a3.
   1197   __ lw(a2, MemOperand(sp, 2 * kPointerSize));
   1198   __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   1199   __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
   1200   __ addu(t0, a2, t0);  // Array base + scaled (smi) index.
   1201   __ lw(a3, MemOperand(t0));  // Current entry.
   1202 
   1203   // Get the expected map from the stack or a smi in the
   1204   // permanent slow case into register a2.
   1205   __ lw(a2, MemOperand(sp, 3 * kPointerSize));
   1206 
   1207   // Check if the expected map still matches that of the enumerable.
   1208   // If not, we may have to filter the key.
   1209   Label update_each;
   1210   __ lw(a1, MemOperand(sp, 4 * kPointerSize));
   1211   __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset));
   1212   __ Branch(&update_each, eq, t0, Operand(a2));
   1213 
   1214   // For proxies, no filtering is done.
   1215   // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
   1216   ASSERT_EQ(Smi::FromInt(0), 0);
   1217   __ Branch(&update_each, eq, a2, Operand(zero_reg));
   1218 
   1219   // Convert the entry to a string or (smi) 0 if it isn't a property
   1220   // any more. If the property has been removed while iterating, we
   1221   // just skip it.
   1222   __ push(a1);  // Enumerable.
   1223   __ push(a3);  // Current entry.
   1224   __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
   1225   __ mov(a3, result_register());
   1226   __ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg));
   1227 
   1228   // Update the 'each' property or variable from the possibly filtered
   1229   // entry in register a3.
   1230   __ bind(&update_each);
   1231   __ mov(result_register(), a3);
   1232   // Perform the assignment as if via '='.
   1233   { EffectContext context(this);
   1234     EmitAssignment(stmt->each());
   1235   }
   1236 
   1237   // Generate code for the body of the loop.
   1238   Visit(stmt->body());
   1239 
   1240   // Generate code for the going to the next element by incrementing
   1241   // the index (smi) stored on top of the stack.
   1242   __ bind(loop_statement.continue_label());
   1243   __ pop(a0);
   1244   __ Addu(a0, a0, Operand(Smi::FromInt(1)));
   1245   __ push(a0);
   1246 
   1247   EmitBackEdgeBookkeeping(stmt, &loop);
   1248   __ Branch(&loop);
   1249 
   1250   // Remove the pointers stored on the stack.
   1251   __ bind(loop_statement.break_label());
   1252   __ Drop(5);
   1253 
   1254   // Exit and decrement the loop depth.
   1255   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1256   __ bind(&exit);
   1257   decrement_loop_depth();
   1258 }
   1259 
   1260 
   1261 void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
   1262   Comment cmnt(masm_, "[ ForOfStatement");
   1263   SetStatementPosition(stmt);
   1264 
   1265   Iteration loop_statement(this, stmt);
   1266   increment_loop_depth();
   1267 
   1268   // var iterator = iterable[@@iterator]()
   1269   VisitForAccumulatorValue(stmt->assign_iterator());
   1270   __ mov(a0, v0);
   1271 
   1272   // As with for-in, skip the loop if the iterator is null or undefined.
   1273   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   1274   __ Branch(loop_statement.break_label(), eq, a0, Operand(at));
   1275   __ LoadRoot(at, Heap::kNullValueRootIndex);
   1276   __ Branch(loop_statement.break_label(), eq, a0, Operand(at));
   1277 
   1278   // Convert the iterator to a JS object.
   1279   Label convert, done_convert;
   1280   __ JumpIfSmi(a0, &convert);
   1281   __ GetObjectType(a0, a1, a1);
   1282   __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
   1283   __ bind(&convert);
   1284   __ push(a0);
   1285   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1286   __ mov(a0, v0);
   1287   __ bind(&done_convert);
   1288   __ push(a0);
   1289 
   1290   // Loop entry.
   1291   __ bind(loop_statement.continue_label());
   1292 
   1293   // result = iterator.next()
   1294   VisitForEffect(stmt->next_result());
   1295 
   1296   // if (result.done) break;
   1297   Label result_not_done;
   1298   VisitForControl(stmt->result_done(),
   1299                   loop_statement.break_label(),
   1300                   &result_not_done,
   1301                   &result_not_done);
   1302   __ bind(&result_not_done);
   1303 
   1304   // each = result.value
   1305   VisitForEffect(stmt->assign_each());
   1306 
   1307   // Generate code for the body of the loop.
   1308   Visit(stmt->body());
   1309 
   1310   // Check stack before looping.
   1311   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
   1312   EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
   1313   __ jmp(loop_statement.continue_label());
   1314 
   1315   // Exit and decrement the loop depth.
   1316   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1317   __ bind(loop_statement.break_label());
   1318   decrement_loop_depth();
   1319 }
   1320 
   1321 
   1322 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
   1323                                        bool pretenure) {
   1324   // Use the fast case closure allocation code that allocates in new
   1325   // space for nested functions that don't need literals cloning. If
   1326   // we're running with the --always-opt or the --prepare-always-opt
   1327   // flag, we need to use the runtime function so that the new function
   1328   // we are creating here gets a chance to have its code optimized and
   1329   // doesn't just get a copy of the existing unoptimized code.
   1330   if (!FLAG_always_opt &&
   1331       !FLAG_prepare_always_opt &&
   1332       !pretenure &&
   1333       scope()->is_function_scope() &&
   1334       info->num_literals() == 0) {
   1335     FastNewClosureStub stub(info->language_mode(), info->is_generator());
   1336     __ li(a0, Operand(info));
   1337     __ push(a0);
   1338     __ CallStub(&stub);
   1339   } else {
   1340     __ li(a0, Operand(info));
   1341     __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex
   1342                               : Heap::kFalseValueRootIndex);
   1343     __ Push(cp, a0, a1);
   1344     __ CallRuntime(Runtime::kNewClosure, 3);
   1345   }
   1346   context()->Plug(v0);
   1347 }
   1348 
   1349 
   1350 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
   1351   Comment cmnt(masm_, "[ VariableProxy");
   1352   EmitVariableLoad(expr);
   1353 }
   1354 
   1355 
   1356 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
   1357                                                       TypeofState typeof_state,
   1358                                                       Label* slow) {
   1359   Register current = cp;
   1360   Register next = a1;
   1361   Register temp = a2;
   1362 
   1363   Scope* s = scope();
   1364   while (s != NULL) {
   1365     if (s->num_heap_slots() > 0) {
   1366       if (s->calls_non_strict_eval()) {
   1367         // Check that extension is NULL.
   1368         __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX));
   1369         __ Branch(slow, ne, temp, Operand(zero_reg));
   1370       }
   1371       // Load next context in chain.
   1372       __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX));
   1373       // Walk the rest of the chain without clobbering cp.
   1374       current = next;
   1375     }
   1376     // If no outer scope calls eval, we do not need to check more
   1377     // context extensions.
   1378     if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break;
   1379     s = s->outer_scope();
   1380   }
   1381 
   1382   if (s->is_eval_scope()) {
   1383     Label loop, fast;
   1384     if (!current.is(next)) {
   1385       __ Move(next, current);
   1386     }
   1387     __ bind(&loop);
   1388     // Terminate at native context.
   1389     __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset));
   1390     __ LoadRoot(t0, Heap::kNativeContextMapRootIndex);
   1391     __ Branch(&fast, eq, temp, Operand(t0));
   1392     // Check that extension is NULL.
   1393     __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX));
   1394     __ Branch(slow, ne, temp, Operand(zero_reg));
   1395     // Load next context in chain.
   1396     __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX));
   1397     __ Branch(&loop);
   1398     __ bind(&fast);
   1399   }
   1400 
   1401   __ lw(a0, GlobalObjectOperand());
   1402   __ li(a2, Operand(var->name()));
   1403   RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
   1404       ? RelocInfo::CODE_TARGET
   1405       : RelocInfo::CODE_TARGET_CONTEXT;
   1406   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   1407   CallIC(ic, mode);
   1408 }
   1409 
   1410 
   1411 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
   1412                                                                 Label* slow) {
   1413   ASSERT(var->IsContextSlot());
   1414   Register context = cp;
   1415   Register next = a3;
   1416   Register temp = t0;
   1417 
   1418   for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
   1419     if (s->num_heap_slots() > 0) {
   1420       if (s->calls_non_strict_eval()) {
   1421         // Check that extension is NULL.
   1422         __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
   1423         __ Branch(slow, ne, temp, Operand(zero_reg));
   1424       }
   1425       __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX));
   1426       // Walk the rest of the chain without clobbering cp.
   1427       context = next;
   1428     }
   1429   }
   1430   // Check that last extension is NULL.
   1431   __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
   1432   __ Branch(slow, ne, temp, Operand(zero_reg));
   1433 
   1434   // This function is used only for loads, not stores, so it's safe to
   1435   // return an cp-based operand (the write barrier cannot be allowed to
   1436   // destroy the cp register).
   1437   return ContextOperand(context, var->index());
   1438 }
   1439 
   1440 
   1441 void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
   1442                                                   TypeofState typeof_state,
   1443                                                   Label* slow,
   1444                                                   Label* done) {
   1445   // Generate fast-case code for variables that might be shadowed by
   1446   // eval-introduced variables.  Eval is used a lot without
   1447   // introducing variables.  In those cases, we do not want to
   1448   // perform a runtime call for all variables in the scope
   1449   // containing the eval.
   1450   if (var->mode() == DYNAMIC_GLOBAL) {
   1451     EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
   1452     __ Branch(done);
   1453   } else if (var->mode() == DYNAMIC_LOCAL) {
   1454     Variable* local = var->local_if_not_shadowed();
   1455     __ lw(v0, ContextSlotOperandCheckExtensions(local, slow));
   1456     if (local->mode() == LET ||
   1457         local->mode() == CONST ||
   1458         local->mode() == CONST_HARMONY) {
   1459       __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   1460       __ subu(at, v0, at);  // Sub as compare: at == 0 on eq.
   1461       if (local->mode() == CONST) {
   1462         __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
   1463         __ Movz(v0, a0, at);  // Conditional move: return Undefined if TheHole.
   1464       } else {  // LET || CONST_HARMONY
   1465         __ Branch(done, ne, at, Operand(zero_reg));
   1466         __ li(a0, Operand(var->name()));
   1467         __ push(a0);
   1468         __ CallRuntime(Runtime::kThrowReferenceError, 1);
   1469       }
   1470     }
   1471     __ Branch(done);
   1472   }
   1473 }
   1474 
   1475 
   1476 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
   1477   // Record position before possible IC call.
   1478   SetSourcePosition(proxy->position());
   1479   Variable* var = proxy->var();
   1480 
   1481   // Three cases: global variables, lookup variables, and all other types of
   1482   // variables.
   1483   switch (var->location()) {
   1484     case Variable::UNALLOCATED: {
   1485       Comment cmnt(masm_, "Global variable");
   1486       // Use inline caching. Variable name is passed in a2 and the global
   1487       // object (receiver) in a0.
   1488       __ lw(a0, GlobalObjectOperand());
   1489       __ li(a2, Operand(var->name()));
   1490       Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   1491       CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
   1492       context()->Plug(v0);
   1493       break;
   1494     }
   1495 
   1496     case Variable::PARAMETER:
   1497     case Variable::LOCAL:
   1498     case Variable::CONTEXT: {
   1499       Comment cmnt(masm_, var->IsContextSlot()
   1500                               ? "Context variable"
   1501                               : "Stack variable");
   1502       if (var->binding_needs_init()) {
   1503         // var->scope() may be NULL when the proxy is located in eval code and
   1504         // refers to a potential outside binding. Currently those bindings are
   1505         // always looked up dynamically, i.e. in that case
   1506         //     var->location() == LOOKUP.
   1507         // always holds.
   1508         ASSERT(var->scope() != NULL);
   1509 
   1510         // Check if the binding really needs an initialization check. The check
   1511         // can be skipped in the following situation: we have a LET or CONST
   1512         // binding in harmony mode, both the Variable and the VariableProxy have
   1513         // the same declaration scope (i.e. they are both in global code, in the
   1514         // same function or in the same eval code) and the VariableProxy is in
   1515         // the source physically located after the initializer of the variable.
   1516         //
   1517         // We cannot skip any initialization checks for CONST in non-harmony
   1518         // mode because const variables may be declared but never initialized:
   1519         //   if (false) { const x; }; var y = x;
   1520         //
   1521         // The condition on the declaration scopes is a conservative check for
   1522         // nested functions that access a binding and are called before the
   1523         // binding is initialized:
   1524         //   function() { f(); let x = 1; function f() { x = 2; } }
   1525         //
   1526         bool skip_init_check;
   1527         if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
   1528           skip_init_check = false;
   1529         } else {
   1530           // Check that we always have valid source position.
   1531           ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
   1532           ASSERT(proxy->position() != RelocInfo::kNoPosition);
   1533           skip_init_check = var->mode() != CONST &&
   1534               var->initializer_position() < proxy->position();
   1535         }
   1536 
   1537         if (!skip_init_check) {
   1538           // Let and const need a read barrier.
   1539           GetVar(v0, var);
   1540           __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   1541           __ subu(at, v0, at);  // Sub as compare: at == 0 on eq.
   1542           if (var->mode() == LET || var->mode() == CONST_HARMONY) {
   1543             // Throw a reference error when using an uninitialized let/const
   1544             // binding in harmony mode.
   1545             Label done;
   1546             __ Branch(&done, ne, at, Operand(zero_reg));
   1547             __ li(a0, Operand(var->name()));
   1548             __ push(a0);
   1549             __ CallRuntime(Runtime::kThrowReferenceError, 1);
   1550             __ bind(&done);
   1551           } else {
   1552             // Uninitalized const bindings outside of harmony mode are unholed.
   1553             ASSERT(var->mode() == CONST);
   1554             __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
   1555             __ Movz(v0, a0, at);  // Conditional move: Undefined if TheHole.
   1556           }
   1557           context()->Plug(v0);
   1558           break;
   1559         }
   1560       }
   1561       context()->Plug(var);
   1562       break;
   1563     }
   1564 
   1565     case Variable::LOOKUP: {
   1566       Label done, slow;
   1567       // Generate code for loading from variables potentially shadowed
   1568       // by eval-introduced variables.
   1569       EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
   1570       __ bind(&slow);
   1571       Comment cmnt(masm_, "Lookup variable");
   1572       __ li(a1, Operand(var->name()));
   1573       __ Push(cp, a1);  // Context and name.
   1574       __ CallRuntime(Runtime::kLoadContextSlot, 2);
   1575       __ bind(&done);
   1576       context()->Plug(v0);
   1577     }
   1578   }
   1579 }
   1580 
   1581 
   1582 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
   1583   Comment cmnt(masm_, "[ RegExpLiteral");
   1584   Label materialized;
   1585   // Registers will be used as follows:
   1586   // t1 = materialized value (RegExp literal)
   1587   // t0 = JS function, literals array
   1588   // a3 = literal index
   1589   // a2 = RegExp pattern
   1590   // a1 = RegExp flags
   1591   // a0 = RegExp literal clone
   1592   __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   1593   __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset));
   1594   int literal_offset =
   1595       FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
   1596   __ lw(t1, FieldMemOperand(t0, literal_offset));
   1597   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   1598   __ Branch(&materialized, ne, t1, Operand(at));
   1599 
   1600   // Create regexp literal using runtime function.
   1601   // Result will be in v0.
   1602   __ li(a3, Operand(Smi::FromInt(expr->literal_index())));
   1603   __ li(a2, Operand(expr->pattern()));
   1604   __ li(a1, Operand(expr->flags()));
   1605   __ Push(t0, a3, a2, a1);
   1606   __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
   1607   __ mov(t1, v0);
   1608 
   1609   __ bind(&materialized);
   1610   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   1611   Label allocated, runtime_allocate;
   1612   __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
   1613   __ jmp(&allocated);
   1614 
   1615   __ bind(&runtime_allocate);
   1616   __ push(t1);
   1617   __ li(a0, Operand(Smi::FromInt(size)));
   1618   __ push(a0);
   1619   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
   1620   __ pop(t1);
   1621 
   1622   __ bind(&allocated);
   1623 
   1624   // After this, registers are used as follows:
   1625   // v0: Newly allocated regexp.
   1626   // t1: Materialized regexp.
   1627   // a2: temp.
   1628   __ CopyFields(v0, t1, a2.bit(), size / kPointerSize);
   1629   context()->Plug(v0);
   1630 }
   1631 
   1632 
   1633 void FullCodeGenerator::EmitAccessor(Expression* expression) {
   1634   if (expression == NULL) {
   1635     __ LoadRoot(a1, Heap::kNullValueRootIndex);
   1636     __ push(a1);
   1637   } else {
   1638     VisitForStackValue(expression);
   1639   }
   1640 }
   1641 
   1642 
   1643 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
   1644   Comment cmnt(masm_, "[ ObjectLiteral");
   1645   Handle<FixedArray> constant_properties = expr->constant_properties();
   1646   __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   1647   __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
   1648   __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
   1649   __ li(a1, Operand(constant_properties));
   1650   int flags = expr->fast_elements()
   1651       ? ObjectLiteral::kFastElements
   1652       : ObjectLiteral::kNoFlags;
   1653   flags |= expr->has_function()
   1654       ? ObjectLiteral::kHasFunction
   1655       : ObjectLiteral::kNoFlags;
   1656   __ li(a0, Operand(Smi::FromInt(flags)));
   1657   int properties_count = constant_properties->length() / 2;
   1658   if ((FLAG_track_double_fields && expr->may_store_doubles()) ||
   1659       expr->depth() > 1) {
   1660     __ Push(a3, a2, a1, a0);
   1661     __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
   1662   } else if (Serializer::enabled() || flags != ObjectLiteral::kFastElements ||
   1663       properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
   1664     __ Push(a3, a2, a1, a0);
   1665     __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
   1666   } else {
   1667     FastCloneShallowObjectStub stub(properties_count);
   1668     __ CallStub(&stub);
   1669   }
   1670 
   1671   // If result_saved is true the result is on top of the stack.  If
   1672   // result_saved is false the result is in v0.
   1673   bool result_saved = false;
   1674 
   1675   // Mark all computed expressions that are bound to a key that
   1676   // is shadowed by a later occurrence of the same key. For the
   1677   // marked expressions, no store code is emitted.
   1678   expr->CalculateEmitStore(zone());
   1679 
   1680   AccessorTable accessor_table(zone());
   1681   for (int i = 0; i < expr->properties()->length(); i++) {
   1682     ObjectLiteral::Property* property = expr->properties()->at(i);
   1683     if (property->IsCompileTimeValue()) continue;
   1684 
   1685     Literal* key = property->key();
   1686     Expression* value = property->value();
   1687     if (!result_saved) {
   1688       __ push(v0);  // Save result on stack.
   1689       result_saved = true;
   1690     }
   1691     switch (property->kind()) {
   1692       case ObjectLiteral::Property::CONSTANT:
   1693         UNREACHABLE();
   1694       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
   1695         ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
   1696         // Fall through.
   1697       case ObjectLiteral::Property::COMPUTED:
   1698         if (key->value()->IsInternalizedString()) {
   1699           if (property->emit_store()) {
   1700             VisitForAccumulatorValue(value);
   1701             __ mov(a0, result_register());
   1702             __ li(a2, Operand(key->value()));
   1703             __ lw(a1, MemOperand(sp));
   1704             Handle<Code> ic = is_classic_mode()
   1705                 ? isolate()->builtins()->StoreIC_Initialize()
   1706                 : isolate()->builtins()->StoreIC_Initialize_Strict();
   1707             CallIC(ic, RelocInfo::CODE_TARGET, key->LiteralFeedbackId());
   1708             PrepareForBailoutForId(key->id(), NO_REGISTERS);
   1709           } else {
   1710             VisitForEffect(value);
   1711           }
   1712           break;
   1713         }
   1714         // Duplicate receiver on stack.
   1715         __ lw(a0, MemOperand(sp));
   1716         __ push(a0);
   1717         VisitForStackValue(key);
   1718         VisitForStackValue(value);
   1719         if (property->emit_store()) {
   1720           __ li(a0, Operand(Smi::FromInt(NONE)));  // PropertyAttributes.
   1721           __ push(a0);
   1722           __ CallRuntime(Runtime::kSetProperty, 4);
   1723         } else {
   1724           __ Drop(3);
   1725         }
   1726         break;
   1727       case ObjectLiteral::Property::PROTOTYPE:
   1728         // Duplicate receiver on stack.
   1729         __ lw(a0, MemOperand(sp));
   1730         __ push(a0);
   1731         VisitForStackValue(value);
   1732         if (property->emit_store()) {
   1733           __ CallRuntime(Runtime::kSetPrototype, 2);
   1734         } else {
   1735           __ Drop(2);
   1736         }
   1737         break;
   1738       case ObjectLiteral::Property::GETTER:
   1739         accessor_table.lookup(key)->second->getter = value;
   1740         break;
   1741       case ObjectLiteral::Property::SETTER:
   1742         accessor_table.lookup(key)->second->setter = value;
   1743         break;
   1744     }
   1745   }
   1746 
   1747   // Emit code to define accessors, using only a single call to the runtime for
   1748   // each pair of corresponding getters and setters.
   1749   for (AccessorTable::Iterator it = accessor_table.begin();
   1750        it != accessor_table.end();
   1751        ++it) {
   1752     __ lw(a0, MemOperand(sp));  // Duplicate receiver.
   1753     __ push(a0);
   1754     VisitForStackValue(it->first);
   1755     EmitAccessor(it->second->getter);
   1756     EmitAccessor(it->second->setter);
   1757     __ li(a0, Operand(Smi::FromInt(NONE)));
   1758     __ push(a0);
   1759     __ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
   1760   }
   1761 
   1762   if (expr->has_function()) {
   1763     ASSERT(result_saved);
   1764     __ lw(a0, MemOperand(sp));
   1765     __ push(a0);
   1766     __ CallRuntime(Runtime::kToFastProperties, 1);
   1767   }
   1768 
   1769   if (result_saved) {
   1770     context()->PlugTOS();
   1771   } else {
   1772     context()->Plug(v0);
   1773   }
   1774 }
   1775 
   1776 
   1777 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
   1778   Comment cmnt(masm_, "[ ArrayLiteral");
   1779 
   1780   ZoneList<Expression*>* subexprs = expr->values();
   1781   int length = subexprs->length();
   1782 
   1783   Handle<FixedArray> constant_elements = expr->constant_elements();
   1784   ASSERT_EQ(2, constant_elements->length());
   1785   ElementsKind constant_elements_kind =
   1786       static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
   1787   bool has_fast_elements =
   1788       IsFastObjectElementsKind(constant_elements_kind);
   1789   Handle<FixedArrayBase> constant_elements_values(
   1790       FixedArrayBase::cast(constant_elements->get(1)));
   1791 
   1792   __ mov(a0, result_register());
   1793   __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   1794   __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
   1795   __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
   1796   __ li(a1, Operand(constant_elements));
   1797   if (has_fast_elements && constant_elements_values->map() ==
   1798       isolate()->heap()->fixed_cow_array_map()) {
   1799     FastCloneShallowArrayStub stub(
   1800         FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS,
   1801         DONT_TRACK_ALLOCATION_SITE,
   1802         length);
   1803     __ CallStub(&stub);
   1804     __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(),
   1805         1, a1, a2);
   1806   } else if (expr->depth() > 1) {
   1807     __ Push(a3, a2, a1);
   1808     __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
   1809   } else if (Serializer::enabled() ||
   1810       length > FastCloneShallowArrayStub::kMaximumClonedLength) {
   1811     __ Push(a3, a2, a1);
   1812     __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
   1813   } else {
   1814     ASSERT(IsFastSmiOrObjectElementsKind(constant_elements_kind) ||
   1815            FLAG_smi_only_arrays);
   1816     FastCloneShallowArrayStub::Mode mode =
   1817         FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
   1818     AllocationSiteMode allocation_site_mode = FLAG_track_allocation_sites
   1819         ? TRACK_ALLOCATION_SITE : DONT_TRACK_ALLOCATION_SITE;
   1820 
   1821     if (has_fast_elements) {
   1822       mode = FastCloneShallowArrayStub::CLONE_ELEMENTS;
   1823       allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
   1824     }
   1825 
   1826     FastCloneShallowArrayStub stub(mode, allocation_site_mode, length);
   1827     __ CallStub(&stub);
   1828   }
   1829 
   1830   bool result_saved = false;  // Is the result saved to the stack?
   1831 
   1832   // Emit code to evaluate all the non-constant subexpressions and to store
   1833   // them into the newly cloned array.
   1834   for (int i = 0; i < length; i++) {
   1835     Expression* subexpr = subexprs->at(i);
   1836     // If the subexpression is a literal or a simple materialized literal it
   1837     // is already set in the cloned array.
   1838     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
   1839 
   1840     if (!result_saved) {
   1841       __ push(v0);  // array literal
   1842       __ Push(Smi::FromInt(expr->literal_index()));
   1843       result_saved = true;
   1844     }
   1845 
   1846     VisitForAccumulatorValue(subexpr);
   1847 
   1848     if (IsFastObjectElementsKind(constant_elements_kind)) {
   1849       int offset = FixedArray::kHeaderSize + (i * kPointerSize);
   1850       __ lw(t2, MemOperand(sp, kPointerSize));  // Copy of array literal.
   1851       __ lw(a1, FieldMemOperand(t2, JSObject::kElementsOffset));
   1852       __ sw(result_register(), FieldMemOperand(a1, offset));
   1853       // Update the write barrier for the array store.
   1854       __ RecordWriteField(a1, offset, result_register(), a2,
   1855                           kRAHasBeenSaved, kDontSaveFPRegs,
   1856                           EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
   1857     } else {
   1858       __ li(a3, Operand(Smi::FromInt(i)));
   1859       __ mov(a0, result_register());
   1860       StoreArrayLiteralElementStub stub;
   1861       __ CallStub(&stub);
   1862     }
   1863 
   1864     PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
   1865   }
   1866   if (result_saved) {
   1867     __ Pop();  // literal index
   1868     context()->PlugTOS();
   1869   } else {
   1870     context()->Plug(v0);
   1871   }
   1872 }
   1873 
   1874 
   1875 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
   1876   Comment cmnt(masm_, "[ Assignment");
   1877   // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
   1878   // on the left-hand side.
   1879   if (!expr->target()->IsValidLeftHandSide()) {
   1880     VisitForEffect(expr->target());
   1881     return;
   1882   }
   1883 
   1884   // Left-hand side can only be a property, a global or a (parameter or local)
   1885   // slot.
   1886   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   1887   LhsKind assign_type = VARIABLE;
   1888   Property* property = expr->target()->AsProperty();
   1889   if (property != NULL) {
   1890     assign_type = (property->key()->IsPropertyName())
   1891         ? NAMED_PROPERTY
   1892         : KEYED_PROPERTY;
   1893   }
   1894 
   1895   // Evaluate LHS expression.
   1896   switch (assign_type) {
   1897     case VARIABLE:
   1898       // Nothing to do here.
   1899       break;
   1900     case NAMED_PROPERTY:
   1901       if (expr->is_compound()) {
   1902         // We need the receiver both on the stack and in the accumulator.
   1903         VisitForAccumulatorValue(property->obj());
   1904         __ push(result_register());
   1905       } else {
   1906         VisitForStackValue(property->obj());
   1907       }
   1908       break;
   1909     case KEYED_PROPERTY:
   1910       // We need the key and receiver on both the stack and in v0 and a1.
   1911       if (expr->is_compound()) {
   1912         VisitForStackValue(property->obj());
   1913         VisitForAccumulatorValue(property->key());
   1914         __ lw(a1, MemOperand(sp, 0));
   1915         __ push(v0);
   1916       } else {
   1917         VisitForStackValue(property->obj());
   1918         VisitForStackValue(property->key());
   1919       }
   1920       break;
   1921   }
   1922 
   1923   // For compound assignments we need another deoptimization point after the
   1924   // variable/property load.
   1925   if (expr->is_compound()) {
   1926     { AccumulatorValueContext context(this);
   1927       switch (assign_type) {
   1928         case VARIABLE:
   1929           EmitVariableLoad(expr->target()->AsVariableProxy());
   1930           PrepareForBailout(expr->target(), TOS_REG);
   1931           break;
   1932         case NAMED_PROPERTY:
   1933           EmitNamedPropertyLoad(property);
   1934           PrepareForBailoutForId(property->LoadId(), TOS_REG);
   1935           break;
   1936         case KEYED_PROPERTY:
   1937           EmitKeyedPropertyLoad(property);
   1938           PrepareForBailoutForId(property->LoadId(), TOS_REG);
   1939           break;
   1940       }
   1941     }
   1942 
   1943     Token::Value op = expr->binary_op();
   1944     __ push(v0);  // Left operand goes on the stack.
   1945     VisitForAccumulatorValue(expr->value());
   1946 
   1947     OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
   1948         ? OVERWRITE_RIGHT
   1949         : NO_OVERWRITE;
   1950     SetSourcePosition(expr->position() + 1);
   1951     AccumulatorValueContext context(this);
   1952     if (ShouldInlineSmiCase(op)) {
   1953       EmitInlineSmiBinaryOp(expr->binary_operation(),
   1954                             op,
   1955                             mode,
   1956                             expr->target(),
   1957                             expr->value());
   1958     } else {
   1959       EmitBinaryOp(expr->binary_operation(), op, mode);
   1960     }
   1961 
   1962     // Deoptimization point in case the binary operation may have side effects.
   1963     PrepareForBailout(expr->binary_operation(), TOS_REG);
   1964   } else {
   1965     VisitForAccumulatorValue(expr->value());
   1966   }
   1967 
   1968   // Record source position before possible IC call.
   1969   SetSourcePosition(expr->position());
   1970 
   1971   // Store the value.
   1972   switch (assign_type) {
   1973     case VARIABLE:
   1974       EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
   1975                              expr->op());
   1976       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   1977       context()->Plug(v0);
   1978       break;
   1979     case NAMED_PROPERTY:
   1980       EmitNamedPropertyAssignment(expr);
   1981       break;
   1982     case KEYED_PROPERTY:
   1983       EmitKeyedPropertyAssignment(expr);
   1984       break;
   1985   }
   1986 }
   1987 
   1988 
   1989 void FullCodeGenerator::VisitYield(Yield* expr) {
   1990   Comment cmnt(masm_, "[ Yield");
   1991   // Evaluate yielded value first; the initial iterator definition depends on
   1992   // this.  It stays on the stack while we update the iterator.
   1993   VisitForStackValue(expr->expression());
   1994 
   1995   switch (expr->yield_kind()) {
   1996     case Yield::SUSPEND:
   1997       // Pop value from top-of-stack slot; box result into result register.
   1998       EmitCreateIteratorResult(false);
   1999       __ push(result_register());
   2000       // Fall through.
   2001     case Yield::INITIAL: {
   2002       Label suspend, continuation, post_runtime, resume;
   2003 
   2004       __ jmp(&suspend);
   2005 
   2006       __ bind(&continuation);
   2007       __ jmp(&resume);
   2008 
   2009       __ bind(&suspend);
   2010       VisitForAccumulatorValue(expr->generator_object());
   2011       ASSERT(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
   2012       __ li(a1, Operand(Smi::FromInt(continuation.pos())));
   2013       __ sw(a1, FieldMemOperand(v0, JSGeneratorObject::kContinuationOffset));
   2014       __ sw(cp, FieldMemOperand(v0, JSGeneratorObject::kContextOffset));
   2015       __ mov(a1, cp);
   2016       __ RecordWriteField(v0, JSGeneratorObject::kContextOffset, a1, a2,
   2017                           kRAHasBeenSaved, kDontSaveFPRegs);
   2018       __ Addu(a1, fp, Operand(StandardFrameConstants::kExpressionsOffset));
   2019       __ Branch(&post_runtime, eq, sp, Operand(a1));
   2020       __ push(v0);  // generator object
   2021       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
   2022       __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2023       __ bind(&post_runtime);
   2024       __ pop(result_register());
   2025       EmitReturnSequence();
   2026 
   2027       __ bind(&resume);
   2028       context()->Plug(result_register());
   2029       break;
   2030     }
   2031 
   2032     case Yield::FINAL: {
   2033       VisitForAccumulatorValue(expr->generator_object());
   2034       __ li(a1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
   2035       __ sw(a1, FieldMemOperand(result_register(),
   2036                                 JSGeneratorObject::kContinuationOffset));
   2037       // Pop value from top-of-stack slot, box result into result register.
   2038       EmitCreateIteratorResult(true);
   2039       EmitUnwindBeforeReturn();
   2040       EmitReturnSequence();
   2041       break;
   2042     }
   2043 
   2044     case Yield::DELEGATING: {
   2045       VisitForStackValue(expr->generator_object());
   2046 
   2047       // Initial stack layout is as follows:
   2048       // [sp + 1 * kPointerSize] iter
   2049       // [sp + 0 * kPointerSize] g
   2050 
   2051       Label l_catch, l_try, l_suspend, l_continuation, l_resume;
   2052       Label l_next, l_call, l_loop;
   2053       // Initial send value is undefined.
   2054       __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
   2055       __ Branch(&l_next);
   2056 
   2057       // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
   2058       __ bind(&l_catch);
   2059       __ mov(a0, v0);
   2060       handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
   2061       __ LoadRoot(a2, Heap::kthrow_stringRootIndex);     // "throw"
   2062       __ lw(a3, MemOperand(sp, 1 * kPointerSize));       // iter
   2063       __ push(a3);                                       // iter
   2064       __ push(a0);                                       // exception
   2065       __ jmp(&l_call);
   2066 
   2067       // try { received = %yield result }
   2068       // Shuffle the received result above a try handler and yield it without
   2069       // re-boxing.
   2070       __ bind(&l_try);
   2071       __ pop(a0);                                        // result
   2072       __ PushTryHandler(StackHandler::CATCH, expr->index());
   2073       const int handler_size = StackHandlerConstants::kSize;
   2074       __ push(a0);                                       // result
   2075       __ jmp(&l_suspend);
   2076       __ bind(&l_continuation);
   2077       __ mov(a0, v0);
   2078       __ jmp(&l_resume);
   2079       __ bind(&l_suspend);
   2080       const int generator_object_depth = kPointerSize + handler_size;
   2081       __ lw(a0, MemOperand(sp, generator_object_depth));
   2082       __ push(a0);                                       // g
   2083       ASSERT(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
   2084       __ li(a1, Operand(Smi::FromInt(l_continuation.pos())));
   2085       __ sw(a1, FieldMemOperand(a0, JSGeneratorObject::kContinuationOffset));
   2086       __ sw(cp, FieldMemOperand(a0, JSGeneratorObject::kContextOffset));
   2087       __ mov(a1, cp);
   2088       __ RecordWriteField(a0, JSGeneratorObject::kContextOffset, a1, a2,
   2089                           kRAHasBeenSaved, kDontSaveFPRegs);
   2090       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
   2091       __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2092       __ pop(v0);                                        // result
   2093       EmitReturnSequence();
   2094       __ mov(a0, v0);
   2095       __ bind(&l_resume);                                // received in a0
   2096       __ PopTryHandler();
   2097 
   2098       // receiver = iter; f = 'next'; arg = received;
   2099       __ bind(&l_next);
   2100       __ LoadRoot(a2, Heap::knext_stringRootIndex);      // "next"
   2101       __ lw(a3, MemOperand(sp, 1 * kPointerSize));       // iter
   2102       __ push(a3);                                       // iter
   2103       __ push(a0);                                       // received
   2104 
   2105       // result = receiver[f](arg);
   2106       __ bind(&l_call);
   2107       Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(1);
   2108       CallIC(ic);
   2109       __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2110 
   2111       // if (!result.done) goto l_try;
   2112       __ bind(&l_loop);
   2113       __ mov(a0, v0);
   2114       __ push(a0);                                       // save result
   2115       __ LoadRoot(a2, Heap::kdone_stringRootIndex);      // "done"
   2116       Handle<Code> done_ic = isolate()->builtins()->LoadIC_Initialize();
   2117       CallIC(done_ic);                                   // result.done in v0
   2118       __ mov(a0, v0);
   2119       Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
   2120       CallIC(bool_ic);
   2121       __ Branch(&l_try, eq, v0, Operand(zero_reg));
   2122 
   2123       // result.value
   2124       __ pop(a0);                                        // result
   2125       __ LoadRoot(a2, Heap::kvalue_stringRootIndex);     // "value"
   2126       Handle<Code> value_ic = isolate()->builtins()->LoadIC_Initialize();
   2127       CallIC(value_ic);                                  // result.value in v0
   2128       context()->DropAndPlug(2, v0);                     // drop iter and g
   2129       break;
   2130     }
   2131   }
   2132 }
   2133 
   2134 
   2135 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
   2136     Expression *value,
   2137     JSGeneratorObject::ResumeMode resume_mode) {
   2138   // The value stays in a0, and is ultimately read by the resumed generator, as
   2139   // if the CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it.  a1
   2140   // will hold the generator object until the activation has been resumed.
   2141   VisitForStackValue(generator);
   2142   VisitForAccumulatorValue(value);
   2143   __ pop(a1);
   2144 
   2145   // Check generator state.
   2146   Label wrong_state, done;
   2147   __ lw(a3, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset));
   2148   STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting <= 0);
   2149   STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed <= 0);
   2150   __ Branch(&wrong_state, le, a3, Operand(zero_reg));
   2151 
   2152   // Load suspended function and context.
   2153   __ lw(cp, FieldMemOperand(a1, JSGeneratorObject::kContextOffset));
   2154   __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
   2155 
   2156   // Load receiver and store as the first argument.
   2157   __ lw(a2, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
   2158   __ push(a2);
   2159 
   2160   // Push holes for the rest of the arguments to the generator function.
   2161   __ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset));
   2162   __ lw(a3,
   2163         FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
   2164   __ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
   2165   Label push_argument_holes, push_frame;
   2166   __ bind(&push_argument_holes);
   2167   __ Subu(a3, a3, Operand(Smi::FromInt(1)));
   2168   __ Branch(&push_frame, lt, a3, Operand(zero_reg));
   2169   __ push(a2);
   2170   __ jmp(&push_argument_holes);
   2171 
   2172   // Enter a new JavaScript frame, and initialize its slots as they were when
   2173   // the generator was suspended.
   2174   Label resume_frame;
   2175   __ bind(&push_frame);
   2176   __ Call(&resume_frame);
   2177   __ jmp(&done);
   2178   __ bind(&resume_frame);
   2179   __ push(ra);  // Return address.
   2180   __ push(fp);  // Caller's frame pointer.
   2181   __ mov(fp, sp);
   2182   __ push(cp);  // Callee's context.
   2183   __ push(t0);  // Callee's JS Function.
   2184 
   2185   // Load the operand stack size.
   2186   __ lw(a3, FieldMemOperand(a1, JSGeneratorObject::kOperandStackOffset));
   2187   __ lw(a3, FieldMemOperand(a3, FixedArray::kLengthOffset));
   2188   __ SmiUntag(a3);
   2189 
   2190   // If we are sending a value and there is no operand stack, we can jump back
   2191   // in directly.
   2192   if (resume_mode == JSGeneratorObject::NEXT) {
   2193     Label slow_resume;
   2194     __ Branch(&slow_resume, ne, a3, Operand(zero_reg));
   2195     __ lw(a3, FieldMemOperand(t0, JSFunction::kCodeEntryOffset));
   2196     __ lw(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset));
   2197     __ SmiUntag(a2);
   2198     __ Addu(a3, a3, Operand(a2));
   2199     __ li(a2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
   2200     __ sw(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset));
   2201     __ Jump(a3);
   2202     __ bind(&slow_resume);
   2203   }
   2204 
   2205   // Otherwise, we push holes for the operand stack and call the runtime to fix
   2206   // up the stack and the handlers.
   2207   Label push_operand_holes, call_resume;
   2208   __ bind(&push_operand_holes);
   2209   __ Subu(a3, a3, Operand(1));
   2210   __ Branch(&call_resume, lt, a3, Operand(zero_reg));
   2211   __ push(a2);
   2212   __ Branch(&push_operand_holes);
   2213   __ bind(&call_resume);
   2214   __ push(a1);
   2215   __ push(result_register());
   2216   __ Push(Smi::FromInt(resume_mode));
   2217   __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
   2218   // Not reached: the runtime call returns elsewhere.
   2219   __ stop("not-reached");
   2220 
   2221   // Throw error if we attempt to operate on a running generator.
   2222   __ bind(&wrong_state);
   2223   __ push(a1);
   2224   __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
   2225 
   2226   __ bind(&done);
   2227   context()->Plug(result_register());
   2228 }
   2229 
   2230 
   2231 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
   2232   Label gc_required;
   2233   Label allocated;
   2234 
   2235   Handle<Map> map(isolate()->native_context()->generator_result_map());
   2236 
   2237   __ Allocate(map->instance_size(), v0, a2, a3, &gc_required, TAG_OBJECT);
   2238   __ jmp(&allocated);
   2239 
   2240   __ bind(&gc_required);
   2241   __ Push(Smi::FromInt(map->instance_size()));
   2242   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
   2243   __ lw(context_register(),
   2244         MemOperand(fp, StandardFrameConstants::kContextOffset));
   2245 
   2246   __ bind(&allocated);
   2247   __ li(a1, Operand(map));
   2248   __ pop(a2);
   2249   __ li(a3, Operand(isolate()->factory()->ToBoolean(done)));
   2250   __ li(t0, Operand(isolate()->factory()->empty_fixed_array()));
   2251   ASSERT_EQ(map->instance_size(), 5 * kPointerSize);
   2252   __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
   2253   __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   2254   __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
   2255   __ sw(a2,
   2256         FieldMemOperand(v0, JSGeneratorObject::kResultValuePropertyOffset));
   2257   __ sw(a3,
   2258         FieldMemOperand(v0, JSGeneratorObject::kResultDonePropertyOffset));
   2259 
   2260   // Only the value field needs a write barrier, as the other values are in the
   2261   // root set.
   2262   __ RecordWriteField(v0, JSGeneratorObject::kResultValuePropertyOffset,
   2263                       a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);
   2264 }
   2265 
   2266 
   2267 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
   2268   SetSourcePosition(prop->position());
   2269   Literal* key = prop->key()->AsLiteral();
   2270   __ mov(a0, result_register());
   2271   __ li(a2, Operand(key->value()));
   2272   // Call load IC. It has arguments receiver and property name a0 and a2.
   2273   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   2274   CallIC(ic, RelocInfo::CODE_TARGET, prop->PropertyFeedbackId());
   2275 }
   2276 
   2277 
   2278 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
   2279   SetSourcePosition(prop->position());
   2280   __ mov(a0, result_register());
   2281   // Call keyed load IC. It has arguments key and receiver in a0 and a1.
   2282   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
   2283   CallIC(ic, RelocInfo::CODE_TARGET, prop->PropertyFeedbackId());
   2284 }
   2285 
   2286 
   2287 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
   2288                                               Token::Value op,
   2289                                               OverwriteMode mode,
   2290                                               Expression* left_expr,
   2291                                               Expression* right_expr) {
   2292   Label done, smi_case, stub_call;
   2293 
   2294   Register scratch1 = a2;
   2295   Register scratch2 = a3;
   2296 
   2297   // Get the arguments.
   2298   Register left = a1;
   2299   Register right = a0;
   2300   __ pop(left);
   2301   __ mov(a0, result_register());
   2302 
   2303   // Perform combined smi check on both operands.
   2304   __ Or(scratch1, left, Operand(right));
   2305   STATIC_ASSERT(kSmiTag == 0);
   2306   JumpPatchSite patch_site(masm_);
   2307   patch_site.EmitJumpIfSmi(scratch1, &smi_case);
   2308 
   2309   __ bind(&stub_call);
   2310   BinaryOpStub stub(op, mode);
   2311   CallIC(stub.GetCode(isolate()), RelocInfo::CODE_TARGET,
   2312          expr->BinaryOperationFeedbackId());
   2313   patch_site.EmitPatchInfo();
   2314   __ jmp(&done);
   2315 
   2316   __ bind(&smi_case);
   2317   // Smi case. This code works the same way as the smi-smi case in the type
   2318   // recording binary operation stub, see
   2319   // BinaryOpStub::GenerateSmiSmiOperation for comments.
   2320   switch (op) {
   2321     case Token::SAR:
   2322       __ Branch(&stub_call);
   2323       __ GetLeastBitsFromSmi(scratch1, right, 5);
   2324       __ srav(right, left, scratch1);
   2325       __ And(v0, right, Operand(~kSmiTagMask));
   2326       break;
   2327     case Token::SHL: {
   2328       __ Branch(&stub_call);
   2329       __ SmiUntag(scratch1, left);
   2330       __ GetLeastBitsFromSmi(scratch2, right, 5);
   2331       __ sllv(scratch1, scratch1, scratch2);
   2332       __ Addu(scratch2, scratch1, Operand(0x40000000));
   2333       __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
   2334       __ SmiTag(v0, scratch1);
   2335       break;
   2336     }
   2337     case Token::SHR: {
   2338       __ Branch(&stub_call);
   2339       __ SmiUntag(scratch1, left);
   2340       __ GetLeastBitsFromSmi(scratch2, right, 5);
   2341       __ srlv(scratch1, scratch1, scratch2);
   2342       __ And(scratch2, scratch1, 0xc0000000);
   2343       __ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
   2344       __ SmiTag(v0, scratch1);
   2345       break;
   2346     }
   2347     case Token::ADD:
   2348       __ AdduAndCheckForOverflow(v0, left, right, scratch1);
   2349       __ BranchOnOverflow(&stub_call, scratch1);
   2350       break;
   2351     case Token::SUB:
   2352       __ SubuAndCheckForOverflow(v0, left, right, scratch1);
   2353       __ BranchOnOverflow(&stub_call, scratch1);
   2354       break;
   2355     case Token::MUL: {
   2356       __ SmiUntag(scratch1, right);
   2357       __ Mult(left, scratch1);
   2358       __ mflo(scratch1);
   2359       __ mfhi(scratch2);
   2360       __ sra(scratch1, scratch1, 31);
   2361       __ Branch(&stub_call, ne, scratch1, Operand(scratch2));
   2362       __ mflo(v0);
   2363       __ Branch(&done, ne, v0, Operand(zero_reg));
   2364       __ Addu(scratch2, right, left);
   2365       __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
   2366       ASSERT(Smi::FromInt(0) == 0);
   2367       __ mov(v0, zero_reg);
   2368       break;
   2369     }
   2370     case Token::BIT_OR:
   2371       __ Or(v0, left, Operand(right));
   2372       break;
   2373     case Token::BIT_AND:
   2374       __ And(v0, left, Operand(right));
   2375       break;
   2376     case Token::BIT_XOR:
   2377       __ Xor(v0, left, Operand(right));
   2378       break;
   2379     default:
   2380       UNREACHABLE();
   2381   }
   2382 
   2383   __ bind(&done);
   2384   context()->Plug(v0);
   2385 }
   2386 
   2387 
   2388 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
   2389                                      Token::Value op,
   2390                                      OverwriteMode mode) {
   2391   __ mov(a0, result_register());
   2392   __ pop(a1);
   2393   BinaryOpStub stub(op, mode);
   2394   JumpPatchSite patch_site(masm_);    // unbound, signals no inlined smi code.
   2395   CallIC(stub.GetCode(isolate()), RelocInfo::CODE_TARGET,
   2396          expr->BinaryOperationFeedbackId());
   2397   patch_site.EmitPatchInfo();
   2398   context()->Plug(v0);
   2399 }
   2400 
   2401 
   2402 void FullCodeGenerator::EmitAssignment(Expression* expr) {
   2403   // Invalid left-hand sides are rewritten by the parser to have a 'throw
   2404   // ReferenceError' on the left-hand side.
   2405   if (!expr->IsValidLeftHandSide()) {
   2406     VisitForEffect(expr);
   2407     return;
   2408   }
   2409 
   2410   // Left-hand side can only be a property, a global or a (parameter or local)
   2411   // slot.
   2412   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   2413   LhsKind assign_type = VARIABLE;
   2414   Property* prop = expr->AsProperty();
   2415   if (prop != NULL) {
   2416     assign_type = (prop->key()->IsPropertyName())
   2417         ? NAMED_PROPERTY
   2418         : KEYED_PROPERTY;
   2419   }
   2420 
   2421   switch (assign_type) {
   2422     case VARIABLE: {
   2423       Variable* var = expr->AsVariableProxy()->var();
   2424       EffectContext context(this);
   2425       EmitVariableAssignment(var, Token::ASSIGN);
   2426       break;
   2427     }
   2428     case NAMED_PROPERTY: {
   2429       __ push(result_register());  // Preserve value.
   2430       VisitForAccumulatorValue(prop->obj());
   2431       __ mov(a1, result_register());
   2432       __ pop(a0);  // Restore value.
   2433       __ li(a2, Operand(prop->key()->AsLiteral()->value()));
   2434       Handle<Code> ic = is_classic_mode()
   2435           ? isolate()->builtins()->StoreIC_Initialize()
   2436           : isolate()->builtins()->StoreIC_Initialize_Strict();
   2437       CallIC(ic);
   2438       break;
   2439     }
   2440     case KEYED_PROPERTY: {
   2441       __ push(result_register());  // Preserve value.
   2442       VisitForStackValue(prop->obj());
   2443       VisitForAccumulatorValue(prop->key());
   2444       __ mov(a1, result_register());
   2445       __ pop(a2);
   2446       __ pop(a0);  // Restore value.
   2447       Handle<Code> ic = is_classic_mode()
   2448         ? isolate()->builtins()->KeyedStoreIC_Initialize()
   2449         : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   2450       CallIC(ic);
   2451       break;
   2452     }
   2453   }
   2454   context()->Plug(v0);
   2455 }
   2456 
   2457 
   2458 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
   2459                                                Token::Value op) {
   2460   if (var->IsUnallocated()) {
   2461     // Global var, const, or let.
   2462     __ mov(a0, result_register());
   2463     __ li(a2, Operand(var->name()));
   2464     __ lw(a1, GlobalObjectOperand());
   2465     Handle<Code> ic = is_classic_mode()
   2466         ? isolate()->builtins()->StoreIC_Initialize()
   2467         : isolate()->builtins()->StoreIC_Initialize_Strict();
   2468     CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
   2469 
   2470   } else if (op == Token::INIT_CONST) {
   2471     // Const initializers need a write barrier.
   2472     ASSERT(!var->IsParameter());  // No const parameters.
   2473     if (var->IsStackLocal()) {
   2474       Label skip;
   2475       __ lw(a1, StackOperand(var));
   2476       __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
   2477       __ Branch(&skip, ne, a1, Operand(t0));
   2478       __ sw(result_register(), StackOperand(var));
   2479       __ bind(&skip);
   2480     } else {
   2481       ASSERT(var->IsContextSlot() || var->IsLookupSlot());
   2482       // Like var declarations, const declarations are hoisted to function
   2483       // scope.  However, unlike var initializers, const initializers are
   2484       // able to drill a hole to that function context, even from inside a
   2485       // 'with' context.  We thus bypass the normal static scope lookup for
   2486       // var->IsContextSlot().
   2487       __ push(v0);
   2488       __ li(a0, Operand(var->name()));
   2489       __ Push(cp, a0);  // Context and name.
   2490       __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
   2491     }
   2492 
   2493   } else if (var->mode() == LET && op != Token::INIT_LET) {
   2494     // Non-initializing assignment to let variable needs a write barrier.
   2495     if (var->IsLookupSlot()) {
   2496       __ push(v0);  // Value.
   2497       __ li(a1, Operand(var->name()));
   2498       __ li(a0, Operand(Smi::FromInt(language_mode())));
   2499       __ Push(cp, a1, a0);  // Context, name, strict mode.
   2500       __ CallRuntime(Runtime::kStoreContextSlot, 4);
   2501     } else {
   2502       ASSERT(var->IsStackAllocated() || var->IsContextSlot());
   2503       Label assign;
   2504       MemOperand location = VarOperand(var, a1);
   2505       __ lw(a3, location);
   2506       __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
   2507       __ Branch(&assign, ne, a3, Operand(t0));
   2508       __ li(a3, Operand(var->name()));
   2509       __ push(a3);
   2510       __ CallRuntime(Runtime::kThrowReferenceError, 1);
   2511       // Perform the assignment.
   2512       __ bind(&assign);
   2513       __ sw(result_register(), location);
   2514       if (var->IsContextSlot()) {
   2515         // RecordWrite may destroy all its register arguments.
   2516         __ mov(a3, result_register());
   2517         int offset = Context::SlotOffset(var->index());
   2518         __ RecordWriteContextSlot(
   2519             a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
   2520       }
   2521     }
   2522 
   2523   } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) {
   2524     // Assignment to var or initializing assignment to let/const
   2525     // in harmony mode.
   2526     if (var->IsStackAllocated() || var->IsContextSlot()) {
   2527       MemOperand location = VarOperand(var, a1);
   2528       if (generate_debug_code_ && op == Token::INIT_LET) {
   2529         // Check for an uninitialized let binding.
   2530         __ lw(a2, location);
   2531         __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
   2532         __ Check(eq, kLetBindingReInitialization, a2, Operand(t0));
   2533       }
   2534       // Perform the assignment.
   2535       __ sw(v0, location);
   2536       if (var->IsContextSlot()) {
   2537         __ mov(a3, v0);
   2538         int offset = Context::SlotOffset(var->index());
   2539         __ RecordWriteContextSlot(
   2540             a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
   2541       }
   2542     } else {
   2543       ASSERT(var->IsLookupSlot());
   2544       __ push(v0);  // Value.
   2545       __ li(a1, Operand(var->name()));
   2546       __ li(a0, Operand(Smi::FromInt(language_mode())));
   2547       __ Push(cp, a1, a0);  // Context, name, strict mode.
   2548       __ CallRuntime(Runtime::kStoreContextSlot, 4);
   2549     }
   2550   }
   2551     // Non-initializing assignments to consts are ignored.
   2552 }
   2553 
   2554 
   2555 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
   2556   // Assignment to a property, using a named store IC.
   2557   Property* prop = expr->target()->AsProperty();
   2558   ASSERT(prop != NULL);
   2559   ASSERT(prop->key()->AsLiteral() != NULL);
   2560 
   2561   // Record source code position before IC call.
   2562   SetSourcePosition(expr->position());
   2563   __ mov(a0, result_register());  // Load the value.
   2564   __ li(a2, Operand(prop->key()->AsLiteral()->value()));
   2565   __ pop(a1);
   2566 
   2567   Handle<Code> ic = is_classic_mode()
   2568         ? isolate()->builtins()->StoreIC_Initialize()
   2569         : isolate()->builtins()->StoreIC_Initialize_Strict();
   2570   CallIC(ic, RelocInfo::CODE_TARGET, expr->AssignmentFeedbackId());
   2571 
   2572   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   2573   context()->Plug(v0);
   2574 }
   2575 
   2576 
   2577 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
   2578   // Assignment to a property, using a keyed store IC.
   2579 
   2580   // Record source code position before IC call.
   2581   SetSourcePosition(expr->position());
   2582   // Call keyed store IC.
   2583   // The arguments are:
   2584   // - a0 is the value,
   2585   // - a1 is the key,
   2586   // - a2 is the receiver.
   2587   __ mov(a0, result_register());
   2588   __ pop(a1);  // Key.
   2589   __ pop(a2);
   2590 
   2591   Handle<Code> ic = is_classic_mode()
   2592       ? isolate()->builtins()->KeyedStoreIC_Initialize()
   2593       : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   2594   CallIC(ic, RelocInfo::CODE_TARGET, expr->AssignmentFeedbackId());
   2595 
   2596   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   2597   context()->Plug(v0);
   2598 }
   2599 
   2600 
   2601 void FullCodeGenerator::VisitProperty(Property* expr) {
   2602   Comment cmnt(masm_, "[ Property");
   2603   Expression* key = expr->key();
   2604 
   2605   if (key->IsPropertyName()) {
   2606     VisitForAccumulatorValue(expr->obj());
   2607     EmitNamedPropertyLoad(expr);
   2608     PrepareForBailoutForId(expr->LoadId(), TOS_REG);
   2609     context()->Plug(v0);
   2610   } else {
   2611     VisitForStackValue(expr->obj());
   2612     VisitForAccumulatorValue(expr->key());
   2613     __ pop(a1);
   2614     EmitKeyedPropertyLoad(expr);
   2615     context()->Plug(v0);
   2616   }
   2617 }
   2618 
   2619 
   2620 void FullCodeGenerator::CallIC(Handle<Code> code,
   2621                                RelocInfo::Mode rmode,
   2622                                TypeFeedbackId id) {
   2623   ic_total_count_++;
   2624   __ Call(code, rmode, id);
   2625 }
   2626 
   2627 
   2628 void FullCodeGenerator::EmitCallWithIC(Call* expr,
   2629                                        Handle<Object> name,
   2630                                        RelocInfo::Mode mode) {
   2631   // Code common for calls using the IC.
   2632   ZoneList<Expression*>* args = expr->arguments();
   2633   int arg_count = args->length();
   2634   { PreservePositionScope scope(masm()->positions_recorder());
   2635     for (int i = 0; i < arg_count; i++) {
   2636       VisitForStackValue(args->at(i));
   2637     }
   2638     __ li(a2, Operand(name));
   2639   }
   2640   // Record source position for debugger.
   2641   SetSourcePosition(expr->position());
   2642   // Call the IC initialization code.
   2643   Handle<Code> ic =
   2644       isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
   2645   CallIC(ic, mode, expr->CallFeedbackId());
   2646   RecordJSReturnSite(expr);
   2647   // Restore context register.
   2648   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2649   context()->Plug(v0);
   2650 }
   2651 
   2652 
   2653 void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
   2654                                             Expression* key) {
   2655   // Load the key.
   2656   VisitForAccumulatorValue(key);
   2657 
   2658   // Swap the name of the function and the receiver on the stack to follow
   2659   // the calling convention for call ICs.
   2660   __ pop(a1);
   2661   __ push(v0);
   2662   __ push(a1);
   2663 
   2664   // Code common for calls using the IC.
   2665   ZoneList<Expression*>* args = expr->arguments();
   2666   int arg_count = args->length();
   2667   { PreservePositionScope scope(masm()->positions_recorder());
   2668     for (int i = 0; i < arg_count; i++) {
   2669       VisitForStackValue(args->at(i));
   2670     }
   2671   }
   2672   // Record source position for debugger.
   2673   SetSourcePosition(expr->position());
   2674   // Call the IC initialization code.
   2675   Handle<Code> ic =
   2676       isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count);
   2677   __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize));  // Key.
   2678   CallIC(ic, RelocInfo::CODE_TARGET, expr->CallFeedbackId());
   2679   RecordJSReturnSite(expr);
   2680   // Restore context register.
   2681   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2682   context()->DropAndPlug(1, v0);  // Drop the key still on the stack.
   2683 }
   2684 
   2685 
   2686 void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
   2687   // Code common for calls using the call stub.
   2688   ZoneList<Expression*>* args = expr->arguments();
   2689   int arg_count = args->length();
   2690   { PreservePositionScope scope(masm()->positions_recorder());
   2691     for (int i = 0; i < arg_count; i++) {
   2692       VisitForStackValue(args->at(i));
   2693     }
   2694   }
   2695   // Record source position for debugger.
   2696   SetSourcePosition(expr->position());
   2697 
   2698   // Record call targets.
   2699   flags = static_cast<CallFunctionFlags>(flags | RECORD_CALL_TARGET);
   2700   Handle<Object> uninitialized =
   2701       TypeFeedbackCells::UninitializedSentinel(isolate());
   2702   Handle<Cell> cell = isolate()->factory()->NewCell(uninitialized);
   2703   RecordTypeFeedbackCell(expr->CallFeedbackId(), cell);
   2704   __ li(a2, Operand(cell));
   2705 
   2706   CallFunctionStub stub(arg_count, flags);
   2707   __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
   2708   __ CallStub(&stub, expr->CallFeedbackId());
   2709   RecordJSReturnSite(expr);
   2710   // Restore context register.
   2711   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2712   context()->DropAndPlug(1, v0);
   2713 }
   2714 
   2715 
   2716 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
   2717   // Push copy of the first argument or undefined if it doesn't exist.
   2718   if (arg_count > 0) {
   2719     __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
   2720   } else {
   2721     __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
   2722   }
   2723   __ push(a1);
   2724 
   2725   // Push the receiver of the enclosing function.
   2726   int receiver_offset = 2 + info_->scope()->num_parameters();
   2727   __ lw(a1, MemOperand(fp, receiver_offset * kPointerSize));
   2728   __ push(a1);
   2729   // Push the language mode.
   2730   __ li(a1, Operand(Smi::FromInt(language_mode())));
   2731   __ push(a1);
   2732 
   2733   // Push the start position of the scope the calls resides in.
   2734   __ li(a1, Operand(Smi::FromInt(scope()->start_position())));
   2735   __ push(a1);
   2736 
   2737   // Do the runtime call.
   2738   __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
   2739 }
   2740 
   2741 
   2742 void FullCodeGenerator::VisitCall(Call* expr) {
   2743 #ifdef DEBUG
   2744   // We want to verify that RecordJSReturnSite gets called on all paths
   2745   // through this function.  Avoid early returns.
   2746   expr->return_is_recorded_ = false;
   2747 #endif
   2748 
   2749   Comment cmnt(masm_, "[ Call");
   2750   Expression* callee = expr->expression();
   2751   VariableProxy* proxy = callee->AsVariableProxy();
   2752   Property* property = callee->AsProperty();
   2753 
   2754   if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
   2755     // In a call to eval, we first call %ResolvePossiblyDirectEval to
   2756     // resolve the function we need to call and the receiver of the
   2757     // call.  Then we call the resolved function using the given
   2758     // arguments.
   2759     ZoneList<Expression*>* args = expr->arguments();
   2760     int arg_count = args->length();
   2761 
   2762     { PreservePositionScope pos_scope(masm()->positions_recorder());
   2763       VisitForStackValue(callee);
   2764       __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   2765       __ push(a2);  // Reserved receiver slot.
   2766 
   2767       // Push the arguments.
   2768       for (int i = 0; i < arg_count; i++) {
   2769         VisitForStackValue(args->at(i));
   2770       }
   2771 
   2772       // Push a copy of the function (found below the arguments) and
   2773       // resolve eval.
   2774       __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
   2775       __ push(a1);
   2776       EmitResolvePossiblyDirectEval(arg_count);
   2777 
   2778       // The runtime call returns a pair of values in v0 (function) and
   2779       // v1 (receiver). Touch up the stack with the right values.
   2780       __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
   2781       __ sw(v1, MemOperand(sp, arg_count * kPointerSize));
   2782     }
   2783     // Record source position for debugger.
   2784     SetSourcePosition(expr->position());
   2785     CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT);
   2786     __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
   2787     __ CallStub(&stub);
   2788     RecordJSReturnSite(expr);
   2789     // Restore context register.
   2790     __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2791     context()->DropAndPlug(1, v0);
   2792   } else if (proxy != NULL && proxy->var()->IsUnallocated()) {
   2793     // Push global object as receiver for the call IC.
   2794     __ lw(a0, GlobalObjectOperand());
   2795     __ push(a0);
   2796     EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT);
   2797   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
   2798     // Call to a lookup slot (dynamically introduced variable).
   2799     Label slow, done;
   2800 
   2801     { PreservePositionScope scope(masm()->positions_recorder());
   2802       // Generate code for loading from variables potentially shadowed
   2803       // by eval-introduced variables.
   2804       EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
   2805     }
   2806 
   2807     __ bind(&slow);
   2808     // Call the runtime to find the function to call (returned in v0)
   2809     // and the object holding it (returned in v1).
   2810     __ push(context_register());
   2811     __ li(a2, Operand(proxy->name()));
   2812     __ push(a2);
   2813     __ CallRuntime(Runtime::kLoadContextSlot, 2);
   2814     __ Push(v0, v1);  // Function, receiver.
   2815 
   2816     // If fast case code has been generated, emit code to push the
   2817     // function and receiver and have the slow path jump around this
   2818     // code.
   2819     if (done.is_linked()) {
   2820       Label call;
   2821       __ Branch(&call);
   2822       __ bind(&done);
   2823       // Push function.
   2824       __ push(v0);
   2825       // The receiver is implicitly the global receiver. Indicate this
   2826       // by passing the hole to the call function stub.
   2827       __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
   2828       __ push(a1);
   2829       __ bind(&call);
   2830     }
   2831 
   2832     // The receiver is either the global receiver or an object found
   2833     // by LoadContextSlot. That object could be the hole if the
   2834     // receiver is implicitly the global object.
   2835     EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT);
   2836   } else if (property != NULL) {
   2837     { PreservePositionScope scope(masm()->positions_recorder());
   2838       VisitForStackValue(property->obj());
   2839     }
   2840     if (property->key()->IsPropertyName()) {
   2841       EmitCallWithIC(expr,
   2842                      property->key()->AsLiteral()->value(),
   2843                      RelocInfo::CODE_TARGET);
   2844     } else {
   2845       EmitKeyedCallWithIC(expr, property->key());
   2846     }
   2847   } else {
   2848     // Call to an arbitrary expression not handled specially above.
   2849     { PreservePositionScope scope(masm()->positions_recorder());
   2850       VisitForStackValue(callee);
   2851     }
   2852     // Load global receiver object.
   2853     __ lw(a1, GlobalObjectOperand());
   2854     __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
   2855     __ push(a1);
   2856     // Emit function call.
   2857     EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
   2858   }
   2859 
   2860 #ifdef DEBUG
   2861   // RecordJSReturnSite should have been called.
   2862   ASSERT(expr->return_is_recorded_);
   2863 #endif
   2864 }
   2865 
   2866 
   2867 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
   2868   Comment cmnt(masm_, "[ CallNew");
   2869   // According to ECMA-262, section 11.2.2, page 44, the function
   2870   // expression in new calls must be evaluated before the
   2871   // arguments.
   2872 
   2873   // Push constructor on the stack.  If it's not a function it's used as
   2874   // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
   2875   // ignored.
   2876   VisitForStackValue(expr->expression());
   2877 
   2878   // Push the arguments ("left-to-right") on the stack.
   2879   ZoneList<Expression*>* args = expr->arguments();
   2880   int arg_count = args->length();
   2881   for (int i = 0; i < arg_count; i++) {
   2882     VisitForStackValue(args->at(i));
   2883   }
   2884 
   2885   // Call the construct call builtin that handles allocation and
   2886   // constructor invocation.
   2887   SetSourcePosition(expr->position());
   2888 
   2889   // Load function and argument count into a1 and a0.
   2890   __ li(a0, Operand(arg_count));
   2891   __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
   2892 
   2893   // Record call targets in unoptimized code.
   2894   Handle<Object> uninitialized =
   2895      TypeFeedbackCells::UninitializedSentinel(isolate());
   2896   Handle<Cell> cell = isolate()->factory()->NewCell(uninitialized);
   2897   RecordTypeFeedbackCell(expr->CallNewFeedbackId(), cell);
   2898   __ li(a2, Operand(cell));
   2899 
   2900   CallConstructStub stub(RECORD_CALL_TARGET);
   2901   __ Call(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL);
   2902   PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
   2903   context()->Plug(v0);
   2904 }
   2905 
   2906 
   2907 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
   2908   ZoneList<Expression*>* args = expr->arguments();
   2909   ASSERT(args->length() == 1);
   2910 
   2911   VisitForAccumulatorValue(args->at(0));
   2912 
   2913   Label materialize_true, materialize_false;
   2914   Label* if_true = NULL;
   2915   Label* if_false = NULL;
   2916   Label* fall_through = NULL;
   2917   context()->PrepareTest(&materialize_true, &materialize_false,
   2918                          &if_true, &if_false, &fall_through);
   2919 
   2920   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2921   __ And(t0, v0, Operand(kSmiTagMask));
   2922   Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through);
   2923 
   2924   context()->Plug(if_true, if_false);
   2925 }
   2926 
   2927 
   2928 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
   2929   ZoneList<Expression*>* args = expr->arguments();
   2930   ASSERT(args->length() == 1);
   2931 
   2932   VisitForAccumulatorValue(args->at(0));
   2933 
   2934   Label materialize_true, materialize_false;
   2935   Label* if_true = NULL;
   2936   Label* if_false = NULL;
   2937   Label* fall_through = NULL;
   2938   context()->PrepareTest(&materialize_true, &materialize_false,
   2939                          &if_true, &if_false, &fall_through);
   2940 
   2941   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2942   __ And(at, v0, Operand(kSmiTagMask | 0x80000000));
   2943   Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through);
   2944 
   2945   context()->Plug(if_true, if_false);
   2946 }
   2947 
   2948 
   2949 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
   2950   ZoneList<Expression*>* args = expr->arguments();
   2951   ASSERT(args->length() == 1);
   2952 
   2953   VisitForAccumulatorValue(args->at(0));
   2954 
   2955   Label materialize_true, materialize_false;
   2956   Label* if_true = NULL;
   2957   Label* if_false = NULL;
   2958   Label* fall_through = NULL;
   2959   context()->PrepareTest(&materialize_true, &materialize_false,
   2960                          &if_true, &if_false, &fall_through);
   2961 
   2962   __ JumpIfSmi(v0, if_false);
   2963   __ LoadRoot(at, Heap::kNullValueRootIndex);
   2964   __ Branch(if_true, eq, v0, Operand(at));
   2965   __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
   2966   // Undetectable objects behave like undefined when tested with typeof.
   2967   __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset));
   2968   __ And(at, a1, Operand(1 << Map::kIsUndetectable));
   2969   __ Branch(if_false, ne, at, Operand(zero_reg));
   2970   __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
   2971   __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2972   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2973   Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE),
   2974         if_true, if_false, fall_through);
   2975 
   2976   context()->Plug(if_true, if_false);
   2977 }
   2978 
   2979 
   2980 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
   2981   ZoneList<Expression*>* args = expr->arguments();
   2982   ASSERT(args->length() == 1);
   2983 
   2984   VisitForAccumulatorValue(args->at(0));
   2985 
   2986   Label materialize_true, materialize_false;
   2987   Label* if_true = NULL;
   2988   Label* if_false = NULL;
   2989   Label* fall_through = NULL;
   2990   context()->PrepareTest(&materialize_true, &materialize_false,
   2991                          &if_true, &if_false, &fall_through);
   2992 
   2993   __ JumpIfSmi(v0, if_false);
   2994   __ GetObjectType(v0, a1, a1);
   2995   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2996   Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE),
   2997         if_true, if_false, fall_through);
   2998 
   2999   context()->Plug(if_true, if_false);
   3000 }
   3001 
   3002 
   3003 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
   3004   ZoneList<Expression*>* args = expr->arguments();
   3005   ASSERT(args->length() == 1);
   3006 
   3007   VisitForAccumulatorValue(args->at(0));
   3008 
   3009   Label materialize_true, materialize_false;
   3010   Label* if_true = NULL;
   3011   Label* if_false = NULL;
   3012   Label* fall_through = NULL;
   3013   context()->PrepareTest(&materialize_true, &materialize_false,
   3014                          &if_true, &if_false, &fall_through);
   3015 
   3016   __ JumpIfSmi(v0, if_false);
   3017   __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
   3018   __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
   3019   __ And(at, a1, Operand(1 << Map::kIsUndetectable));
   3020   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3021   Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through);
   3022 
   3023   context()->Plug(if_true, if_false);
   3024 }
   3025 
   3026 
   3027 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
   3028     CallRuntime* expr) {
   3029   ZoneList<Expression*>* args = expr->arguments();
   3030   ASSERT(args->length() == 1);
   3031 
   3032   VisitForAccumulatorValue(args->at(0));
   3033 
   3034   Label materialize_true, materialize_false;
   3035   Label* if_true = NULL;
   3036   Label* if_false = NULL;
   3037   Label* fall_through = NULL;
   3038   context()->PrepareTest(&materialize_true, &materialize_false,
   3039                          &if_true, &if_false, &fall_through);
   3040 
   3041   __ AssertNotSmi(v0);
   3042 
   3043   __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
   3044   __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset));
   3045   __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf);
   3046   __ Branch(if_true, ne, t0, Operand(zero_reg));
   3047 
   3048   // Check for fast case object. Generate false result for slow case object.
   3049   __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   3050   __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
   3051   __ LoadRoot(t0, Heap::kHashTableMapRootIndex);
   3052   __ Branch(if_false, eq, a2, Operand(t0));
   3053 
   3054   // Look for valueOf name in the descriptor array, and indicate false if
   3055   // found. Since we omit an enumeration index check, if it is added via a
   3056   // transition that shares its descriptor array, this is a false positive.
   3057   Label entry, loop, done;
   3058 
   3059   // Skip loop if no descriptors are valid.
   3060   __ NumberOfOwnDescriptors(a3, a1);
   3061   __ Branch(&done, eq, a3, Operand(zero_reg));
   3062 
   3063   __ LoadInstanceDescriptors(a1, t0);
   3064   // t0: descriptor array.
   3065   // a3: valid entries in the descriptor array.
   3066   STATIC_ASSERT(kSmiTag == 0);
   3067   STATIC_ASSERT(kSmiTagSize == 1);
   3068   STATIC_ASSERT(kPointerSize == 4);
   3069   __ li(at, Operand(DescriptorArray::kDescriptorSize));
   3070   __ Mul(a3, a3, at);
   3071   // Calculate location of the first key name.
   3072   __ Addu(t0, t0, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
   3073   // Calculate the end of the descriptor array.
   3074   __ mov(a2, t0);
   3075   __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize);
   3076   __ Addu(a2, a2, t1);
   3077 
   3078   // Loop through all the keys in the descriptor array. If one of these is the
   3079   // string "valueOf" the result is false.
   3080   // The use of t2 to store the valueOf string assumes that it is not otherwise
   3081   // used in the loop below.
   3082   __ li(t2, Operand(isolate()->factory()->value_of_string()));
   3083   __ jmp(&entry);
   3084   __ bind(&loop);
   3085   __ lw(a3, MemOperand(t0, 0));
   3086   __ Branch(if_false, eq, a3, Operand(t2));
   3087   __ Addu(t0, t0, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
   3088   __ bind(&entry);
   3089   __ Branch(&loop, ne, t0, Operand(a2));
   3090 
   3091   __ bind(&done);
   3092   // If a valueOf property is not found on the object check that its
   3093   // prototype is the un-modified String prototype. If not result is false.
   3094   __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
   3095   __ JumpIfSmi(a2, if_false);
   3096   __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
   3097   __ lw(a3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
   3098   __ lw(a3, FieldMemOperand(a3, GlobalObject::kNativeContextOffset));
   3099   __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
   3100   __ Branch(if_false, ne, a2, Operand(a3));
   3101 
   3102   // Set the bit in the map to indicate that it has been checked safe for
   3103   // default valueOf and set true result.
   3104   __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset));
   3105   __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
   3106   __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset));
   3107   __ jmp(if_true);
   3108 
   3109   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3110   context()->Plug(if_true, if_false);
   3111 }
   3112 
   3113 
   3114 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
   3115   ZoneList<Expression*>* args = expr->arguments();
   3116   ASSERT(args->length() == 1);
   3117 
   3118   VisitForAccumulatorValue(args->at(0));
   3119 
   3120   Label materialize_true, materialize_false;
   3121   Label* if_true = NULL;
   3122   Label* if_false = NULL;
   3123   Label* fall_through = NULL;
   3124   context()->PrepareTest(&materialize_true, &materialize_false,
   3125                          &if_true, &if_false, &fall_through);
   3126 
   3127   __ JumpIfSmi(v0, if_false);
   3128   __ GetObjectType(v0, a1, a2);
   3129   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3130   __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE));
   3131   __ Branch(if_false);
   3132 
   3133   context()->Plug(if_true, if_false);
   3134 }
   3135 
   3136 
   3137 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
   3138   ZoneList<Expression*>* args = expr->arguments();
   3139   ASSERT(args->length() == 1);
   3140 
   3141   VisitForAccumulatorValue(args->at(0));
   3142 
   3143   Label materialize_true, materialize_false;
   3144   Label* if_true = NULL;
   3145   Label* if_false = NULL;
   3146   Label* fall_through = NULL;
   3147   context()->PrepareTest(&materialize_true, &materialize_false,
   3148                          &if_true, &if_false, &fall_through);
   3149 
   3150   __ JumpIfSmi(v0, if_false);
   3151   __ GetObjectType(v0, a1, a1);
   3152   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3153   Split(eq, a1, Operand(JS_ARRAY_TYPE),
   3154         if_true, if_false, fall_through);
   3155 
   3156   context()->Plug(if_true, if_false);
   3157 }
   3158 
   3159 
   3160 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
   3161   ZoneList<Expression*>* args = expr->arguments();
   3162   ASSERT(args->length() == 1);
   3163 
   3164   VisitForAccumulatorValue(args->at(0));
   3165 
   3166   Label materialize_true, materialize_false;
   3167   Label* if_true = NULL;
   3168   Label* if_false = NULL;
   3169   Label* fall_through = NULL;
   3170   context()->PrepareTest(&materialize_true, &materialize_false,
   3171                          &if_true, &if_false, &fall_through);
   3172 
   3173   __ JumpIfSmi(v0, if_false);
   3174   __ GetObjectType(v0, a1, a1);
   3175   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3176   Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);
   3177 
   3178   context()->Plug(if_true, if_false);
   3179 }
   3180 
   3181 
   3182 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
   3183   ASSERT(expr->arguments()->length() == 0);
   3184 
   3185   Label materialize_true, materialize_false;
   3186   Label* if_true = NULL;
   3187   Label* if_false = NULL;
   3188   Label* fall_through = NULL;
   3189   context()->PrepareTest(&materialize_true, &materialize_false,
   3190                          &if_true, &if_false, &fall_through);
   3191 
   3192   // Get the frame pointer for the calling frame.
   3193   __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   3194 
   3195   // Skip the arguments adaptor frame if it exists.
   3196   Label check_frame_marker;
   3197   __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset));
   3198   __ Branch(&check_frame_marker, ne,
   3199             a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   3200   __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
   3201 
   3202   // Check the marker in the calling frame.
   3203   __ bind(&check_frame_marker);
   3204   __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset));
   3205   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3206   Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)),
   3207         if_true, if_false, fall_through);
   3208 
   3209   context()->Plug(if_true, if_false);
   3210 }
   3211 
   3212 
   3213 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
   3214   ZoneList<Expression*>* args = expr->arguments();
   3215   ASSERT(args->length() == 2);
   3216 
   3217   // Load the two objects into registers and perform the comparison.
   3218   VisitForStackValue(args->at(0));
   3219   VisitForAccumulatorValue(args->at(1));
   3220 
   3221   Label materialize_true, materialize_false;
   3222   Label* if_true = NULL;
   3223   Label* if_false = NULL;
   3224   Label* fall_through = NULL;
   3225   context()->PrepareTest(&materialize_true, &materialize_false,
   3226                          &if_true, &if_false, &fall_through);
   3227 
   3228   __ pop(a1);
   3229   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3230   Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
   3231 
   3232   context()->Plug(if_true, if_false);
   3233 }
   3234 
   3235 
   3236 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
   3237   ZoneList<Expression*>* args = expr->arguments();
   3238   ASSERT(args->length() == 1);
   3239 
   3240   // ArgumentsAccessStub expects the key in a1 and the formal
   3241   // parameter count in a0.
   3242   VisitForAccumulatorValue(args->at(0));
   3243   __ mov(a1, v0);
   3244   __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
   3245   ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
   3246   __ CallStub(&stub);
   3247   context()->Plug(v0);
   3248 }
   3249 
   3250 
   3251 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
   3252   ASSERT(expr->arguments()->length() == 0);
   3253   Label exit;
   3254   // Get the number of formal parameters.
   3255   __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
   3256 
   3257   // Check if the calling frame is an arguments adaptor frame.
   3258   __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   3259   __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
   3260   __ Branch(&exit, ne, a3,
   3261             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   3262 
   3263   // Arguments adaptor case: Read the arguments length from the
   3264   // adaptor frame.
   3265   __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   3266 
   3267   __ bind(&exit);
   3268   context()->Plug(v0);
   3269 }
   3270 
   3271 
   3272 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
   3273   ZoneList<Expression*>* args = expr->arguments();
   3274   ASSERT(args->length() == 1);
   3275   Label done, null, function, non_function_constructor;
   3276 
   3277   VisitForAccumulatorValue(args->at(0));
   3278 
   3279   // If the object is a smi, we return null.
   3280   __ JumpIfSmi(v0, &null);
   3281 
   3282   // Check that the object is a JS object but take special care of JS
   3283   // functions to make sure they have 'Function' as their class.
   3284   // Assume that there are only two callable types, and one of them is at
   3285   // either end of the type range for JS object types. Saves extra comparisons.
   3286   STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   3287   __ GetObjectType(v0, v0, a1);  // Map is now in v0.
   3288   __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
   3289 
   3290   STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   3291                 FIRST_SPEC_OBJECT_TYPE + 1);
   3292   __ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
   3293 
   3294   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   3295                 LAST_SPEC_OBJECT_TYPE - 1);
   3296   __ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE));
   3297   // Assume that there is no larger type.
   3298   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
   3299 
   3300   // Check if the constructor in the map is a JS function.
   3301   __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset));
   3302   __ GetObjectType(v0, a1, a1);
   3303   __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE));
   3304 
   3305   // v0 now contains the constructor function. Grab the
   3306   // instance class name from there.
   3307   __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
   3308   __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
   3309   __ Branch(&done);
   3310 
   3311   // Functions have class 'Function'.
   3312   __ bind(&function);
   3313   __ LoadRoot(v0, Heap::kfunction_class_stringRootIndex);
   3314   __ jmp(&done);
   3315 
   3316   // Objects with a non-function constructor have class 'Object'.
   3317   __ bind(&non_function_constructor);
   3318   __ LoadRoot(v0, Heap::kObject_stringRootIndex);
   3319   __ jmp(&done);
   3320 
   3321   // Non-JS objects have class null.
   3322   __ bind(&null);
   3323   __ LoadRoot(v0, Heap::kNullValueRootIndex);
   3324 
   3325   // All done.
   3326   __ bind(&done);
   3327 
   3328   context()->Plug(v0);
   3329 }
   3330 
   3331 
   3332 void FullCodeGenerator::EmitLog(CallRuntime* expr) {
   3333   // Conditionally generate a log call.
   3334   // Args:
   3335   //   0 (literal string): The type of logging (corresponds to the flags).
   3336   //     This is used to determine whether or not to generate the log call.
   3337   //   1 (string): Format string.  Access the string at argument index 2
   3338   //     with '%2s' (see Logger::LogRuntime for all the formats).
   3339   //   2 (array): Arguments to the format string.
   3340   ZoneList<Expression*>* args = expr->arguments();
   3341   ASSERT_EQ(args->length(), 3);
   3342   if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
   3343     VisitForStackValue(args->at(1));
   3344     VisitForStackValue(args->at(2));
   3345     __ CallRuntime(Runtime::kLog, 2);
   3346   }
   3347 
   3348   // Finally, we're expected to leave a value on the top of the stack.
   3349   __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
   3350   context()->Plug(v0);
   3351 }
   3352 
   3353 
   3354 void FullCodeGenerator::EmitRandomHeapNumber(CallRuntime* expr) {
   3355   ASSERT(expr->arguments()->length() == 0);
   3356   Label slow_allocate_heapnumber;
   3357   Label heapnumber_allocated;
   3358 
   3359   // Save the new heap number in callee-saved register s0, since
   3360   // we call out to external C code below.
   3361   __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
   3362   __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber);
   3363   __ jmp(&heapnumber_allocated);
   3364 
   3365   __ bind(&slow_allocate_heapnumber);
   3366 
   3367   // Allocate a heap number.
   3368   __ CallRuntime(Runtime::kNumberAlloc, 0);
   3369   __ mov(s0, v0);   // Save result in s0, so it is saved thru CFunc call.
   3370 
   3371   __ bind(&heapnumber_allocated);
   3372 
   3373   // Convert 32 random bits in v0 to 0.(32 random bits) in a double
   3374   // by computing:
   3375   // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
   3376   __ PrepareCallCFunction(1, a0);
   3377   __ lw(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
   3378   __ lw(a0, FieldMemOperand(a0, GlobalObject::kNativeContextOffset));
   3379   __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
   3380 
   3381   // 0x41300000 is the top half of 1.0 x 2^20 as a double.
   3382   __ li(a1, Operand(0x41300000));
   3383   // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
   3384   __ Move(f12, v0, a1);
   3385   // Move 0x4130000000000000 to FPU.
   3386   __ Move(f14, zero_reg, a1);
   3387   // Subtract and store the result in the heap number.
   3388   __ sub_d(f0, f12, f14);
   3389   __ sdc1(f0, FieldMemOperand(s0, HeapNumber::kValueOffset));
   3390   __ mov(v0, s0);
   3391 
   3392   context()->Plug(v0);
   3393 }
   3394 
   3395 
   3396 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
   3397   // Load the arguments on the stack and call the stub.
   3398   SubStringStub stub;
   3399   ZoneList<Expression*>* args = expr->arguments();
   3400   ASSERT(args->length() == 3);
   3401   VisitForStackValue(args->at(0));
   3402   VisitForStackValue(args->at(1));
   3403   VisitForStackValue(args->at(2));
   3404   __ CallStub(&stub);
   3405   context()->Plug(v0);
   3406 }
   3407 
   3408 
   3409 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
   3410   // Load the arguments on the stack and call the stub.
   3411   RegExpExecStub stub;
   3412   ZoneList<Expression*>* args = expr->arguments();
   3413   ASSERT(args->length() == 4);
   3414   VisitForStackValue(args->at(0));
   3415   VisitForStackValue(args->at(1));
   3416   VisitForStackValue(args->at(2));
   3417   VisitForStackValue(args->at(3));
   3418   __ CallStub(&stub);
   3419   context()->Plug(v0);
   3420 }
   3421 
   3422 
   3423 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
   3424   ZoneList<Expression*>* args = expr->arguments();
   3425   ASSERT(args->length() == 1);
   3426 
   3427   VisitForAccumulatorValue(args->at(0));  // Load the object.
   3428 
   3429   Label done;
   3430   // If the object is a smi return the object.
   3431   __ JumpIfSmi(v0, &done);
   3432   // If the object is not a value type, return the object.
   3433   __ GetObjectType(v0, a1, a1);
   3434   __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));
   3435 
   3436   __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset));
   3437 
   3438   __ bind(&done);
   3439   context()->Plug(v0);
   3440 }
   3441 
   3442 
   3443 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
   3444   ZoneList<Expression*>* args = expr->arguments();
   3445   ASSERT(args->length() == 2);
   3446   ASSERT_NE(NULL, args->at(1)->AsLiteral());
   3447   Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
   3448 
   3449   VisitForAccumulatorValue(args->at(0));  // Load the object.
   3450 
   3451   Label runtime, done, not_date_object;
   3452   Register object = v0;
   3453   Register result = v0;
   3454   Register scratch0 = t5;
   3455   Register scratch1 = a1;
   3456 
   3457   __ JumpIfSmi(object, &not_date_object);
   3458   __ GetObjectType(object, scratch1, scratch1);
   3459   __ Branch(&not_date_object, ne, scratch1, Operand(JS_DATE_TYPE));
   3460 
   3461   if (index->value() == 0) {
   3462     __ lw(result, FieldMemOperand(object, JSDate::kValueOffset));
   3463     __ jmp(&done);
   3464   } else {
   3465     if (index->value() < JSDate::kFirstUncachedField) {
   3466       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   3467       __ li(scratch1, Operand(stamp));
   3468       __ lw(scratch1, MemOperand(scratch1));
   3469       __ lw(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
   3470       __ Branch(&runtime, ne, scratch1, Operand(scratch0));
   3471       __ lw(result, FieldMemOperand(object, JSDate::kValueOffset +
   3472                                             kPointerSize * index->value()));
   3473       __ jmp(&done);
   3474     }
   3475     __ bind(&runtime);
   3476     __ PrepareCallCFunction(2, scratch1);
   3477     __ li(a1, Operand(index));
   3478     __ Move(a0, object);
   3479     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   3480     __ jmp(&done);
   3481   }
   3482 
   3483   __ bind(&not_date_object);
   3484   __ CallRuntime(Runtime::kThrowNotDateError, 0);
   3485   __ bind(&done);
   3486   context()->Plug(v0);
   3487 }
   3488 
   3489 
   3490 void FullCodeGenerator::EmitSeqStringSetCharCheck(Register string,
   3491                                                   Register index,
   3492                                                   Register value,
   3493                                                   uint32_t encoding_mask) {
   3494   __ And(at, index, Operand(kSmiTagMask));
   3495   __ Check(eq, kNonSmiIndex, at, Operand(zero_reg));
   3496   __ And(at, value, Operand(kSmiTagMask));
   3497   __ Check(eq, kNonSmiValue, at, Operand(zero_reg));
   3498 
   3499   __ lw(at, FieldMemOperand(string, String::kLengthOffset));
   3500   __ Check(lt, kIndexIsTooLarge, index, Operand(at));
   3501 
   3502   __ Check(ge, kIndexIsNegative, index, Operand(zero_reg));
   3503 
   3504   __ lw(at, FieldMemOperand(string, HeapObject::kMapOffset));
   3505   __ lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset));
   3506 
   3507   __ And(at, at, Operand(kStringRepresentationMask | kStringEncodingMask));
   3508   __ Subu(at, at, Operand(encoding_mask));
   3509   __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
   3510 }
   3511 
   3512 
   3513 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
   3514   ZoneList<Expression*>* args = expr->arguments();
   3515   ASSERT_EQ(3, args->length());
   3516 
   3517   Register string = v0;
   3518   Register index = a1;
   3519   Register value = a2;
   3520 
   3521   VisitForStackValue(args->at(1));  // index
   3522   VisitForStackValue(args->at(2));  // value
   3523   __ pop(value);
   3524   __ pop(index);
   3525   VisitForAccumulatorValue(args->at(0));  // string
   3526 
   3527   if (FLAG_debug_code) {
   3528     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   3529     EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
   3530   }
   3531 
   3532   __ SmiUntag(value, value);
   3533   __ Addu(at,
   3534           string,
   3535           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3536   __ SmiUntag(index);
   3537   __ Addu(at, at, index);
   3538   __ sb(value, MemOperand(at));
   3539   context()->Plug(string);
   3540 }
   3541 
   3542 
   3543 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
   3544   ZoneList<Expression*>* args = expr->arguments();
   3545   ASSERT_EQ(3, args->length());
   3546 
   3547   Register string = v0;
   3548   Register index = a1;
   3549   Register value = a2;
   3550 
   3551   VisitForStackValue(args->at(1));  // index
   3552   VisitForStackValue(args->at(2));  // value
   3553   __ pop(value);
   3554   __ pop(index);
   3555   VisitForAccumulatorValue(args->at(0));  // string
   3556 
   3557   if (FLAG_debug_code) {
   3558     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   3559     EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
   3560   }
   3561 
   3562   __ SmiUntag(value, value);
   3563   __ Addu(at,
   3564           string,
   3565           Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3566   __ Addu(at, at, index);
   3567   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   3568   __ sh(value, MemOperand(at));
   3569     context()->Plug(string);
   3570 }
   3571 
   3572 
   3573 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
   3574   // Load the arguments on the stack and call the runtime function.
   3575   ZoneList<Expression*>* args = expr->arguments();
   3576   ASSERT(args->length() == 2);
   3577   VisitForStackValue(args->at(0));
   3578   VisitForStackValue(args->at(1));
   3579   MathPowStub stub(MathPowStub::ON_STACK);
   3580   __ CallStub(&stub);
   3581   context()->Plug(v0);
   3582 }
   3583 
   3584 
   3585 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
   3586   ZoneList<Expression*>* args = expr->arguments();
   3587   ASSERT(args->length() == 2);
   3588 
   3589   VisitForStackValue(args->at(0));  // Load the object.
   3590   VisitForAccumulatorValue(args->at(1));  // Load the value.
   3591   __ pop(a1);  // v0 = value. a1 = object.
   3592 
   3593   Label done;
   3594   // If the object is a smi, return the value.
   3595   __ JumpIfSmi(a1, &done);
   3596 
   3597   // If the object is not a value type, return the value.
   3598   __ GetObjectType(a1, a2, a2);
   3599   __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE));
   3600 
   3601   // Store the value.
   3602   __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset));
   3603   // Update the write barrier.  Save the value as it will be
   3604   // overwritten by the write barrier code and is needed afterward.
   3605   __ mov(a2, v0);
   3606   __ RecordWriteField(
   3607       a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);
   3608 
   3609   __ bind(&done);
   3610   context()->Plug(v0);
   3611 }
   3612 
   3613 
   3614 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
   3615   ZoneList<Expression*>* args = expr->arguments();
   3616   ASSERT_EQ(args->length(), 1);
   3617 
   3618   // Load the argument on the stack and call the stub.
   3619   VisitForStackValue(args->at(0));
   3620 
   3621   NumberToStringStub stub;
   3622   __ CallStub(&stub);
   3623   context()->Plug(v0);
   3624 }
   3625 
   3626 
   3627 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
   3628   ZoneList<Expression*>* args = expr->arguments();
   3629   ASSERT(args->length() == 1);
   3630 
   3631   VisitForAccumulatorValue(args->at(0));
   3632 
   3633   Label done;
   3634   StringCharFromCodeGenerator generator(v0, a1);
   3635   generator.GenerateFast(masm_);
   3636   __ jmp(&done);
   3637 
   3638   NopRuntimeCallHelper call_helper;
   3639   generator.GenerateSlow(masm_, call_helper);
   3640 
   3641   __ bind(&done);
   3642   context()->Plug(a1);
   3643 }
   3644 
   3645 
   3646 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
   3647   ZoneList<Expression*>* args = expr->arguments();
   3648   ASSERT(args->length() == 2);
   3649 
   3650   VisitForStackValue(args->at(0));
   3651   VisitForAccumulatorValue(args->at(1));
   3652   __ mov(a0, result_register());
   3653 
   3654   Register object = a1;
   3655   Register index = a0;
   3656   Register result = v0;
   3657 
   3658   __ pop(object);
   3659 
   3660   Label need_conversion;
   3661   Label index_out_of_range;
   3662   Label done;
   3663   StringCharCodeAtGenerator generator(object,
   3664                                       index,
   3665                                       result,
   3666                                       &need_conversion,
   3667                                       &need_conversion,
   3668                                       &index_out_of_range,
   3669                                       STRING_INDEX_IS_NUMBER);
   3670   generator.GenerateFast(masm_);
   3671   __ jmp(&done);
   3672 
   3673   __ bind(&index_out_of_range);
   3674   // When the index is out of range, the spec requires us to return
   3675   // NaN.
   3676   __ LoadRoot(result, Heap::kNanValueRootIndex);
   3677   __ jmp(&done);
   3678 
   3679   __ bind(&need_conversion);
   3680   // Load the undefined value into the result register, which will
   3681   // trigger conversion.
   3682   __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   3683   __ jmp(&done);
   3684 
   3685   NopRuntimeCallHelper call_helper;
   3686   generator.GenerateSlow(masm_, call_helper);
   3687 
   3688   __ bind(&done);
   3689   context()->Plug(result);
   3690 }
   3691 
   3692 
   3693 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
   3694   ZoneList<Expression*>* args = expr->arguments();
   3695   ASSERT(args->length() == 2);
   3696 
   3697   VisitForStackValue(args->at(0));
   3698   VisitForAccumulatorValue(args->at(1));
   3699   __ mov(a0, result_register());
   3700 
   3701   Register object = a1;
   3702   Register index = a0;
   3703   Register scratch = a3;
   3704   Register result = v0;
   3705 
   3706   __ pop(object);
   3707 
   3708   Label need_conversion;
   3709   Label index_out_of_range;
   3710   Label done;
   3711   StringCharAtGenerator generator(object,
   3712                                   index,
   3713                                   scratch,
   3714                                   result,
   3715                                   &need_conversion,
   3716                                   &need_conversion,
   3717                                   &index_out_of_range,
   3718                                   STRING_INDEX_IS_NUMBER);
   3719   generator.GenerateFast(masm_);
   3720   __ jmp(&done);
   3721 
   3722   __ bind(&index_out_of_range);
   3723   // When the index is out of range, the spec requires us to return
   3724   // the empty string.
   3725   __ LoadRoot(result, Heap::kempty_stringRootIndex);
   3726   __ jmp(&done);
   3727 
   3728   __ bind(&need_conversion);
   3729   // Move smi zero into the result register, which will trigger
   3730   // conversion.
   3731   __ li(result, Operand(Smi::FromInt(0)));
   3732   __ jmp(&done);
   3733 
   3734   NopRuntimeCallHelper call_helper;
   3735   generator.GenerateSlow(masm_, call_helper);
   3736 
   3737   __ bind(&done);
   3738   context()->Plug(result);
   3739 }
   3740 
   3741 
   3742 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
   3743   ZoneList<Expression*>* args = expr->arguments();
   3744   ASSERT_EQ(2, args->length());
   3745   VisitForStackValue(args->at(0));
   3746   VisitForStackValue(args->at(1));
   3747 
   3748   StringAddStub stub(STRING_ADD_CHECK_BOTH);
   3749   __ CallStub(&stub);
   3750   context()->Plug(v0);
   3751 }
   3752 
   3753 
   3754 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
   3755   ZoneList<Expression*>* args = expr->arguments();
   3756   ASSERT_EQ(2, args->length());
   3757 
   3758   VisitForStackValue(args->at(0));
   3759   VisitForStackValue(args->at(1));
   3760 
   3761   StringCompareStub stub;
   3762   __ CallStub(&stub);
   3763   context()->Plug(v0);
   3764 }
   3765 
   3766 
   3767 void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
   3768   // Load the argument on the stack and call the stub.
   3769   TranscendentalCacheStub stub(TranscendentalCache::SIN,
   3770                                TranscendentalCacheStub::TAGGED);
   3771   ZoneList<Expression*>* args = expr->arguments();
   3772   ASSERT(args->length() == 1);
   3773   VisitForStackValue(args->at(0));
   3774   __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
   3775   __ CallStub(&stub);
   3776   context()->Plug(v0);
   3777 }
   3778 
   3779 
   3780 void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
   3781   // Load the argument on the stack and call the stub.
   3782   TranscendentalCacheStub stub(TranscendentalCache::COS,
   3783                                TranscendentalCacheStub::TAGGED);
   3784   ZoneList<Expression*>* args = expr->arguments();
   3785   ASSERT(args->length() == 1);
   3786   VisitForStackValue(args->at(0));
   3787   __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
   3788   __ CallStub(&stub);
   3789   context()->Plug(v0);
   3790 }
   3791 
   3792 
   3793 void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
   3794   // Load the argument on the stack and call the stub.
   3795   TranscendentalCacheStub stub(TranscendentalCache::TAN,
   3796                                TranscendentalCacheStub::TAGGED);
   3797   ZoneList<Expression*>* args = expr->arguments();
   3798   ASSERT(args->length() == 1);
   3799   VisitForStackValue(args->at(0));
   3800   __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
   3801   __ CallStub(&stub);
   3802   context()->Plug(v0);
   3803 }
   3804 
   3805 
   3806 void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
   3807   // Load the argument on the stack and call the stub.
   3808   TranscendentalCacheStub stub(TranscendentalCache::LOG,
   3809                                TranscendentalCacheStub::TAGGED);
   3810   ZoneList<Expression*>* args = expr->arguments();
   3811   ASSERT(args->length() == 1);
   3812   VisitForStackValue(args->at(0));
   3813   __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
   3814   __ CallStub(&stub);
   3815   context()->Plug(v0);
   3816 }
   3817 
   3818 
   3819 void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
   3820   // Load the argument on the stack and call the runtime function.
   3821   ZoneList<Expression*>* args = expr->arguments();
   3822   ASSERT(args->length() == 1);
   3823   VisitForStackValue(args->at(0));
   3824   __ CallRuntime(Runtime::kMath_sqrt, 1);
   3825   context()->Plug(v0);
   3826 }
   3827 
   3828 
   3829 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
   3830   ZoneList<Expression*>* args = expr->arguments();
   3831   ASSERT(args->length() >= 2);
   3832 
   3833   int arg_count = args->length() - 2;  // 2 ~ receiver and function.
   3834   for (int i = 0; i < arg_count + 1; i++) {
   3835     VisitForStackValue(args->at(i));
   3836   }
   3837   VisitForAccumulatorValue(args->last());  // Function.
   3838 
   3839   Label runtime, done;
   3840   // Check for non-function argument (including proxy).
   3841   __ JumpIfSmi(v0, &runtime);
   3842   __ GetObjectType(v0, a1, a1);
   3843   __ Branch(&runtime, ne, a1, Operand(JS_FUNCTION_TYPE));
   3844 
   3845   // InvokeFunction requires the function in a1. Move it in there.
   3846   __ mov(a1, result_register());
   3847   ParameterCount count(arg_count);
   3848   __ InvokeFunction(a1, count, CALL_FUNCTION,
   3849                     NullCallWrapper(), CALL_AS_METHOD);
   3850   __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   3851   __ jmp(&done);
   3852 
   3853   __ bind(&runtime);
   3854   __ push(v0);
   3855   __ CallRuntime(Runtime::kCall, args->length());
   3856   __ bind(&done);
   3857 
   3858   context()->Plug(v0);
   3859 }
   3860 
   3861 
   3862 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
   3863   RegExpConstructResultStub stub;
   3864   ZoneList<Expression*>* args = expr->arguments();
   3865   ASSERT(args->length() == 3);
   3866   VisitForStackValue(args->at(0));
   3867   VisitForStackValue(args->at(1));
   3868   VisitForStackValue(args->at(2));
   3869   __ CallStub(&stub);
   3870   context()->Plug(v0);
   3871 }
   3872 
   3873 
   3874 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
   3875   ZoneList<Expression*>* args = expr->arguments();
   3876   ASSERT_EQ(2, args->length());
   3877 
   3878   ASSERT_NE(NULL, args->at(0)->AsLiteral());
   3879   int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
   3880 
   3881   Handle<FixedArray> jsfunction_result_caches(
   3882       isolate()->native_context()->jsfunction_result_caches());
   3883   if (jsfunction_result_caches->length() <= cache_id) {
   3884     __ Abort(kAttemptToUseUndefinedCache);
   3885     __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
   3886     context()->Plug(v0);
   3887     return;
   3888   }
   3889 
   3890   VisitForAccumulatorValue(args->at(1));
   3891 
   3892   Register key = v0;
   3893   Register cache = a1;
   3894   __ lw(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
   3895   __ lw(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
   3896   __ lw(cache,
   3897          ContextOperand(
   3898              cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
   3899   __ lw(cache,
   3900          FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
   3901 
   3902 
   3903   Label done, not_found;
   3904   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
   3905   __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
   3906   // a2 now holds finger offset as a smi.
   3907   __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   3908   // a3 now points to the start of fixed array elements.
   3909   __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize);
   3910   __ addu(a3, a3, at);
   3911   // a3 now points to key of indexed element of cache.
   3912   __ lw(a2, MemOperand(a3));
   3913   __ Branch(&not_found, ne, key, Operand(a2));
   3914 
   3915   __ lw(v0, MemOperand(a3, kPointerSize));
   3916   __ Branch(&done);
   3917 
   3918   __ bind(&not_found);
   3919   // Call runtime to perform the lookup.
   3920   __ Push(cache, key);
   3921   __ CallRuntime(Runtime::kGetFromCache, 2);
   3922 
   3923   __ bind(&done);
   3924   context()->Plug(v0);
   3925 }
   3926 
   3927 
   3928 void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) {
   3929   ZoneList<Expression*>* args = expr->arguments();
   3930   ASSERT_EQ(2, args->length());
   3931 
   3932   Register right = v0;
   3933   Register left = a1;
   3934   Register tmp = a2;
   3935   Register tmp2 = a3;
   3936 
   3937   VisitForStackValue(args->at(0));
   3938   VisitForAccumulatorValue(args->at(1));  // Result (right) in v0.
   3939   __ pop(left);
   3940 
   3941   Label done, fail, ok;
   3942   __ Branch(&ok, eq, left, Operand(right));
   3943   // Fail if either is a non-HeapObject.
   3944   __ And(tmp, left, Operand(right));
   3945   __ JumpIfSmi(tmp, &fail);
   3946   __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
   3947   __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
   3948   __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE));
   3949   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3950   __ Branch(&fail, ne, tmp, Operand(tmp2));
   3951   __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
   3952   __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
   3953   __ Branch(&ok, eq, tmp, Operand(tmp2));
   3954   __ bind(&fail);
   3955   __ LoadRoot(v0, Heap::kFalseValueRootIndex);
   3956   __ jmp(&done);
   3957   __ bind(&ok);
   3958   __ LoadRoot(v0, Heap::kTrueValueRootIndex);
   3959   __ bind(&done);
   3960 
   3961   context()->Plug(v0);
   3962 }
   3963 
   3964 
   3965 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
   3966   ZoneList<Expression*>* args = expr->arguments();
   3967   VisitForAccumulatorValue(args->at(0));
   3968 
   3969   Label materialize_true, materialize_false;
   3970   Label* if_true = NULL;
   3971   Label* if_false = NULL;
   3972   Label* fall_through = NULL;
   3973   context()->PrepareTest(&materialize_true, &materialize_false,
   3974                          &if_true, &if_false, &fall_through);
   3975 
   3976   __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset));
   3977   __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));
   3978 
   3979   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3980   Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);
   3981 
   3982   context()->Plug(if_true, if_false);
   3983 }
   3984 
   3985 
   3986 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
   3987   ZoneList<Expression*>* args = expr->arguments();
   3988   ASSERT(args->length() == 1);
   3989   VisitForAccumulatorValue(args->at(0));
   3990 
   3991   __ AssertString(v0);
   3992 
   3993   __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset));
   3994   __ IndexFromHash(v0, v0);
   3995 
   3996   context()->Plug(v0);
   3997 }
   3998 
   3999 
   4000 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
   4001   Label bailout, done, one_char_separator, long_separator,
   4002       non_trivial_array, not_size_one_array, loop,
   4003       empty_separator_loop, one_char_separator_loop,
   4004       one_char_separator_loop_entry, long_separator_loop;
   4005   ZoneList<Expression*>* args = expr->arguments();
   4006   ASSERT(args->length() == 2);
   4007   VisitForStackValue(args->at(1));
   4008   VisitForAccumulatorValue(args->at(0));
   4009 
   4010   // All aliases of the same register have disjoint lifetimes.
   4011   Register array = v0;
   4012   Register elements = no_reg;  // Will be v0.
   4013   Register result = no_reg;  // Will be v0.
   4014   Register separator = a1;
   4015   Register array_length = a2;
   4016   Register result_pos = no_reg;  // Will be a2.
   4017   Register string_length = a3;
   4018   Register string = t0;
   4019   Register element = t1;
   4020   Register elements_end = t2;
   4021   Register scratch1 = t3;
   4022   Register scratch2 = t5;
   4023   Register scratch3 = t4;
   4024 
   4025   // Separator operand is on the stack.
   4026   __ pop(separator);
   4027 
   4028   // Check that the array is a JSArray.
   4029   __ JumpIfSmi(array, &bailout);
   4030   __ GetObjectType(array, scratch1, scratch2);
   4031   __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));
   4032 
   4033   // Check that the array has fast elements.
   4034   __ CheckFastElements(scratch1, scratch2, &bailout);
   4035 
   4036   // If the array has length zero, return the empty string.
   4037   __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
   4038   __ SmiUntag(array_length);
   4039   __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
   4040   __ LoadRoot(v0, Heap::kempty_stringRootIndex);
   4041   __ Branch(&done);
   4042 
   4043   __ bind(&non_trivial_array);
   4044 
   4045   // Get the FixedArray containing array's elements.
   4046   elements = array;
   4047   __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset));
   4048   array = no_reg;  // End of array's live range.
   4049 
   4050   // Check that all array elements are sequential ASCII strings, and
   4051   // accumulate the sum of their lengths, as a smi-encoded value.
   4052   __ mov(string_length, zero_reg);
   4053   __ Addu(element,
   4054           elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4055   __ sll(elements_end, array_length, kPointerSizeLog2);
   4056   __ Addu(elements_end, element, elements_end);
   4057   // Loop condition: while (element < elements_end).
   4058   // Live values in registers:
   4059   //   elements: Fixed array of strings.
   4060   //   array_length: Length of the fixed array of strings (not smi)
   4061   //   separator: Separator string
   4062   //   string_length: Accumulated sum of string lengths (smi).
   4063   //   element: Current array element.
   4064   //   elements_end: Array end.
   4065   if (generate_debug_code_) {
   4066     __ Assert(gt, kNoEmptyArraysHereInEmitFastAsciiArrayJoin,
   4067         array_length, Operand(zero_reg));
   4068   }
   4069   __ bind(&loop);
   4070   __ lw(string, MemOperand(element));
   4071   __ Addu(element, element, kPointerSize);
   4072   __ JumpIfSmi(string, &bailout);
   4073   __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
   4074   __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
   4075   __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
   4076   __ lw(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
   4077   __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
   4078   __ BranchOnOverflow(&bailout, scratch3);
   4079   __ Branch(&loop, lt, element, Operand(elements_end));
   4080 
   4081   // If array_length is 1, return elements[0], a string.
   4082   __ Branch(&not_size_one_array, ne, array_length, Operand(1));
   4083   __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
   4084   __ Branch(&done);
   4085 
   4086   __ bind(&not_size_one_array);
   4087 
   4088   // Live values in registers:
   4089   //   separator: Separator string
   4090   //   array_length: Length of the array.
   4091   //   string_length: Sum of string lengths (smi).
   4092   //   elements: FixedArray of strings.
   4093 
   4094   // Check that the separator is a flat ASCII string.
   4095   __ JumpIfSmi(separator, &bailout);
   4096   __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
   4097   __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
   4098   __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
   4099 
   4100   // Add (separator length times array_length) - separator length to the
   4101   // string_length to get the length of the result string. array_length is not
   4102   // smi but the other values are, so the result is a smi.
   4103   __ lw(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
   4104   __ Subu(string_length, string_length, Operand(scratch1));
   4105   __ Mult(array_length, scratch1);
   4106   // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
   4107   // zero.
   4108   __ mfhi(scratch2);
   4109   __ Branch(&bailout, ne, scratch2, Operand(zero_reg));
   4110   __ mflo(scratch2);
   4111   __ And(scratch3, scratch2, Operand(0x80000000));
   4112   __ Branch(&bailout, ne, scratch3, Operand(zero_reg));
   4113   __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
   4114   __ BranchOnOverflow(&bailout, scratch3);
   4115   __ SmiUntag(string_length);
   4116 
   4117   // Get first element in the array to free up the elements register to be used
   4118   // for the result.
   4119   __ Addu(element,
   4120           elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4121   result = elements;  // End of live range for elements.
   4122   elements = no_reg;
   4123   // Live values in registers:
   4124   //   element: First array element
   4125   //   separator: Separator string
   4126   //   string_length: Length of result string (not smi)
   4127   //   array_length: Length of the array.
   4128   __ AllocateAsciiString(result,
   4129                          string_length,
   4130                          scratch1,
   4131                          scratch2,
   4132                          elements_end,
   4133                          &bailout);
   4134   // Prepare for looping. Set up elements_end to end of the array. Set
   4135   // result_pos to the position of the result where to write the first
   4136   // character.
   4137   __ sll(elements_end, array_length, kPointerSizeLog2);
   4138   __ Addu(elements_end, element, elements_end);
   4139   result_pos = array_length;  // End of live range for array_length.
   4140   array_length = no_reg;
   4141   __ Addu(result_pos,
   4142           result,
   4143           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   4144 
   4145   // Check the length of the separator.
   4146   __ lw(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
   4147   __ li(at, Operand(Smi::FromInt(1)));
   4148   __ Branch(&one_char_separator, eq, scratch1, Operand(at));
   4149   __ Branch(&long_separator, gt, scratch1, Operand(at));
   4150 
   4151   // Empty separator case.
   4152   __ bind(&empty_separator_loop);
   4153   // Live values in registers:
   4154   //   result_pos: the position to which we are currently copying characters.
   4155   //   element: Current array element.
   4156   //   elements_end: Array end.
   4157 
   4158   // Copy next array element to the result.
   4159   __ lw(string, MemOperand(element));
   4160   __ Addu(element, element, kPointerSize);
   4161   __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
   4162   __ SmiUntag(string_length);
   4163   __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
   4164   __ CopyBytes(string, result_pos, string_length, scratch1);
   4165   // End while (element < elements_end).
   4166   __ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
   4167   ASSERT(result.is(v0));
   4168   __ Branch(&done);
   4169 
   4170   // One-character separator case.
   4171   __ bind(&one_char_separator);
   4172   // Replace separator with its ASCII character value.
   4173   __ lbu(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
   4174   // Jump into the loop after the code that copies the separator, so the first
   4175   // element is not preceded by a separator.
   4176   __ jmp(&one_char_separator_loop_entry);
   4177 
   4178   __ bind(&one_char_separator_loop);
   4179   // Live values in registers:
   4180   //   result_pos: the position to which we are currently copying characters.
   4181   //   element: Current array element.
   4182   //   elements_end: Array end.
   4183   //   separator: Single separator ASCII char (in lower byte).
   4184 
   4185   // Copy the separator character to the result.
   4186   __ sb(separator, MemOperand(result_pos));
   4187   __ Addu(result_pos, result_pos, 1);
   4188 
   4189   // Copy next array element to the result.
   4190   __ bind(&one_char_separator_loop_entry);
   4191   __ lw(string, MemOperand(element));
   4192   __ Addu(element, element, kPointerSize);
   4193   __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
   4194   __ SmiUntag(string_length);
   4195   __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
   4196   __ CopyBytes(string, result_pos, string_length, scratch1);
   4197   // End while (element < elements_end).
   4198   __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
   4199   ASSERT(result.is(v0));
   4200   __ Branch(&done);
   4201 
   4202   // Long separator case (separator is more than one character). Entry is at the
   4203   // label long_separator below.
   4204   __ bind(&long_separator_loop);
   4205   // Live values in registers:
   4206   //   result_pos: the position to which we are currently copying characters.
   4207   //   element: Current array element.
   4208   //   elements_end: Array end.
   4209   //   separator: Separator string.
   4210 
   4211   // Copy the separator to the result.
   4212   __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset));
   4213   __ SmiUntag(string_length);
   4214   __ Addu(string,
   4215           separator,
   4216           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   4217   __ CopyBytes(string, result_pos, string_length, scratch1);
   4218 
   4219   __ bind(&long_separator);
   4220   __ lw(string, MemOperand(element));
   4221   __ Addu(element, element, kPointerSize);
   4222   __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
   4223   __ SmiUntag(string_length);
   4224   __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
   4225   __ CopyBytes(string, result_pos, string_length, scratch1);
   4226   // End while (element < elements_end).
   4227   __ Branch(&long_separator_loop, lt, element, Operand(elements_end));
   4228   ASSERT(result.is(v0));
   4229   __ Branch(&done);
   4230 
   4231   __ bind(&bailout);
   4232   __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
   4233   __ bind(&done);
   4234   context()->Plug(v0);
   4235 }
   4236 
   4237 
   4238 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
   4239   Handle<String> name = expr->name();
   4240   if (name->length() > 0 && name->Get(0) == '_') {
   4241     Comment cmnt(masm_, "[ InlineRuntimeCall");
   4242     EmitInlineRuntimeCall(expr);
   4243     return;
   4244   }
   4245 
   4246   Comment cmnt(masm_, "[ CallRuntime");
   4247   ZoneList<Expression*>* args = expr->arguments();
   4248 
   4249   if (expr->is_jsruntime()) {
   4250     // Prepare for calling JS runtime function.
   4251     __ lw(a0, GlobalObjectOperand());
   4252     __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset));
   4253     __ push(a0);
   4254   }
   4255 
   4256   // Push the arguments ("left-to-right").
   4257   int arg_count = args->length();
   4258   for (int i = 0; i < arg_count; i++) {
   4259     VisitForStackValue(args->at(i));
   4260   }
   4261 
   4262   if (expr->is_jsruntime()) {
   4263     // Call the JS runtime function.
   4264     __ li(a2, Operand(expr->name()));
   4265     RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
   4266     Handle<Code> ic =
   4267         isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
   4268     CallIC(ic, mode, expr->CallRuntimeFeedbackId());
   4269     // Restore context register.
   4270     __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4271   } else {
   4272     // Call the C runtime function.
   4273     __ CallRuntime(expr->function(), arg_count);
   4274   }
   4275   context()->Plug(v0);
   4276 }
   4277 
   4278 
   4279 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
   4280   switch (expr->op()) {
   4281     case Token::DELETE: {
   4282       Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
   4283       Property* property = expr->expression()->AsProperty();
   4284       VariableProxy* proxy = expr->expression()->AsVariableProxy();
   4285 
   4286       if (property != NULL) {
   4287         VisitForStackValue(property->obj());
   4288         VisitForStackValue(property->key());
   4289         StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE)
   4290             ? kNonStrictMode : kStrictMode;
   4291         __ li(a1, Operand(Smi::FromInt(strict_mode_flag)));
   4292         __ push(a1);
   4293         __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
   4294         context()->Plug(v0);
   4295       } else if (proxy != NULL) {
   4296         Variable* var = proxy->var();
   4297         // Delete of an unqualified identifier is disallowed in strict mode
   4298         // but "delete this" is allowed.
   4299         ASSERT(language_mode() == CLASSIC_MODE || var->is_this());
   4300         if (var->IsUnallocated()) {
   4301           __ lw(a2, GlobalObjectOperand());
   4302           __ li(a1, Operand(var->name()));
   4303           __ li(a0, Operand(Smi::FromInt(kNonStrictMode)));
   4304           __ Push(a2, a1, a0);
   4305           __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
   4306           context()->Plug(v0);
   4307         } else if (var->IsStackAllocated() || var->IsContextSlot()) {
   4308           // Result of deleting non-global, non-dynamic variables is false.
   4309           // The subexpression does not have side effects.
   4310           context()->Plug(var->is_this());
   4311         } else {
   4312           // Non-global variable.  Call the runtime to try to delete from the
   4313           // context where the variable was introduced.
   4314           __ push(context_register());
   4315           __ li(a2, Operand(var->name()));
   4316           __ push(a2);
   4317           __ CallRuntime(Runtime::kDeleteContextSlot, 2);
   4318           context()->Plug(v0);
   4319         }
   4320       } else {
   4321         // Result of deleting non-property, non-variable reference is true.
   4322         // The subexpression may have side effects.
   4323         VisitForEffect(expr->expression());
   4324         context()->Plug(true);
   4325       }
   4326       break;
   4327     }
   4328 
   4329     case Token::VOID: {
   4330       Comment cmnt(masm_, "[ UnaryOperation (VOID)");
   4331       VisitForEffect(expr->expression());
   4332       context()->Plug(Heap::kUndefinedValueRootIndex);
   4333       break;
   4334     }
   4335 
   4336     case Token::NOT: {
   4337       Comment cmnt(masm_, "[ UnaryOperation (NOT)");
   4338       if (context()->IsEffect()) {
   4339         // Unary NOT has no side effects so it's only necessary to visit the
   4340         // subexpression.  Match the optimizing compiler by not branching.
   4341         VisitForEffect(expr->expression());
   4342       } else if (context()->IsTest()) {
   4343         const TestContext* test = TestContext::cast(context());
   4344         // The labels are swapped for the recursive call.
   4345         VisitForControl(expr->expression(),
   4346                         test->false_label(),
   4347                         test->true_label(),
   4348                         test->fall_through());
   4349         context()->Plug(test->true_label(), test->false_label());
   4350       } else {
   4351         // We handle value contexts explicitly rather than simply visiting
   4352         // for control and plugging the control flow into the context,
   4353         // because we need to prepare a pair of extra administrative AST ids
   4354         // for the optimizing compiler.
   4355         ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
   4356         Label materialize_true, materialize_false, done;
   4357         VisitForControl(expr->expression(),
   4358                         &materialize_false,
   4359                         &materialize_true,
   4360                         &materialize_true);
   4361         __ bind(&materialize_true);
   4362         PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
   4363         __ LoadRoot(v0, Heap::kTrueValueRootIndex);
   4364         if (context()->IsStackValue()) __ push(v0);
   4365         __ jmp(&done);
   4366         __ bind(&materialize_false);
   4367         PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
   4368         __ LoadRoot(v0, Heap::kFalseValueRootIndex);
   4369         if (context()->IsStackValue()) __ push(v0);
   4370         __ bind(&done);
   4371       }
   4372       break;
   4373     }
   4374 
   4375     case Token::TYPEOF: {
   4376       Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
   4377       { StackValueContext context(this);
   4378         VisitForTypeofValue(expr->expression());
   4379       }
   4380       __ CallRuntime(Runtime::kTypeof, 1);
   4381       context()->Plug(v0);
   4382       break;
   4383     }
   4384 
   4385     default:
   4386       UNREACHABLE();
   4387   }
   4388 }
   4389 
   4390 
   4391 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
   4392   Comment cmnt(masm_, "[ CountOperation");
   4393   SetSourcePosition(expr->position());
   4394 
   4395   // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
   4396   // as the left-hand side.
   4397   if (!expr->expression()->IsValidLeftHandSide()) {
   4398     VisitForEffect(expr->expression());
   4399     return;
   4400   }
   4401 
   4402   // Expression can only be a property, a global or a (parameter or local)
   4403   // slot.
   4404   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   4405   LhsKind assign_type = VARIABLE;
   4406   Property* prop = expr->expression()->AsProperty();
   4407   // In case of a property we use the uninitialized expression context
   4408   // of the key to detect a named property.
   4409   if (prop != NULL) {
   4410     assign_type =
   4411         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
   4412   }
   4413 
   4414   // Evaluate expression and get value.
   4415   if (assign_type == VARIABLE) {
   4416     ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
   4417     AccumulatorValueContext context(this);
   4418     EmitVariableLoad(expr->expression()->AsVariableProxy());
   4419   } else {
   4420     // Reserve space for result of postfix operation.
   4421     if (expr->is_postfix() && !context()->IsEffect()) {
   4422       __ li(at, Operand(Smi::FromInt(0)));
   4423       __ push(at);
   4424     }
   4425     if (assign_type == NAMED_PROPERTY) {
   4426       // Put the object both on the stack and in the accumulator.
   4427       VisitForAccumulatorValue(prop->obj());
   4428       __ push(v0);
   4429       EmitNamedPropertyLoad(prop);
   4430     } else {
   4431       VisitForStackValue(prop->obj());
   4432       VisitForAccumulatorValue(prop->key());
   4433       __ lw(a1, MemOperand(sp, 0));
   4434       __ push(v0);
   4435       EmitKeyedPropertyLoad(prop);
   4436     }
   4437   }
   4438 
   4439   // We need a second deoptimization point after loading the value
   4440   // in case evaluating the property load my have a side effect.
   4441   if (assign_type == VARIABLE) {
   4442     PrepareForBailout(expr->expression(), TOS_REG);
   4443   } else {
   4444     PrepareForBailoutForId(prop->LoadId(), TOS_REG);
   4445   }
   4446 
   4447   // Call ToNumber only if operand is not a smi.
   4448   Label no_conversion;
   4449   if (ShouldInlineSmiCase(expr->op())) {
   4450     __ JumpIfSmi(v0, &no_conversion);
   4451   }
   4452   __ mov(a0, v0);
   4453   ToNumberStub convert_stub;
   4454   __ CallStub(&convert_stub);
   4455   __ bind(&no_conversion);
   4456 
   4457   // Save result for postfix expressions.
   4458   if (expr->is_postfix()) {
   4459     if (!context()->IsEffect()) {
   4460       // Save the result on the stack. If we have a named or keyed property
   4461       // we store the result under the receiver that is currently on top
   4462       // of the stack.
   4463       switch (assign_type) {
   4464         case VARIABLE:
   4465           __ push(v0);
   4466           break;
   4467         case NAMED_PROPERTY:
   4468           __ sw(v0, MemOperand(sp, kPointerSize));
   4469           break;
   4470         case KEYED_PROPERTY:
   4471           __ sw(v0, MemOperand(sp, 2 * kPointerSize));
   4472           break;
   4473       }
   4474     }
   4475   }
   4476   __ mov(a0, result_register());
   4477 
   4478   // Inline smi case if we are in a loop.
   4479   Label stub_call, done;
   4480   JumpPatchSite patch_site(masm_);
   4481 
   4482   int count_value = expr->op() == Token::INC ? 1 : -1;
   4483   if (ShouldInlineSmiCase(expr->op())) {
   4484     __ li(a1, Operand(Smi::FromInt(count_value)));
   4485     __ AdduAndCheckForOverflow(v0, a0, a1, t0);
   4486     __ BranchOnOverflow(&stub_call, t0);  // Do stub on overflow.
   4487 
   4488     // We could eliminate this smi check if we split the code at
   4489     // the first smi check before calling ToNumber.
   4490     patch_site.EmitJumpIfSmi(v0, &done);
   4491     __ bind(&stub_call);
   4492   }
   4493   __ mov(a1, a0);
   4494   __ li(a0, Operand(Smi::FromInt(count_value)));
   4495 
   4496   // Record position before stub call.
   4497   SetSourcePosition(expr->position());
   4498 
   4499   BinaryOpStub stub(Token::ADD, NO_OVERWRITE);
   4500   CallIC(stub.GetCode(isolate()),
   4501          RelocInfo::CODE_TARGET,
   4502          expr->CountBinOpFeedbackId());
   4503   patch_site.EmitPatchInfo();
   4504   __ bind(&done);
   4505 
   4506   // Store the value returned in v0.
   4507   switch (assign_type) {
   4508     case VARIABLE:
   4509       if (expr->is_postfix()) {
   4510         { EffectContext context(this);
   4511           EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
   4512                                  Token::ASSIGN);
   4513           PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4514           context.Plug(v0);
   4515         }
   4516         // For all contexts except EffectConstant we have the result on
   4517         // top of the stack.
   4518         if (!context()->IsEffect()) {
   4519           context()->PlugTOS();
   4520         }
   4521       } else {
   4522         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
   4523                                Token::ASSIGN);
   4524         PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4525         context()->Plug(v0);
   4526       }
   4527       break;
   4528     case NAMED_PROPERTY: {
   4529       __ mov(a0, result_register());  // Value.
   4530       __ li(a2, Operand(prop->key()->AsLiteral()->value()));  // Name.
   4531       __ pop(a1);  // Receiver.
   4532       Handle<Code> ic = is_classic_mode()
   4533           ? isolate()->builtins()->StoreIC_Initialize()
   4534           : isolate()->builtins()->StoreIC_Initialize_Strict();
   4535       CallIC(ic, RelocInfo::CODE_TARGET, expr->CountStoreFeedbackId());
   4536       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4537       if (expr->is_postfix()) {
   4538         if (!context()->IsEffect()) {
   4539           context()->PlugTOS();
   4540         }
   4541       } else {
   4542         context()->Plug(v0);
   4543       }
   4544       break;
   4545     }
   4546     case KEYED_PROPERTY: {
   4547       __ mov(a0, result_register());  // Value.
   4548       __ pop(a1);  // Key.
   4549       __ pop(a2);  // Receiver.
   4550       Handle<Code> ic = is_classic_mode()
   4551           ? isolate()->builtins()->KeyedStoreIC_Initialize()
   4552           : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   4553       CallIC(ic, RelocInfo::CODE_TARGET, expr->CountStoreFeedbackId());
   4554       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4555       if (expr->is_postfix()) {
   4556         if (!context()->IsEffect()) {
   4557           context()->PlugTOS();
   4558         }
   4559       } else {
   4560         context()->Plug(v0);
   4561       }
   4562       break;
   4563     }
   4564   }
   4565 }
   4566 
   4567 
   4568 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
   4569   ASSERT(!context()->IsEffect());
   4570   ASSERT(!context()->IsTest());
   4571   VariableProxy* proxy = expr->AsVariableProxy();
   4572   if (proxy != NULL && proxy->var()->IsUnallocated()) {
   4573     Comment cmnt(masm_, "Global variable");
   4574     __ lw(a0, GlobalObjectOperand());
   4575     __ li(a2, Operand(proxy->name()));
   4576     Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   4577     // Use a regular load, not a contextual load, to avoid a reference
   4578     // error.
   4579     CallIC(ic);
   4580     PrepareForBailout(expr, TOS_REG);
   4581     context()->Plug(v0);
   4582   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
   4583     Label done, slow;
   4584 
   4585     // Generate code for loading from variables potentially shadowed
   4586     // by eval-introduced variables.
   4587     EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
   4588 
   4589     __ bind(&slow);
   4590     __ li(a0, Operand(proxy->name()));
   4591     __ Push(cp, a0);
   4592     __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
   4593     PrepareForBailout(expr, TOS_REG);
   4594     __ bind(&done);
   4595 
   4596     context()->Plug(v0);
   4597   } else {
   4598     // This expression cannot throw a reference error at the top level.
   4599     VisitInDuplicateContext(expr);
   4600   }
   4601 }
   4602 
   4603 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
   4604                                                  Expression* sub_expr,
   4605                                                  Handle<String> check) {
   4606   Label materialize_true, materialize_false;
   4607   Label* if_true = NULL;
   4608   Label* if_false = NULL;
   4609   Label* fall_through = NULL;
   4610   context()->PrepareTest(&materialize_true, &materialize_false,
   4611                          &if_true, &if_false, &fall_through);
   4612 
   4613   { AccumulatorValueContext context(this);
   4614     VisitForTypeofValue(sub_expr);
   4615   }
   4616   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4617 
   4618   if (check->Equals(isolate()->heap()->number_string())) {
   4619     __ JumpIfSmi(v0, if_true);
   4620     __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
   4621     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
   4622     Split(eq, v0, Operand(at), if_true, if_false, fall_through);
   4623   } else if (check->Equals(isolate()->heap()->string_string())) {
   4624     __ JumpIfSmi(v0, if_false);
   4625     // Check for undetectable objects => false.
   4626     __ GetObjectType(v0, v0, a1);
   4627     __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE));
   4628     __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
   4629     __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
   4630     Split(eq, a1, Operand(zero_reg),
   4631           if_true, if_false, fall_through);
   4632   } else if (check->Equals(isolate()->heap()->symbol_string())) {
   4633     __ JumpIfSmi(v0, if_false);
   4634     __ GetObjectType(v0, v0, a1);
   4635     Split(eq, a1, Operand(SYMBOL_TYPE), if_true, if_false, fall_through);
   4636   } else if (check->Equals(isolate()->heap()->boolean_string())) {
   4637     __ LoadRoot(at, Heap::kTrueValueRootIndex);
   4638     __ Branch(if_true, eq, v0, Operand(at));
   4639     __ LoadRoot(at, Heap::kFalseValueRootIndex);
   4640     Split(eq, v0, Operand(at), if_true, if_false, fall_through);
   4641   } else if (FLAG_harmony_typeof &&
   4642              check->Equals(isolate()->heap()->null_string())) {
   4643     __ LoadRoot(at, Heap::kNullValueRootIndex);
   4644     Split(eq, v0, Operand(at), if_true, if_false, fall_through);
   4645   } else if (check->Equals(isolate()->heap()->undefined_string())) {
   4646     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   4647     __ Branch(if_true, eq, v0, Operand(at));
   4648     __ JumpIfSmi(v0, if_false);
   4649     // Check for undetectable objects => true.
   4650     __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
   4651     __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
   4652     __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
   4653     Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
   4654   } else if (check->Equals(isolate()->heap()->function_string())) {
   4655     __ JumpIfSmi(v0, if_false);
   4656     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   4657     __ GetObjectType(v0, v0, a1);
   4658     __ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE));
   4659     Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE),
   4660           if_true, if_false, fall_through);
   4661   } else if (check->Equals(isolate()->heap()->object_string())) {
   4662     __ JumpIfSmi(v0, if_false);
   4663     if (!FLAG_harmony_typeof) {
   4664       __ LoadRoot(at, Heap::kNullValueRootIndex);
   4665       __ Branch(if_true, eq, v0, Operand(at));
   4666     }
   4667     // Check for JS objects => true.
   4668     __ GetObjectType(v0, v0, a1);
   4669     __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   4670     __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset));
   4671     __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
   4672     // Check for undetectable objects => false.
   4673     __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
   4674     __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
   4675     Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
   4676   } else {
   4677     if (if_false != fall_through) __ jmp(if_false);
   4678   }
   4679   context()->Plug(if_true, if_false);
   4680 }
   4681 
   4682 
   4683 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
   4684   Comment cmnt(masm_, "[ CompareOperation");
   4685   SetSourcePosition(expr->position());
   4686 
   4687   // First we try a fast inlined version of the compare when one of
   4688   // the operands is a literal.
   4689   if (TryLiteralCompare(expr)) return;
   4690 
   4691   // Always perform the comparison for its control flow.  Pack the result
   4692   // into the expression's context after the comparison is performed.
   4693   Label materialize_true, materialize_false;
   4694   Label* if_true = NULL;
   4695   Label* if_false = NULL;
   4696   Label* fall_through = NULL;
   4697   context()->PrepareTest(&materialize_true, &materialize_false,
   4698                          &if_true, &if_false, &fall_through);
   4699 
   4700   Token::Value op = expr->op();
   4701   VisitForStackValue(expr->left());
   4702   switch (op) {
   4703     case Token::IN:
   4704       VisitForStackValue(expr->right());
   4705       __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
   4706       PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
   4707       __ LoadRoot(t0, Heap::kTrueValueRootIndex);
   4708       Split(eq, v0, Operand(t0), if_true, if_false, fall_through);
   4709       break;
   4710 
   4711     case Token::INSTANCEOF: {
   4712       VisitForStackValue(expr->right());
   4713       InstanceofStub stub(InstanceofStub::kNoFlags);
   4714       __ CallStub(&stub);
   4715       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4716       // The stub returns 0 for true.
   4717       Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through);
   4718       break;
   4719     }
   4720 
   4721     default: {
   4722       VisitForAccumulatorValue(expr->right());
   4723       Condition cc = CompareIC::ComputeCondition(op);
   4724       __ mov(a0, result_register());
   4725       __ pop(a1);
   4726 
   4727       bool inline_smi_code = ShouldInlineSmiCase(op);
   4728       JumpPatchSite patch_site(masm_);
   4729       if (inline_smi_code) {
   4730         Label slow_case;
   4731         __ Or(a2, a0, Operand(a1));
   4732         patch_site.EmitJumpIfNotSmi(a2, &slow_case);
   4733         Split(cc, a1, Operand(a0), if_true, if_false, NULL);
   4734         __ bind(&slow_case);
   4735       }
   4736       // Record position and call the compare IC.
   4737       SetSourcePosition(expr->position());
   4738       Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
   4739       CallIC(ic, RelocInfo::CODE_TARGET, expr->CompareOperationFeedbackId());
   4740       patch_site.EmitPatchInfo();
   4741       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4742       Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
   4743     }
   4744   }
   4745 
   4746   // Convert the result of the comparison into one expected for this
   4747   // expression's context.
   4748   context()->Plug(if_true, if_false);
   4749 }
   4750 
   4751 
   4752 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
   4753                                               Expression* sub_expr,
   4754                                               NilValue nil) {
   4755   Label materialize_true, materialize_false;
   4756   Label* if_true = NULL;
   4757   Label* if_false = NULL;
   4758   Label* fall_through = NULL;
   4759   context()->PrepareTest(&materialize_true, &materialize_false,
   4760                          &if_true, &if_false, &fall_through);
   4761 
   4762   VisitForAccumulatorValue(sub_expr);
   4763   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4764   __ mov(a0, result_register());
   4765   if (expr->op() == Token::EQ_STRICT) {
   4766     Heap::RootListIndex nil_value = nil == kNullValue ?
   4767         Heap::kNullValueRootIndex :
   4768         Heap::kUndefinedValueRootIndex;
   4769     __ LoadRoot(a1, nil_value);
   4770     Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
   4771   } else {
   4772     Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
   4773     CallIC(ic, RelocInfo::CODE_TARGET, expr->CompareOperationFeedbackId());
   4774     Split(ne, v0, Operand(zero_reg), if_true, if_false, fall_through);
   4775   }
   4776   context()->Plug(if_true, if_false);
   4777 }
   4778 
   4779 
   4780 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
   4781   __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   4782   context()->Plug(v0);
   4783 }
   4784 
   4785 
   4786 Register FullCodeGenerator::result_register() {
   4787   return v0;
   4788 }
   4789 
   4790 
   4791 Register FullCodeGenerator::context_register() {
   4792   return cp;
   4793 }
   4794 
   4795 
   4796 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
   4797   ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
   4798   __ sw(value, MemOperand(fp, frame_offset));
   4799 }
   4800 
   4801 
   4802 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
   4803   __ lw(dst, ContextOperand(cp, context_index));
   4804 }
   4805 
   4806 
   4807 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
   4808   Scope* declaration_scope = scope()->DeclarationScope();
   4809   if (declaration_scope->is_global_scope() ||
   4810       declaration_scope->is_module_scope()) {
   4811     // Contexts nested in the native context have a canonical empty function
   4812     // as their closure, not the anonymous closure containing the global
   4813     // code.  Pass a smi sentinel and let the runtime look up the empty
   4814     // function.
   4815     __ li(at, Operand(Smi::FromInt(0)));
   4816   } else if (declaration_scope->is_eval_scope()) {
   4817     // Contexts created by a call to eval have the same closure as the
   4818     // context calling eval, not the anonymous closure containing the eval
   4819     // code.  Fetch it from the context.
   4820     __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX));
   4821   } else {
   4822     ASSERT(declaration_scope->is_function_scope());
   4823     __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   4824   }
   4825   __ push(at);
   4826 }
   4827 
   4828 
   4829 // ----------------------------------------------------------------------------
   4830 // Non-local control flow support.
   4831 
   4832 void FullCodeGenerator::EnterFinallyBlock() {
   4833   ASSERT(!result_register().is(a1));
   4834   // Store result register while executing finally block.
   4835   __ push(result_register());
   4836   // Cook return address in link register to stack (smi encoded Code* delta).
   4837   __ Subu(a1, ra, Operand(masm_->CodeObject()));
   4838   ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
   4839   STATIC_ASSERT(0 == kSmiTag);
   4840   __ Addu(a1, a1, Operand(a1));  // Convert to smi.
   4841 
   4842   // Store result register while executing finally block.
   4843   __ push(a1);
   4844 
   4845   // Store pending message while executing finally block.
   4846   ExternalReference pending_message_obj =
   4847       ExternalReference::address_of_pending_message_obj(isolate());
   4848   __ li(at, Operand(pending_message_obj));
   4849   __ lw(a1, MemOperand(at));
   4850   __ push(a1);
   4851 
   4852   ExternalReference has_pending_message =
   4853       ExternalReference::address_of_has_pending_message(isolate());
   4854   __ li(at, Operand(has_pending_message));
   4855   __ lw(a1, MemOperand(at));
   4856   __ SmiTag(a1);
   4857   __ push(a1);
   4858 
   4859   ExternalReference pending_message_script =
   4860       ExternalReference::address_of_pending_message_script(isolate());
   4861   __ li(at, Operand(pending_message_script));
   4862   __ lw(a1, MemOperand(at));
   4863   __ push(a1);
   4864 }
   4865 
   4866 
   4867 void FullCodeGenerator::ExitFinallyBlock() {
   4868   ASSERT(!result_register().is(a1));
   4869   // Restore pending message from stack.
   4870   __ pop(a1);
   4871   ExternalReference pending_message_script =
   4872       ExternalReference::address_of_pending_message_script(isolate());
   4873   __ li(at, Operand(pending_message_script));
   4874   __ sw(a1, MemOperand(at));
   4875 
   4876   __ pop(a1);
   4877   __ SmiUntag(a1);
   4878   ExternalReference has_pending_message =
   4879       ExternalReference::address_of_has_pending_message(isolate());
   4880   __ li(at, Operand(has_pending_message));
   4881   __ sw(a1, MemOperand(at));
   4882 
   4883   __ pop(a1);
   4884   ExternalReference pending_message_obj =
   4885       ExternalReference::address_of_pending_message_obj(isolate());
   4886   __ li(at, Operand(pending_message_obj));
   4887   __ sw(a1, MemOperand(at));
   4888 
   4889   // Restore result register from stack.
   4890   __ pop(a1);
   4891 
   4892   // Uncook return address and return.
   4893   __ pop(result_register());
   4894   ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
   4895   __ sra(a1, a1, 1);  // Un-smi-tag value.
   4896   __ Addu(at, a1, Operand(masm_->CodeObject()));
   4897   __ Jump(at);
   4898 }
   4899 
   4900 
   4901 #undef __
   4902 
   4903 #define __ ACCESS_MASM(masm())
   4904 
   4905 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
   4906     int* stack_depth,
   4907     int* context_length) {
   4908   // The macros used here must preserve the result register.
   4909 
   4910   // Because the handler block contains the context of the finally
   4911   // code, we can restore it directly from there for the finally code
   4912   // rather than iteratively unwinding contexts via their previous
   4913   // links.
   4914   __ Drop(*stack_depth);  // Down to the handler block.
   4915   if (*context_length > 0) {
   4916     // Restore the context to its dedicated register and the stack.
   4917     __ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
   4918     __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4919   }
   4920   __ PopTryHandler();
   4921   __ Call(finally_entry_);
   4922 
   4923   *stack_depth = 0;
   4924   *context_length = 0;
   4925   return previous_;
   4926 }
   4927 
   4928 
   4929 #undef __
   4930 
   4931 } }  // namespace v8::internal
   4932 
   4933 #endif  // V8_TARGET_ARCH_MIPS
   4934